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Abstract. Discounted-sum games provide a formal model for the study
of reinforcement learning, where the agent is enticed to get rewards
early since later rewards are discounted. When the agent interacts with
the environment, she may realize that, with hindsight, she could have
increased her reward by playing differently: this difference in outcomes
constitutes her regret value. The agent may thus elect to follow a regret-
minimal strategy. In this paper, it is shown that (1) there always exist
regret-minimal strategies that are admissible—a strategy being inad-
missible if there is another strategy that always performs better; (2)
computing the minimum possible regret or checking that a strategy is
regret-minimal can be done in coNPNP, disregarding the computational
cost of numerical analysis (otherwise, this bound becomes PSpace).

Keywords: Admissibility · Discounted-sum games ·
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1 Introduction

A pervasive model used to study the strategies of an agent in an unknown envi-
ronment is two-player infinite horizon games played on finite weighted graphs.
Therein, the set of vertices of a graph is split between two players, Adam and
Eve, playing the roles of the environment and the agent, respectively. The play
starts in a given vertex, and each player decides where to go next when the play
reaches one of their vertices. Questions asked about these games are usually of
the form: Does there exist a strategy of Eve such that. . . ? For such a question
to be well-formed, one should provide:

1. A valuation function: given an infinite play, what is Eve’s reward?
2. Assumptions about the environment: is Adam trying to help or hinder Eve?

The valuation function can be Boolean, in which case one says that Eve
wins or loses (one very classical example has Eve winning if the maximum value
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appearing infinitely often along the edges is even). In this setting, it is often
assumed that Adam is adversarial, and the question then becomes: Can Eve
always win? (The names of the players stem from this view: is there a strategy
of ∃ve that always beats ∀dam?) The literature on that subject spans more than
35 years, with newly found applications to this day (see [4] for comprehensive
lecture notes, and [7] for an example of recent use in the analysis of attacks in
cryptocurrencies).

The valuation function can also aggregate the numerical values along the
edges into a reward value. We focus in this paper on discounted sum: if w is
the weight of the edge taken at the n-th step, Eve’s reward grows by λn · w,
where λ ∈ (0, 1) is a prescribed discount factor. Discounting future rewards is a
classical notion used in economics [18], Markov decision processes [9,16], systems
theory [1], and is at the heart of Q-learning, a reinforcement learning technique
widely used in machine learning [19]. In this setting, we consider three attitudes
towards the environment:

– The adversarial environment hypothesis translates to Adam trying to min-
imize Eve’s reward, and the question becomes: Can Eve always achieve a
reward of x? This problem is in NP ∩ coNP [20] and showing a P upper-bound
would constitute a major breakthrough (namely, it would imply the same for
so-called parity games [15]). A strategy of Eve that maximizes her rewards
against an adversarial environment is called worst-case optimal. Conversely,
a strategy that maximizes her rewards assuming a collaborative environment
is called best-case optimal.

– Assuming that the environment is adversarial is drastic, if not pessimistic. Eve
could rather be interested in settling for a strategy σ which is not consistently
bad: if another strategy σ′ gives a better reward in one environment, there
should be another environment for which σ is better than σ′. Such strategies,
called admissible [5], can be seen as an a priori rational choice.

– Finally, Eve could put no assumption on the environment, but regret not
having done so. Formally, the regret value of Eve’s strategy is defined as the
maximal difference, for all environments, between the best value Eve could
have obtained and the value she actually obtained. Eve can thus be inter-
ested in following a strategy that achieves the minimal regret value, aptly
called a regret-minimal strategy [10]. This constitutes an a posteriori ratio-
nal choice [12]. Regret-minimal strategies were explored in several contexts,
with applications including competitive online algorithm synthesis [3,11] and
robot-motion planning [13,14].

In this paper, we single out a class of strategies for Eve that first follow a
best-case optimal strategy, then switch to a worst-case optimal strategy after
some precise time; we call these strategies optipess. Our main contributions are
then:

1. Optipess strategies are not only regret-minimal (a fact established in [13])
but also admissible—note that there are regret-minimal strategies that are
not admissible and vice versa. On the way, we show that for any strategy of



The Impatient May Use Limited Optimism to Minimize Regret 135

Eve there is an admissible strategy that performs at least as well; this is a
peculiarity of discounted-sum games.

2. The regret value of a given time-switching strategy can be computed with
an NP algorithm (disregarding the cost of numerical analysis). The main
technical hurdle is showing that exponentially long paths can be represented
succinctly, a result of independent interest.

3. The question Can Eve’s regret be bounded by x? is decidable in NPcoNP (again
disregarding the cost of numerical analysis, PSpace otherwise), improving on
the implicit NExp algorithm of [13]. The algorithm consists in guessing a
time-switching strategy and computing its regret value; since optipess strate-
gies are time-switching strategies that are regret-minimal, the algorithm will
eventually find the minimal regret value of the input game.

Structure of the Paper. Notations and definitions are introduced in Sect. 2. The
study of admissibility appears in Sect. 3, and is independent from the complexity
analysis of regret. The main algorithm devised in this paper (point 2 above) is
presented in Theorem 5, Sect. 6; it relies on technical lemmas that are the focus
of Sects. 4 and 5. We encourage the reader to go through the statements of the
lemma sections, then through the proof of Theorem 5, to get a good sense of the
role each lemma plays.

In more details, in Sect. 4 we provide a crucial lemma that allows to represent
long paths succinctly, and in Sect. 5, we argue that the important values of a
game (regret, best-case, worst-case) have short witnesses. In Sect. 6, we use these
lemmas to devise our algorithms.

2 Preliminaries

We assume familiarity with basic graph and complexity theory. Some more spe-
cific definitions and known results are recalled here.

Game, Play, History. A (discounted-sum) game G is a tuple (V, v0, V∃, E,w, λ)
where V is a finite set of vertices, v0 is the starting vertex, V∃ ⊆ V is the subset
of vertices that belong to Eve, E ⊆ V × V is a set of directed edges, w : E → Z

is an (edge-)weight function, and 0 < λ < 1 is a rational discount factor. The
vertices in V \ V∃ are said to belong to Adam. Since we consider games played
for an infinite number of turns, we will always assume that every vertex has at
least one outgoing edge.

A play is an infinite path v1v2 · · · ∈ V ω in the digraph (V,E). A history
h = v1 · · · vn is a finite path. The length of h, written |h|, is the number of edges
it contains: |h| def= n − 1. The set Hist consists of all histories that start in v0
and end in a vertex from V∃.

Strategies. A strategy of Eve in G is a function σ that maps histories ending in
some vertex v ∈ V∃ to a neighbouring vertex v′ (i.e., (v, v′) ∈ E). The strategy
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σ is positional if for all histories h, h′ ending in the same vertex, σ(h) = σ(h′).
Strategies of Adam are defined similarly.

A history h = v1 · · · vn is said to be consistent with a strategy σ of Eve if for
all i ≥ 2 such that vi ∈ V∃, we have that σ(v1 · · · vi−1) = vi. Consistency with
strategies of Adam is defined similarly. We write Hist(σ) for the set of histories
in Hist that are consistent with σ. A play is consistent with a strategy (of either
player) if all its prefixes are consistent with it.

Given a vertex v and both Adam and Eve’s strategies, τ and σ respectively,
there is a unique play starting in v that is consistent with both, called the
outcome of τ and σ on v. This play is denoted outv(σ, τ).

For a strategy σ of Eve and a history h ∈ Hist(σ), we let σh be the strategy
of Eve that assumes h has already been played. Formally, σh(h′) = σ(h · h′) for
any history h′ (we will use this notation only on histories h′ that start with the
ending vertex of h).

Values. The value of a history h = v1 · · · vn is the discounted sum of the weights
on the edges:

Val(h) def=
|h|−1∑

i=0

λiw(vi, vi+1) .

The value of a play is simply the limit of the values of its prefixes.
The antagonistic value of a strategy σ of Eve with history h = v1 · · · vn is

the value Eve achieves when Adam tries to hinder her, after h:

aValh(σ) def= Val(h) + λ|h| · inf
τ
Val(outvn(σh, τ)) ,

where τ ranges over all strategies of Adam. The collaborative value cValh(σ)
is defined in a similar way, by substituting “sup” for “inf.” We write aValh

(resp. cValh) for the best antagonistic (resp. collaborative) value achievable by
Eve with any strategy.

Types of Strategies. A strategy σ of Eve is strongly worst-case optimal (SWO)
if for every history h we have aValh(σ) = aValh; it is strongly best-case opti-
mal (SBO) if for every history h we have cValh(σ) = cValh.

We single out a class of SWO strategies that perform well if Adam turns out to
be helping. A SWO strategy σ of Eve is strongly best worst-case optimal (SBWO)
if for every history h we have cValh(σ) = acValh, where:

acValh def= sup{cValh(σ′) | σ′ is a SWO strategy of Eve} .

In the context of discounted-sum games, strategies that are positional and
strongly optimal always exist. Furthermore, the set of all such strategies can be
characterized by local conditions.
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Lemma 1 (Follows from [20, Theorem 5.1]). There exist positional SWO,
SBO, and SBWO strategies in every game. For any positional strategy σ of Eve:

– (∀v ∈ V ) [aValv(σ) = aValv] iff σ is SWO;
– (∀v ∈ V ) [cValv(σ) = cValv] iff σ is SBO;
– (∀v ∈ V ) [aValv(σ) = aValv ∧ cValv(σ) = acValv] iff σ is SBWO.

Regret. The regret of a strategy σ of Eve is the maximal difference between
the value obtained by using σ and the value obtained by using an alternative
strategy:

Reg (σ) def= sup
τ

((
sup
σ′

Val(outv0(σ′, τ))
)

− Val(outv0(σ, τ))
)

,

where τ and σ′ range over all strategies of Adam and Eve, respectively. The
(minimal) regret of G is then Reg def= infσ Reg (σ).

Regret can also be characterized by considering the point in history when
Eve should have done things differently. Formally, for any vertices u and v let
cValu¬v be the maximal cValu(σ) for strategies σ verifying σ(u) 
= v. Then:

Lemma 2 ([13, Lemma 13]). For all strategies σ of Eve:

Reg (σ) = sup
{

λn
(
cValvn

¬σ(h) − aValvn(σh)
) ∣∣∣ h = v0 · · · vn ∈ Hist(σ)

}
.

Switching and Optipess Strategies. Given strategies σ1, σ2 of Eve and a threshold
function t : V∃ → N∪{∞}, we define the switching strategy σ1

t→σ2 for any history
h = v1 · · · vn ending in V∃ as:

σ1
t→σ2(h) =

{
σ2(h) if (∃i)[i ≥ t(vi)],
σ1(h) otherwise.

We refer to histories for which the first condition above holds as switched his-
tories, to all others as unswitched histories. The strategy σ = σ1

t→σ2 is said to
be bipositional if both σ1 and σ2 are positional. Note that in that case, for all
histories h, if h is switched then σh = σ2, and otherwise σh is the same as σ
but with t(v) changed to max{0, t(v) − |h|} for all v ∈ V∃. In particular, if |h| is
greater than max{t(v) < ∞}, then σh is nearly positional: it switches to σ2 as
soon as it sees a vertex with t(v) 
= ∞.

A strategy σ is perfectly optimistic-then-pessimistic (optipess, for short) if
there are positional SBO and SBWO strategies σsbo and σsbwo such that σ =
σsbo t→σsbwo where t(v) = inf

{
i ∈ N

∣∣ λi (cValv − aValv) ≤ Reg
}

.
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Theorem 1 ([13]). For all optipess strategies σ of Eve, Reg (σ) = Reg.

Conventions. As we have done so far, we will assume throughout the paper
that a game G is fixed—with the notable exception of the results on complexity,
in which we assume that the game is given with all numbers in binary. Regard-
ing strategies, we assume that bipositional strategies are given as two positional
strategies and a threshold function encoded as a table with binary-encoded entries.

�
� �

Example 1. Consider the following game, where round vertices are owned by
Eve, and square ones by Adam. The double edges represent Eve’s positional
strategy σ:

v0 v1v2 v′
1

v′′
1

v′
2 x y

0 0 0

0

2

2

0

0

0
2

0

0

1

Eve’s strategy has a regret value of 2λ2/(1−λ). This is realized when Adam
plays from v0 to v1, from v′′

1 to x, and from v′
1 to y. Against that strategy, Eve

ensures a discounted-sum value of 0 by playing according to σ while regretting
not having played to v′′

1 to obtain 2λ2/(1 − λ). �

3 Admissible Strategies and Regret

There is no reason for Eve to choose a strategy that is consistently worse than
another one. This classical idea is formalized using the notions of strategy dom-
ination and admissible strategies. In this section, which is independent from the
rest of the paper, we study the relation between admissible and regret-minimal
strategies. Let us start by formally introducing the relevant notions:

Definition 1. Let σ1, σ2 be two strategies of Eve. We say that σ1 is weakly
dominated by σ2 if Val(outv0(σ1, τ)) ≤ Val(outv0(σ2, τ)) for every strategy τ
of Adam. We say that σ1 is dominated by σ2 if σ1 is weakly dominated by σ2

but not conversely. A strategy σ of Eve is admissible if it is not dominated by
any other strategy.

In other words, admissible strategies are maximal elements for the weak-
domination pre-order.
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Example 2. Consider the following game, where the strategy σ of Eve is shown
by the double edges:

v0 v1v2

v′
1

v′′
1

v′
2

0 0

0

0
0

10

5

6

This strategy guarantees a discounted-sum value of 6λ2(1−λ) against any strat-
egy of Adam. Furthermore, it is worst-case optimal since playing to v1 instead
of v2 would allow Adam the opportunity to ensure a strictly smaller value by
playing to v′′

1 . The latter also implies that σ is admissible. Interestingly, playing
to v1 is also an admissible behavior of Eve since, against a strategy of Adam
that plays from v1 to v′

1, it obtains 10λ2(1 − λ) > 6λ2(1 − λ). �

The two examples above can be used to argue that the sets of strategies that
are regret minimal and admissible, respectively, are in fact incomparable.

Proposition 1. There are regret-optimal strategies that are not admissible and
admissible strategies that have suboptimal regret.

Proof (Sketch). Consider once more the game depicted in Example 1 and recall
that the strategy σ of Eve corresponding to the double edges has minimal regret.
This strategy is not admissible: it is dominated by the alternative strategy σ′ of
Eve that behaves like σ from v1 but plays to v′

2 from v2. Indeed, if Adam plays
to v1 from v0 then the outcomes of σ and σ′ are the same. However, if Adam
plays to v2 then the value of the outcome of σ is 0 while the value of the outcome
of σ′ is strictly greater than 0.

Similarly, the strategy σ depicted by double edges in the game from
Example 2 is admissible but not regret-minimizing. In fact, her strategy σ′ that
consists in playing v1 from v0 has a smaller regret. ��

In the rest of this section, we show that (1) any strategy is weakly dominated
by an admissible strategy; (2) being dominated entails more regret; (3) optipess
strategies are both regret-minimal and admissible. We will need the following:

Lemma 3 ([6]). A strategy σ of Eve is admissible if and only if for every his-
tory h ∈ Hist(σ) the following holds: either cValh(σ) > aValh or aValh(σ) =
cValh(σ) = aValh = acValh.

The above characterization of admissible strategies in so-called well-formed
games was proved in [6, Theorem 11]. Lemma 3 follows from the fact that
discounted-sum games are well-formed.

3.1 Any Strategy Is Weakly Dominated by an Admissible Strategy

We show that discounted-sum games have the distinctive property that every
strategy is weakly dominated by an admissible strategy. This is in stark contrast
with most cases where admissibility has been studied previously [6].
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Theorem 2. Any strategy of Eve is weakly dominated by an admissible strategy.

Proof (Sketch). The main idea is to construct, based on σ, a strategy σ′ that will
switch to a SBWO strategy as soon as σ does not satisfy the characterization of
Lemma 3. The first part of the argument consists in showing that σ is indeed
weakly dominated by σ′. This is easily done by comparing, against each strategy
τ of Adam, the values of σ and σ′. The second part consists in verifying that
σ′ is indeed admissible. This is done by checking that each history h consistent
with σ′ satisfies the characterization of Lemma 3, that is cValh(σ′) > aValh or
aValh(σ′) = cValh(σ′) = aValh = acValh. ��

3.2 Being Dominated Is Regretful

Theorem 3. For all strategies σ, σ′ of Eve such that σ is weakly dominated
by σ′, it holds that Reg (σ′) ≤ Reg (σ).

Proof. Let σ, σ′ be such that σ is weakly dominated by σ′. This means that for
every strategy τ of Adam, we have that Val(π) ≤ Val(π′) where π = outv0(σ, τ)
and π′ = outv0(σ′, τ). Consequently: we obtain

(
sup
σ′′

Val(outv0(σ′′, τ))
)

− Val(π′) ≤
(

sup
σ′′

Val(outv0(σ′′, τ))
)

− Val(π) .

As this holds for any τ , we can conclude that supτ supσ′′(Val(outv0(σ′′, τ)) −
Val(outv0(σ′, τ))) ≤ supτ supσ′′(Val(outv0(σ′′, τ)) − Val(outv0(σ, τ))), that is
Reg (σ′) ≤ Reg (σ). ��
It follows from Proposition 1, however, that the converse of the theorem is false.

3.3 Optipess Strategies Are both Regret-Minimal and Admissible

Recall that there are admissible strategies that are not regret-minimal and vice
versa (Proposition 1). However, as a direct consequence of Theorems 2 and 3,
there always exist regret-minimal admissible strategies. It turns out that optipess
strategies, which are regret-minimal (Theorem 1), are also admissible:

Theorem 4. All optipess strategies of Eve are admissible.

Proof. Let σ = σsbo t→σsbwo be an optipess strategy; we show it is admissible.
To this end, let h = v0 . . . vn ∈ Hist(σ); we show that one of the properties of
Lemma 3 holds. There are two cases:

(h is switched.) In that case, σh = σsbwo. Since σsbwo is an SBWO strategy,
cValh(σsbwo) = acValh. Now if acValh > aValh, then:

cValh(σ) = cValh(σsbwo) = acValh > aValh ,

and σ satisfies the first property of Lemma 3. Otherwise acValh = aValh and
the second property holds: we have that cValh(σ) = acValh, and as σsbwo is an
SWO and aValh(σ) = aValh(σsbwo), we also have that aValh(σ) = aValh.
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(h is unswitched.) We show that cValh(σ) > aValh. Since h is unswitched,
we have in particular that:

Reg (σ) = Reg < λn (cValvn − aValvn) . (1)

Furthermore:

λn (cValvn − aValvn) = (Val(h) + λncValvn) − (Val(h) + λnaValvn)

= cValh − aValh ,

and combining the previous equation with Eq. 1, we obtain:

cValh − Reg (σ) > aValh .

To conclude, we show that Reg (σ) ≥ cValh − cValh(σ). Consider a strat-
egy τ of Adam such that h is consistent with both σsbo and τ and satisfying
Val(outv0(σsbo, τ)) = cValh. (That such a τ exists is intuitively clear since σ
has been following the SBO strategy σsbo along h.) It holds immediately that
cValh(σ) ≥ Val(outv0(σ, τ)). Now by definition of the regret:

Reg (σ) ≥ Val(outv0(σsbo, τ)) − Val(outv0(σ, τ))

≥ cValh − cValh(σ) . ��

4 Minimal Values Are Witnessed by a Single Iterated
Cycle

We start our technical work towards a better algorithm to compute the regret
value of a game. Here, we show that there are succinctly presentable histories
that witness small values in the game. Our intention is to later use this result
to apply a modified version of Lemma 2 to bipositional strategies to argue there
are small witnesses of a strategy having too much regret.

More specifically, we show that for any history h, there is another history h′

of the same length that has smaller value and such that h′ = α · βk · γ where
|αβγ| is small. This will allow us to find the smallest possible value among
exponentially long histories by guessing α, β, γ, and k, which will all be small.
This property holds for a wealth of different valuation functions, hinting at
possible further applications. For discounted-sum games, the following suffices
to prove the desired property holds.

Lemma 4. For any history h = α · β · γ with α and γ same-length cycles:

min{Val(α2 · β),Val(β · γ2)} ≤ Val(h) .
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Within the proof of the key lemma of this section, and later on when we use
it (Lemma 9), we will rely on the following notion of cycle decomposition:

Definition 2. A simple-cycle decomposition (SCD) is a pair consisting of paths
and iterated simple cycles. Formally, an SCD is a pair D = 〈(αi)n

i=0, (βj , kj)n
j=1〉,

where each αi is a path, each βj is a simple cycle, and each kj is a positive
integer. We write D(j) = β

kj

j · αj and D(	) = α0 · D(1)D(2) · · · D(n).

By carefully iterating Lemma 4, we have:

Lemma 5. For any history h there exists an history h′ = α · βk · γ with:

– h and h′ have the same starting and ending vertices, and the same length;
– Val(h′) ≤ Val(h);
– |αβγ| ≤ 4|V |3 and β is a simple cycle.

Proof. In this proof, we focus on SCDs for which each path αi is simple;
we call them ßCDs. We define a wellfounded partial order on ßCDs. Let
D = 〈(αi)n

i=0, (βj , kj)n
j=1〉 and D′ = 〈(α′

i)
n′
i=0, (β

′
j , k

′
j)

n′
j=1〉 be two ßCDs; we write

D′ < D iff all the following holds:

– D(	) and D′(	) have the same starting and ending vertices, the same length,
and satisfy Val(D′(	)) ≤ Val(D(	)) and n′ ≤ n;

– Either n′ < n, or |α′
0 · · · α′

n′ | < |α0 · · · αn|, or |{k′
i ≥ |V |}| < |{ki ≥ |V |}|.

That this order has no infinite descending chain is clear. We show two claims:

1. Any ßCD with n greater than |V | has a smaller ßCD;
2. Any ßCD with two kj , kj′ > |V | has a smaller ßCD.

Together they imply that for a smallest ßCD D, D(	) is of the required form.
Indeed let j be the unique value for which kj > |V |, then the statement of the
Lemma is satisfied by letting α = α0 · D(1) · · · D(j − 1), β = βj , k = kj , and
γ = αj · D(j + 1) · · · D(n).

Claim 1. Suppose D has n > |V |. Since all cycles are simple, there are
two cycles βj , βj′ , j < j′, of same length. We can apply Lemma 4 on the path
βj · (αjD(j + 1) · · · D(j′ − 1)) · βj′ , and remove one of the two cycles while
duplicating the other; we thus obtain a similar path of smaller value. This can
be done repeatedly until we obtain a path with only one of the two cycles, say
βj′ , the other case being similar. Substituting this path in D(	) results in:

α0 ·D(1) · · · D(j) ·
(
αj · D(j + 1) · · · D(j′ − 1) · β

kj+kj′
j′

)
·αj′ ·D(j′ +1) · · · D(n) .

This gives rise to a smaller ßCD as follows. If αj−1αj is still a simple path,
then the above history is expressible as an ßCD with a smaller number of cycles.
Otherwise, we rewrite αj−1αj = α′

j−1β
′
jα

′
j where α′

j−1 and α′
j are simple paths

and β′
j is a simple cycle; since |α′

j−1α
′
j | < |αj−1αj |, the resulting ßCD is smaller.
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Claim 2. Suppose D has two kj , kj′ > |V |, j < j′. Since each cycle in
the ßCD is simple, kj and kj′ are greater than both |βj | and |βj′ |; let us write
kj = b|βj′ | + r with 0 ≤ r < |βj′ |, and similarly, kj′ = b′|βj | + r′. We have:

D(j) · · · D(j′) = βr
j ·

(
(β

|βj′ |
j )b · αj · D(j + 1) · · · D(j′ − 1) · (β|βj |

j′ )b′) · βr′
j′ · αj′ .

Noting that β
|βj |
j′ and β

|βj′ |
j are cycles of the same length, we can transfer all the

occurrences of one to the other, as in Claim 1. Similarly, if two simple paths get
merged and give rise to a cycle, a smaller ßCD can be constructed; if not, then
there are now at most r < |V | occurrences of βj′ (or conversely, r′ of βj), again
resulting in a smaller ßCD. ��

5 Short Witnesses for Regret, Antagonistic,
and Collaborative Values

We continue our technical work towards our algorithm for computing the regret
value. In this section, the overarching theme is that of short witnesses. We show
that (1) the regret value of a strategy is witnessed by histories of bounded
length; (2) the collaborative value of a game is witnessed by a simple path and
an iterated cycle; (3) the antagonistic value of a strategy is witnessed by an SCD
and an iterated cycle.

5.1 Regret Is Witnessed by Histories of Bounded Length

Lemma 6. Let σ = σ1
t→σ2 be an arbitrary bipositional switching strategy of

Eve and let C = 2|V | + max{t(v) < ∞}. We have that:

Reg (σ) = max
{

λn
(
cValvn

¬σ(h) − aValvn(σh)
) ∣∣∣

h = v0 . . . vn ∈ Hist(σ), n ≤ C
}

.

Proof. Consider a history h of length greater than C, and write h = h1 ·h2 with
|h1| = max{t(v) < ∞}. Let h2 = p · p′ where p is the maximal prefix of h2 such
that h1 · p is unswitched—we set p = ε if h is switched. Note that one of p or p′

is longer than |V |—say p, the other case being similar. This implies that there
is a cycle in p, i.e., p = α · β · γ with β a cycle. Let h′ = h1 · α · γ · p′; this history
has the same starting and ending vertex as h. Moreover, since |h1| is larger than
any value of the threshold function, σh = σh′ . Lastly, h′ is still in Hist(σ), since
the removed cycle did not play a role in switching strategy. This shows:

cValvn

¬σ(h) − aValvn(σh) = cValvn

¬σ(h′) − aValvn(σh′) .

Since the length of h is greater than the length of h′, the discounted value
for h′ will be greater than that of h, resulting in a higher regret value. There is
thus no need to consider histories of size greater than C. ��
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It may seem from this lemma and the fact that t(v) may be very large
that we will need to guess histories of important length. However, since we
will be considering bipositional switching strategies, we will only be interested
in guessing some properties of the histories that are not hard to verify:

Lemma 7. The following problem is decidable in NP:
Given: A game, a bipositional switching strategy σ,

a number n in binary, a Boolean b, and two vertices v, v′

Question: Is there a h ∈ Hist(σ) of length n, switched if b,
ending in v, with σ(h) = v′?

Proof. This is done by guessing multiple flows within the graph (V,E). Here,
we call flow a valuation of the edges E by integers, that describes the number
of times a path crosses each edge. Given a vector in N

E , it is not hard to check
whether there is a path that it represents, and to extract the initial and final
vertices of that path [17].

We first order the different thresholds from the strategy σ = σ1
t→σ2: let

V∃ = {v1, v2, . . . , vk} with t(vi) ≤ t(vi+1) for all i. We analyze the structure of
histories consistent with σ. Let h ∈ Hist(σ), and write h = h′ · h′′ where h′ is
the maximal unswitched prefix of h. Naturally, h′ is consistent with σ1 and h′′

is consistent with σ2. Then h′ = h0h1 · · · hi, for some i < |V∃|, with:

– |h0| = t(v1) and for all 1 ≤ j < i, |hj | = t(vj+1) − t(vj);
– For all 0 ≤ j ≤ i, hj does not contain a vertex vk with k ≤ j.

To confirm the existence of a history with the given parameters, it is thus
sufficient to guess the value i ≤ |V∃|, and to guess i connected flows (rather than
paths) with the above properties that are consistent with σ1. Finally, we guess
a flow for h′′ consistent with σ2 if we need a switched history, and verify that
it is starting at a switching vertex. The flows must sum to n + 1, with the last
vertex being v′, and the previous v. ��

5.2 Short Witnesses for the Collaborative and Antagonistic Values

Lemma 8. There is a set P of pairs (α, β) with α a simple path and β a simple
cycle such that:

– cValv0 = max{Val(α · βω) | (α, β) ∈ P} and
– membership in P is decidable in polynomial time w.r.t. the game.

Proof. We argue that the set P of all pairs (α, β) with α a simple path, β a
simple cycle, and such that α · β is a path, gives us the result.

The first part of the claim is a consequence of Lemma 1: Consider positional
SBO strategies τ and σ of Adam and Eve, respectively. Since they are positional,
the path outv0(σ, τ) is of the form α · βω, as required, and its value is cValv0 .
We can thus let P be the set of all pairs obtained from such SBO strategies.
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Moreover, it can be easily checked that for all pairs (α, β) such that α ·β is a
path in the game there exists a pair of strategies with outcome α ·βω. (Note that
verifying whether α · β is a path can indeed be done in polynomial time given α
and β.) Finally, the value Val(α · βω) will, by definition, be at most cValv0 . ��
Lemma 9. Let σ be a bipositional switching strategy of Eve. There is a set K
of pairs (D,β) with D an SCD and β a simple cycle such that:

– aValv0(σ) = min{Val(D(	) · βω) | (D,β) ∈ K} and
– the size of each pair is polynomially bounded, and membership in K is decid-

able in polynomial time w.r.t. σ and the game.

Proof. We will prove that the set K of all pairs (D,β) with D an SCD of poly-
nomial length (which will be specified below), β a simple cycle, and such that
D(	) · β is a path, satisfies our claims.

Let C = max{t(v) < ∞}, and consider a play π consistent with σ that
achieves the value aValv0(σ). Write π = h · π′ with |h| = C, and let v be the
final vertex of h. Naturally:

aValv0(σ) = Val(π) = Val(h) + λ|h|Val(π′) .

We first show how to replace π′ by some α · βω, with α a simple path and
β a simple cycle. First, since π witnesses aValv0(σ), we have that Val(π′) =
aValv(σh). Now σh is positional, because |h| ≥ C.1 It is known that there
are optimal positional antagonistic strategies τ for Adam, that is, that sat-
isfy aValv(σh) = outv(σh, τ). As in the proof of Lemma8, this implies that
aValv(σh) = Val(α · βω) = Val(π′) for some α and β; additionally, any (α, β)
that are consistent with σh and a potential strategy for Adam will give rise to a
larger value.

We now argue that Val(h) is witnessed by an SCD of polynomial size. This
bears similarity to the proof of Lemma7. Specifically, we will reuse the fact that
histories consistent with σ can be split into histories played “between thresholds.”

Let us write σ = σ1
t→σ2. Again, we let V∃ = {v1, v2, . . . , vk} with t(vi) ≤

t(vi+1) for all i and write h = h′ · h′′ where h′ is the maximal unswitched prefix
of h. We note that h′ is consistent with σ1 and h′′ is consistent with σ2. Then
h′ = h0h1 · · · hi, for some i < |V∃|, with:

– |h0| = t(v1) and for all 1 ≤ j < i, |hj | = t(vj+1) − t(vj);
– For all 0 ≤ j ≤ i, hj does not contain a vertex vk with k ≤ j.

We now diverge from the proof of Lemma 7. We apply Lemma 5 on each hj

in the game where the strategy σ1 is hardcoded (that is, we first remove every
edge (u, v) ∈ V∃ × V that does not satisfy σ1(u) = v). We obtain a history
h′
0h

′
1 · · · h′

i that is still in Hist(σ), thanks to the previous splitting of h. We also
apply Lemma 5 to h′, this time in the game where σ2 is hardcoded, obtaining h′′.
Since each h′

j and h′′ are expressed as α ·βk ·γ, there is an SCD D with no more

1 Technically, σh is positional in the game that records whether the switch was made.
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than |V∃| elements that satisfies Val(D(	)) ≤ Val(h)—naturally, since Val(h)
is minimal and D(	) ∈ Hist(σ), this means that the two values are equal. Note
that it is not hard, given an SCD D, to check whether D(	) ∈ Hist(σ), and that
SCDs that are not valued Val(h) have a larger value. ��

6 The Complexity of Regret

We are finally equipped to present our algorithms. To account for the cost of
numerical analysis, we rely on the problem PosSLP [2]. This problem consists
in determining whether an arithmetic circuit with addition, subtraction, and
multiplication gates, together with input values, evaluates to a positive inte-
ger. PosSLP is known to be decidable in the so-called counting hierarchy, itself
contained in the set of problems decidable using polynomial space.

Theorem 5. The following problem is decidable in NPPosSLP:
Given: A game, a bipositional switching strategy σ,

a value r ∈ Q in binary
Question: Is Reg (σ) > r?

Proof. Let us write σ = σ1
t→σ2. Lemma 6 indicates that Reg (σ) > r holds if

there is a history h of some length n ≤ C = 2|V | + max{t(v) < ∞}, ending in
some vn such that:

λn
(
cValvn

¬σ(h) − aValvn(σh)
)

> r . (2)

Note that since σ is bipositional, we do not need to know everything about h.
Indeed, the following properties suffice: its length n, final vertex vn, v′ = σ(h),
and whether it is switched. Rather than guessing h, we can thus rely on Lemma 7
to get the required information. We start by simulating the NP machine that
this lemma provides, and verify that n, vn, and v are consistent with a potential
history.

Let us now concentrate on the collaborative value that we need to evaluate
in Eq. 2. To compute cVal, we rely on Lemma 8, which we apply in the game
where vn is set initial, and its successor forced not to be v. We guess a pair
(αc, βc) ∈ P ; we thus have Val(αc · βω

c ) ≤ cValvn

¬σ(h), with at least one guessed
pair (αc, βc) reaching that latter value.

Let us now focus on computing aValvn(σh). Since σ is a bipositional switch-
ing strategy, σh is simply σ where t(v) is changed to max{0, t(v) − n}. Lemma 9
can thus be used to compute our value. To do so, we guess a pair (D,βa) ∈ K;
we thus have Val(D(	) ·βω

a ) ≥ aValvn(σh), and at least one pair (D,βa) reaches
that latter value.

Our guesses satisfy:

cValvn

¬σ(h) − aValvn(σh) ≥ Val(αc · βω
c ) − Val(D(	) · βω

a ) ,
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and there is a choice of our guessed paths and SCD that gives exactly the left-
hand side. Comparing the left-hand side with r can be done using an oracle to
PosSLP, concluding the proof. ��

Theorem 6. The following problem is decidable in coNPNPPosSLP

:
Given: A game, a value r ∈ Q in binary
Question: Is Reg > r?

Proof. To decide the problem at hand, we ought to check that every strategy has
a regret value greater than r. However, optipess strategies being regret-minimal,
we need only check this for a class of strategies that contains optipess strategies:
bipositional switching strategies form one such class.

What is left to show is that optipess strategies can be encoded in polynomial
space. Naturally, the two positional strategies contained in an optipess strategy
can be encoded succinctly. We thus only need to show that, with t as in the
definition of optipess strategies (page 5), t(v) is at most exponential for every
v ∈ V∃ with t(v) ∈ N. This is shown in the long version of this paper. ��

Theorem 7. The following problem is decidable in coNPNPPosSLP

:
Given: A game, a bipositional switching strategy σ

Question: Is σ regret optimal?

Proof. A consequence of the proof of Theorem 5 and the existence of optipess
strategies is that the value Reg of a game can be computed by a polynomial
size arithmetic circuit. Moreover, our reliance on PosSLP allows the input r in
Theorem 5 to be represented as an arithmetic circuit without impacting the com-
plexity. We can thus verify that for all bipositional switching strategies σ′ (with
sufficiently large threshold functions) and all possible polynomial size arithmetic
circuits, Reg(σ) > r implies that Reg(σ′) > r. The latter holds if and only
if σ is regret optimal since, as we have argued in the proof of Theorem6, such
strategies σ′ include optipess strategies and thus regret-minimal strategies. ��

7 Conclusion

We studied regret, a notion of interest for an agent that does not want to assume
that the environment she plays in is simply adversarial. We showed that there
are strategies that both minimize regret, and are not consistently worse than
any other strategies. The problem of computing the minimum regret value of a
game was then explored, and a better algorithm was provided for it.

The exact complexity of this problem remains however open. The only known
lower bound, a straightforward adaptation of [14, Lemma 3] for discounted-sum
games, shows that it is at least as hard as solving parity games [15].
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Our upper bound could be significantly improved if we could efficiently solve
the following problem:

PosRatBase
Given: (ai)n

i=1 ∈ Z
n, (bi)n

i=1 ∈ N
n, and r ∈ Q all in binary,

Question: Is
∑n

i=1 ai · rbi > 0?

This can be seen as the problem of comparing succinctly represented numbers
in a rational base. The PosSLP oracle in Theorem 5 can be replaced by an oracle
for this seemingly simpler arithmetic problem. The variant of PosRatBase in
which r is an integer was shown to be in P by Cucker, Koiran, and Smale [8],
and they mention that the complexity is open for rational values. To the best of
our knowledge, the exact complexity of PosRatBase is open even for n = 3.
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