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Abstract. We generalise Cayley’s theorem for monoids by providing an
explicit formula for a (multi-sorted) equational theory represented by the
type PX → X, where P is an arbitrary polynomial endofunctor with nat-
ural coefficients. From the computational perspective, examples of effects
given by such theories include backtracking nondeterminism (obtained
with the original Cayley representation X → X), finite mutable state
(obtained with n → X, for a constant n), and their different combina-
tions (via n × X → X or Xn → X). Moreover, we show that monads
induced by such theories are implementable using the type formers avail-
able in programming languages based on a polymorphic λ-calculus, both
as compositions of algebraic datatypes and as continuation-like monads.
We give a set-theoretic model of the latter in terms of Barr-dinatural
transformations. We also introduce CayMon, a tool that takes a poly-
nomial as an input and generates the corresponding equational theory
together with the two implementations of the induced monad in Haskell.

1 Introduction

The relationship between universal algebra and monads has been studied at least
since Linton [13] and Eilenberg and Moore [4], while the relationship between
monads and the general theory of computational effects (exceptions, mutable
state, nondeterminism, and such) has been observed by Moggi [14]. By transitiv-
ity, one can study computational effects using concepts from universal algebra,
which is the main theme of Plotkin and Power’s prolific research programme
(see [10,20–24] among many others).

The simplest possible case of this approach is to describe an effect via a
finitary equational theory: a finite set of operations (of finite arities), together
with a finite set of equations. One such example is the theory of monoids:

Operations: γ, ε

Equations: γ(x, ε) = x, γ(ε, x) = x, γ(γ(x, y), z) = γ(x, γ(y, z))
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The above reads that the signature of the theory consists of two operations:
binary γ and nullary ε. The equations state that γ is associative, with ε being
its left and right unit.1 One can also read this theory as a specification of back-
tracking nondeterminism, in which the order of results matters, where γ is an
operation that creates a new computation as a choice between two subcompu-
tations, while ε denotes failure. The connection between the equational theory
and the computational effect becomes apparent when we consider the monad of
free monoids (that is, the list monad), which is in fact used to form backtracking
computations in programming; see, for example, Bird’s pearl [1].

This suggests a simple recipe for computational effects: it is enough to come
up with an equational theory, and out of the hat comes the induced monad
of free algebras that implements the corresponding effect. Such an approach
is indeed possible in the category Set, where every finitary equational theory
admits a free monad, constructed by quotienting terms over the signature by
the congruence induced by the equations. However, if we want to implement this
monad in a programming language, the situation is not so simple, since in most
programming languages (in particular, those without higher inductive types)
we cannot generally express this kind of quotients. For instance, to describe a
variant of nondeterminism that does not admit duplicate results, we may extend
the theory of monoids with an equation stating that γ is idempotent, that is,
γ(x, x) = x. But, unlike in the case of general monoids, the monad induced by
the theory of idempotent monoids seems to be no longer directly expressible
in, say, Haskell. This means that there is no implementation that satisfies all
the equations of the theory “on the nose”—one informal argument is that the
representations of γ(x, x) and x should be the same whatever the type of x, and
this would require a decidable equality test on every type, which is not possible.

Thus, both from the practical viewpoint of programming and as a question on
the general nature of equational theories, it makes sense to ask which theories
are “simple” enough to induce monads expressible using only the basic type
formers, such as (co)products, function spaces, algebraic datatypes, universal
and existential quantification. This question seems difficult in general, and to
our knowledge there is little work that addresses it. In this paper, we focus on
a small piece of this problem: we study a certain subset of such implementable
equational theories, and conjure some novel extensions.

The monads that we consider arise from Cayley representations. The over-
all idea is that if a theory has an expressible, well-behaved (in a sense that
we make precise in the paper) Cayley representation, the induced monad also
has an expressible implementation. The well-known Cayley theorem for monoids
states that every monoid with a carrier X embeds in the monoid of endofunc-
tions X → X. In this paper, we generalise this result: given a polynomial Set-
endofunctor P with natural coefficients, we provide an explicit formula for an
equational theory such that its every algebra with a carrier X embeds in a certain
algebra with the carrier given by PX → X. Then, we show that the monad of

1 Although one usually writes γ as an infix operation, we use a “functional” syntax,
since, in the following, the arity of corresponding operations may vary.
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free algebras of such a theory can be implemented as a continuation-like monad
with the endofunctor given at a set A as:

∀X.(A → PX → X) → PX → X (1)

This type is certainly expressible in programming languages based on polymor-
phic λ-calculi, such as Haskell.

However, before we can give the details of this construction, we need to
address some technical issues. It is easy to notice that there may be more than
one “Cayley representation” of a given theory: for example, a monoid X embeds
not only in X → X, but also in a “smaller” monoid X

γ� X, by which we
mean the monoid of functions of the type X → X of the shape a �→ γ(b, a),
where b ∈ X. The same monoid X embeds also in a “bigger” monoid X2 → X,
in which we interpret the operations as γ(f, g) = (x, y) �→ f(g(x, y), y) and
ε = (x, y) �→ x. What makes X → X special is that instantiating (1) with
PX = X gives a monad that is isomorphic to the list monad (note that in this
case, the type (1) is simply the Church representation of lists). At the same time,
we cannot use X

γ� X instead of X → X, since (1) quantifies over sets, and
thus there is no natural candidate for γ. Moreover, even though we may use the
instantiation PX = X2, this choice yields a different monad (which we describe
in more detail in Sect. 5.4). To sort this out, in Sect. 2, we introduce the notion of
tight Cayley representation. This notion gives rise to the monad of the following
shape, which is a strict generalisation of (1), where R is a Set-bifunctor of mixed
variance:

∀X.(A → R(X,X)) → R(X,X) (2)

Formally, all our constructions are set-theoretic—to focus the presentation,
the connection with programming languages and type theory is left implicit.
Thus, the second issue that we discuss in Sect. 2 is the meaning of the universal
quantifier ∀ in (1). It is known [27] that polymorphic functions of this shape enjoy
a form of dinaturality proposed by Michael Barr (see Paré and Román [16]),
called by Mulry strong dinaturality [15]. We model the universally quantified
types above as collections of Barr-dinatural transformations, and prove that if
R is a tight representation, the collection (2) is always a set.

In Sect. 4, we give the formula that defines an equational theory given a
polynomial functor P . In general, the theories we construct can be multi-sorted,
which is useful for avoiding a combinatory explosion of the induced theories,
hence a brief discussion of such theories in Sect. 3. We show that PX → X is
indeed a tight representation of the generated theory. Then, in Sect. 5, we study
a number of examples in order to discover what effects are denoted by the gen-
erated theories. It turns out that each theory can be seen as a (rather complex,
for nontrivial polynomial functors) composition of backtracking nondeterminism
and finite mutable state. Moreover, in Sect. 6, we show that the corresponding
monads can be implemented not only as continuation-like monads (1), but also
in “direct style”, using algebraic datatypes.

Since they are parametrised by a polynomial, both the equational theory and
its representation consist of many indexed components, so it is not necessarily
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trivial to get much intuition simply by looking at the formulas. To facilitate this,
we have implemented a tool, called CayMon, that generates the theory from a
given polynomial, and produces two implementations in Haskell: as a composi-
tion of algebraic datatypes and as a continuation-like (“Cayley”) monad (1). The
tool can be run in a web browser, and is available at http://pl-uwr.bitbucket.
io/caymon.

2 Tight Cayley Representations

In this section, we take a more abstract view on the concept of “Cayley represen-
tation”. In the literature (for example, [2,5,17,25]), authors usually define Cayley
representations of different forms of algebraic structures in terms of embeddings.
This means that given an object X, there is a homomorphism σ : X → Y to a
different object Y , and moreover σ has a retraction (not necessarily a homomor-
phism) ρ : Y → X (meaning ρ ·σ = id). One important fact, which is usually left
implicit, is that the construction of Y from X is in some sense functorial. Since
we are interested in coming up with representations for many different equational
theories, we first identify sufficient properties of such a representation needed to
carry out the construction of the monad (2) sketched in the introduction. In
particular, we introduce the notion of tight Cayley representation, which char-
acterises the functoriality and naturality conditions for the components of the
representation.

As for notation, we use A → B to denote both the type of a morphism in a
category, and the set of all functions from A to B (the exponential object in Set).
Also, for brevity, we write the application of a bifunctor to two arguments, e.g.,
G(X,Y ), without parentheses, as GXY . We begin with the following definition:

Definition 1 (see [16]). Let C ,D be categories, and G,H : C op × C → D be
functors. Then, a collection of D-morphisms θX : GXX → HXX indexed by
C -objects is called a Barr-dinatural transformation if it is the case that for all
objects A in D , objects X, Y in C , morphisms f1 : A → GXX, f2 : A → GY Y
in D , and a morphism g : X → Y in C ,

if A

GXX

GY Y

GXY

f1

f2

GXg

GgY

commutes, then A

GXX

GY Y

HXX

HY Y

HXY

f1

f2

θX

θY

HXg

HgY

commutes.

An important property of Barr-dinaturality is that the component-wise com-
position gives a well-behaved notion of vertical composition of two such trans-
formations. The connection between Barr-dinatural transformations and Cayley
representations is suggested by the fact, shown by Paré and Román [16], that
the collection of such transformations of type H → H for the Set-bifunctor
H(X,Y ) = X → Y is isomorphic to the set of natural numbers. The latter,

http://pl-uwr.bitbucket.io/caymon
http://pl-uwr.bitbucket.io/caymon
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equipped with addition and zero (or the former with composition and the identity
transformation, respectively), is simply the free monoid with a single generator,
that is, an instance of (1) with PX = X and A = 1.

For the remainder of this section, assume that T is a category, while F :
Set → T is a functor with a right adjoint U : T → Set. Intuitively, T is a
category of algebras of some theory, and U is the forgetful functor. Then, the
monad generated by the theory is given by the composition UF . For a function
f : A → UX, we write ̂f = Uf ′ : UFA → UX, where f ′ : FA → X is the
contraposition of f via the adjunction (intuitively, the unique homomorphism
induced by the freeness of the algebra FA).

Definition 2. A tight Cayley representation of T with respect to F � U con-
sists of the following components:

(a) A bifunctor R : Setop × Set → Set,
(b) For each set X, an object RX in T , such that URX = RXX,
(c) For all sets A, X, Y and functions f1 : A → RXX, f2 : A → RY Y ,

g : X → Y , it is the case that

if A

RXX

RY Y

RXY

f1

f2

RXg

RgY

commutes, then UFA

RXX

RY Y

RXY

̂f1

̂f2

RXg

RgY

commutes.

(d) For each object M in T , a morphism σM : M → R(UM) in T , such that
UσM : UM → R(UM)(UM) is Barr-dinatural in M ,

(e) A Barr-dinatural transformation ρM : R(UM)(UM) → UM , such that
ρM · UσM = id,

(f) For each set X, a set of indices IX and a family of functions runX,i :
RXX → X, where i ∈ IX , such that R(RXX)runX is a jointly monic
family, and the following diagram commutes for all X and i ∈ IX :

RXX R(RXX)(RXX)

R(RXX)X

UσRX

R(RXX)runX,i
RrunX,iX

Note that the condition (c) states that the objects R are, in a sense, natu-
ral. Intuitively, understanding an object RX as an algebra, the condition states
that the algebraic structure of RX does not really depend on the set X. The
condition (f) may seem rather complicated: the intuition behind the technical
formulation is that RXY behaves like a form of a function space (after all, we
are interested in abstract Cayley representations), and runX,i is an application
to an argument specified by i, as in the example below. In such a case, the joint
monicity becomes the extensional equality of functions.
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Example 3. Let us check how Cayley representation for monoids fits the defi-
nition above: (a) The bifunctor is RXY = X → Y . (b) The T -object for a
monoid M is the monoid M → M with γ(f, g) = f ◦ g and ε = id. (c) Given
some elements a, b, . . . , c ∈ A, we need to see that g ◦ f1(a) ◦ f1(b) ◦ · · · ◦ f1(c) =
f2(a)◦f2(b)◦· · ·◦f2(c)◦g. Fortunately, the assumption, which in this case becomes
g ◦ f1(a) = f2(a)◦ g for all a ∈ A, allows us to “commute” g from one side of the
chain of function compositions to the other. (d) σM (a) = b �→ γ(a, b). It is easy
to verify that it is a homomorphism. The Barr-dinaturality condition: assuming
f(m) = n for some m ∈ M and n ∈ N , and a homomorphism f : M → N ,
it is the case that, omitting the U functor, RfN(σN (n)) = RfN(σN (f(m))) =
b �→ γ(f(m), f(b)) = b �→ f(γ(m, b)) = RMf(σM (m)), where the equalities can
be explained respectively as: assumption in the definition of Barr-dinaturality,
unfolding definitions, homomorphism, unfolding definitions. (e) ρM (f) = f(ε).
It is easy to show that it is Barr-dinatural; note that we need to use the fact
that T -morphisms (that is, monoid homomorphisms) preserve ε. (f) We define
IX = X, while runX,i(f) = f(i).

The first main result of this paper states that given a tight representation
of T with respect to F � U , the monad given by the composition UF can be
alternatively defined using a continuation-like monad constructed with sets of
Barr-dinatural transformations:

Theorem 4. For a tight Cayley representation R with respect to F � U , ele-
ments of the set UFA are in 1-1 correspondence with Barr-dinatural transfor-
mations of the type (A → RXX) → RXX. In particular, this means that the
latter form a set. Moreover, this correspondence gives a monad isomorphism
between UF and the evident continuation-like structure on (2), given by the
unit (ηA(a))X(f) = f(a) and the Kleisli extension (f∗(k))X(g) = kX(a �→
(f(a))X(g)).

We denote the set of all Barr-dinatural transformations from the bifunctor
(X,Y ) �→ A → RXY to R as ∀X.(A → RXX) → RXX. This gives us a
monad similar in shape to the continuation monad, or, more generally, Kock’s
codensity monad [12] embodied using the formula for right Kan extensions as
ends. One important difference with the codensity monad (except, of course,
the fact that we have bifunctors on the right-hand sides of arrows) is that we
use Barr-dinatural transformations instead of the usual dinatural transforma-
tions [3]. Indeed, if we use ends instead of ∀, the end

∫

X
(A → RXX) → RXX

is given as the collection of all dinatural transformations of the given shape. It is
known, however, that even in the simple case when A = 1 and RXY = X → Y ,
this collection is too big to be a set (see the discussion in [16]), hence such end
does not exist.

3 Multi-sorted Equational Theories with a Main Sort

The equational theories that we generate in Sect. 4 are multi-sorted, which is
useful for trimming down the combinatorial complexity of the result. This turns
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out to be, in our view, essential in understanding what computational effects
they actually represent. In this section, we give a quick overview of what kind
of equational theories we work with, and discuss the construction of their free
algebras.

We need to discuss the free algebras here, since we want the freeness to be
with respect to a forgetful functor to Set, rather than to the usual category of
sorted sets; compare [26]. This is because we want the equational theories to
generate monads on Set, as described in the previous section. In particular, we
are interested in theories in which one of the sorts is chosen as the main one, and
work with the functor that forgets not only the structure, but also the carriers
of all the other sorts, only preserving the main one. Luckily, this functor can be
factored as a composition of two forgetful functors, each with an obvious left
adjoint.

In detail, assume a finite set of sorts S = {Ω,K1, . . . ,Kd} for some d ∈ N,
where Ω is the main sort. The category of sorted sets is simply the category
Set|S|, where |S| is the discrete category generated by the set S. More explicitly,
the objects of Set|S| are tuples of sets (one for each sort), while morphisms are
tuples of functions. Given an S-sorted finitary theory T, we denote the category
of its algebras as T-Alg. To see that the forgetful functor from T-Alg to Set has
a left adjoint, consider the following composition of adjunctions:

Set Set|S| T-Alg

X �→ (X, ∅, . . . , ∅)

(X, A1, . . . , Ad) �→ X

free

carriers

This means that the free algebra for each sort has the carrier given by the set
of terms of the given sort (with variables appearing only at positions intended
for the main sort Ω) quotiented by the congruence induced by the equations.
This kind of composition of adjunctions is similar to [18], but in this case the
compound right adjoints of the theories given in the next section are monadic.

4 Theories from Polynomial Cayley Representations

In this section, we introduce algebraic theories that are tightly Cayley-
represented by PX → X for a polynomial functor P . Notation-wise, whenever
we write i ≤ k for a fixed k ∈ N, we mean that i is a natural number in
the range 1, . . . , k, and use [xi]i≤k to denote a sequence x1, . . . , xk. The latter
notation is used also in arguments of functions and operations, so f([xi]i≤k)
means f(x1, . . . , xk), while f(x, [yi]i≤k) means f(x, y1, . . . , yk). We sometimes
use double indexing; for example, by

∏k
i=1

∏ti
j=1 Xi,j → Y for some [ti]i≤k,

we mean the type X1,1 × · · · × X1,t1 × · · · × Xk,1 × · · · × Xk,tk → Y . This
is matched by a double-nested notation in arguments, that is, f([[xj

i ]j≤ti ]i≤k)
means f(x1

1, . . . , x
t1
1 , . . . , x1

k, . . . , xtk
k ). Also, whenever we want to repeat an argu-

ment k-times, we write [x]k; for example, f([x]3) means f(x, x, x). Because we
use a lot of sub- and superscripts as indices, we do not use the usual notation for
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exponentiation. This means that xi always denotes some x at index i, while a
k-fold product of some type X, ordinarily denoted Xk, is written as

∏k
X. We

use the �-� brackets to denote the interpretation of sorts and operations in an
algebra (that is, a model of the theory). If the algebra is clear from the context,
we skip the brackets in the interpretation of operations.

For the rest of the paper, let d ∈ N (the number of monomials in the polyno-
mial) and sequences of natural numbers [ci]i≤d and [ei]i≤d (the coeffcients and
exponents respectively) define the following polynomial endofunctor on Set:

PX =
d

∑

i=1

ci × ∏ei X, (3)

where ci is an overloaded notation for the set {1, . . . , ci}. With this data, we
define the following equational theory:

Definition 5. Assuming d, [ci]i≤d, and [ei]i≤d as above, we define the following
equational theory T:

– Sorts:

Ω (main sort)
Ki, for all i ≤ d

– Operations:

cons :
∏d

i=1

∏ci Ki → Ω

πj
i : Ω → Ki, for i ≤ d and j ≤ ci

εj
i : Ki, for i ≤ d and j ≤ ei

γj
i : Kj × ∏ej Ki → Ki, for i, j ≤ d

– Equations:

πj
i (cons([[x

j
i ]j≤ci ]i≤d)) = xj

i (beta-π)

cons([[πj
i (x)]j≤ci ]i≤d) = x (eta-π)

γj
i (εk

j , [xt]t≤ej
) = xk (beta-ε)

γi
i(x, [εj

i ]j≤ei
) = x (eta-ε)

γj
i (γk

j (x, [yt]t≤ek
), [zs]s≤ej

) = γk
i (x, [γj

i (yt, [zs]s≤ej
)]t≤ek

) (assoc-γ)

Thus, in the theory T, there is a main sort Ω, which we think of as corre-
sponding to the entire functor, and one sort Ki for each “monomial”

∏ei X.
Then, we can think of Ω as a tuple containing elements of each sort, where each
sort Ki has exactly ci occurrences. The fact that Ω is a tuple, which is witnessed
by the cons and π operations equipped with the standard equations for tupling
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and projections, is not too surprising—one should keep in mind that T is a the-
ory represented by the type PX → X, which can be equivalently given as the
product of function spaces ci × ∏ei X → X for all i ≤ d.

Each operation γj
i can be used to compose an element of Kj and ej elements

of Ki to obtain an element of Ki. The ε constants can be seen as selectors:
in (beta-ε), εk

j in the first argument of γj
i selects the k-th argument of the

sort Ki, while the (eta-ε) equation states that composing a value of Ki with the
successive selectors of Ki gives back the original value. The equation (assoc-γ)
states that the composition of values is associative in an appropriate sense. In
Sect. 5, we provide a reading of the theory T as a specification of a computational
effect for different choices of d, ci, and ei.

Remark 6. If it is the case that ei = ej for some i, j ≤ d, then the sorts Ki

and Kj are isomorphic. This means that in every algebra of such a theory, there
is an isomorphism of sorts ϕ : �Ki� → �Kj�, given by ϕ(x) = γi

j(x, [εk
j ]k≤ei

). This
suggests an alternative setting, in which instead of having a single ci × ∏ei X
comoponent, we can have ci components of the shape

∏ei X. In such a setting,
the equational theory T in Definition 5 would be slightly simpler—specifically,
there would be no need for double-indexing in the types of cons and π. On
the downside, this would obfuscate the connection with computational effects
described in Sect. 5 and some conjured extensions in Sect. 7.

The theory T has a tight Cayley representation using functions from P , as
detailed in the following theorem. This gives us the second main result of this
paper: by Theorem 4, the theory T is the equational theory of the monad (1).
The notation ini means the i-th inclusion of the coproduct in the functor P .

Theorem 7. The equational theory T from Definition 5 is tightly Cayley-
represented by the following data:

– The bifunctor RXY = PX → Y ,
– For a set X, the following algebra:

• Carriers of sorts:

�Ω� = RXX

�Ki� =
∏ei X → X

• Interpretation of operations:

�cons�([[f j
k ]j≤ck ]k≤d)(ini(c, [xt]t≤ei

)) = fc
i ([xt]t≤ei

)

�πj
i �(f)([xt]t≤ei

) = f(ini(j, [xt]t≤ei
))

�εj
i �([xt]t≤ei

) = xj

�γj
i �(f, [gk]k≤ej

)([xt]t≤ei
) = f([gk([xt]t≤ei

)]k≤ej
)

– The homomorphism σM for the main sort and sorts Ki:

σΩ
M (m)(ini(c, [xt]t≤ei

)) = cons([[γi
k(πc

i (m), [πj
k(xt)]t≤ei

)]j≤ek
]k≤d)

σi
M (s)([xt]t≤ei

) = cons([[γi
k(s, [πj

k(xt)]t≤ei
)]j≤ek

]k≤d)
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– The transformation ρM :

ρM (f) = cons([[πj
k(f(ink(j, [cons([wf

r ]r<k, [εt
k]ck , [wf

r ]k<r≤d)]t≤ek
)))]j≤ck ]k≤d)

where wf
r = [πc

r(f(inr(c, [εj
r]j≤er

)))]c≤cr

– The set of indices IX = PX and the functions runX,i(f) = f(i).

In the representing algebra, it is the case that each �Ki� represents one mono-
mial, as mentioned in the description of T, while �Ω� is the appropriate tuple
of representations of monomials, which is encoded as a single function from a
coproduct (in our opinion, this encoding turns out to be much more readable
on paper), while cons and π are indeed given by tupling and projections. For
each i ≤ d, the function εj

i simply returns its j-th argument, while γ is inter-
preted as the usual composition of multi-argument functions.

Homomorphisms between multi-sorted algebras are defined as operation-
preserving functions for each sort, so σ is defined for the sort Ω and for each
sort Ki. In general, the point of Cayley representations is to encode an element m
of an algebra M using its possible behaviours with other elements of the algebra.
It is no different here: for each sort Ki at the c-th occurrence in the tuple, the
function σΩ packs (using cons) all possible compositions (by means of γ) of val-
ues of Ki with the “components” of m (extracted using π). The same happens
for each s ∈ �Ki� in σi

M (s), but there is no need to unpack s, as it is already a
value of a single sort.

The transformation ρM is a bit more complicated. The argument f is, in
general, a function from a coproduct to M , but we cannot simply apply f to
one value ini(. . .) for some sort Ki, as we would obviously lose the information
about the components in different sorts. This is why we need to apply f to all
possible sorts with ε in the right place to ensure that we recover the original
value. We extract the information about particular sorts from such values, and
combine them using cons. Interestingly, the elements of wf

r could actually be
replaced by any expression of the appropriate sort that is preserved by homo-
morphisms, assuming that f is also preserved. This is needed to ensure that ρ
is Barr-dinatural (the fact that f is preserved by homomorphisms is exactly the
assumption in the definition of Barr-dinaturality). For example, if er > 0 for
some r ≤ d, one can define wf

r simply as [εj
r]cr for some j ≤ er. The complicated

expression in the definition of wf
r is a way to produce values also for sorts Kr

with er = 0, which do not have any ε constants.

5 Effects Modeled by Polynomial Representations

Now we describe what kind of computational effects are captured by the theo-
ries introduced in the previous section. It turns out that they all are different
compositions of finite mutable state and backtracking nondeterminism. These
compositions include the two most basic ones: when the state is local for each
nondeterministic branch, and when it is global to the entire computation.



Equational Theories and Monads from Polynomial Cayley Representations 463

In the following, if there is only one object of a given kind, we skip the indices.
For example, if for some i, it is the case that ei = 1, we write εi instead of ε1i . If
d = 1, we skip the subscripts altogether.

5.1 Backtracking Nondeterminism via Monoids

We recover the original Cayley theorem for monoids instantiating Theorem 7
with PX = X, that is, d = 1 and c1 = e1 = 1. In this case, we obtain two sorts,
Ω and K, while the equations (beta-π) and (eta-π) instantiate respectively as
follows:

π(cons(x)) = x, cons(π(x)) = x

This means that both sorts are isomorphic, so one can think of this theory as
being single-sorted. Of course, this is always the case if d = 1 and c1 = 1.
Since e1 = 1, the operation γ is binary and there is a single ε constant. The
equations (beta-ε) and (eta-ε) say, respectively, that ε is the left and right unit
of γ, that is:

γ(ε, x) = x, γ(x, ε) = x

Interestingly, the two unit laws for monoids are symmetrical, but in general
the (beta-ε) and (eta-ε) equations are not. One should note that the symmetry
is already broken when one implements free monoids (that is, lists) in a pro-
gramming language: in the usual right-nested implementation, the “beta” rule
is part of the definition of the append function, while the “eta” rule is a theorem.
The (assoc-γ) equation instantiates as the associativity of γ:

γ(γ(x, y), z) = γ(x, γ(y, z))

5.2 Finite Mutable State

For n ∈ N, if we take PX = n, that is, d = 1, c1 = n and e1 = 0, we obtain
the equational theory of a single mutable cell in which the set of possible states
is {1, . . . , n}. There are two sorts in the theory: Ω and K. The sort K does not
have any interesting structure on its own, as there are no constants ε, and the
equation (eta-ε) instantiates to

γ(x) = x,

which means that γ is necessarily an identity. The fact that this theory is indeed
the theory of state becomes apparent when we identify Ω as a sort of compu-
tations that require some initial state to proceed, and K as computations that
produce a final state. Then, the operations πj : Ω → K (j ≤ n) are the “update”
operations, where πj sets the current state to j, while cons :

∏n
K → Ω is the

“lookup” operation, in which the j-th argument is the computation to be exe-
cuted if the current state is j. The equations (beta-π), for all j ≤ n, and (eta-π)
state respectively:

πj(cons([xi]i≤n)) = xj , cons([πi(x)]i≤n) = x
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These equations embody the natural behaviour rules for this limited form of
state. The former reads that setting the current state to j and then proceeding
with the computation xi if the current state is i is the same thing as simply
proceeding with xj (note that xj is of the sort K, hence it does not use the
information that the current state has just been updated to j, so there is no
need to keep the πj operation on the right-hand side of the equation). The latter
states that if the current state is i and we set the current state to i, it is the
same thing as not changing the state at all (note that x does not depend on the
current state, as it is the same in every argument of cons).

Interestingly, the presentations of equational theories for state in the litera-
ture (for example, [7,23]) are all single-sorted. Such a setting can be recovered
by defining the following macro-operations on the sort Ω:

putj : Ω → Ω get :
∏n

Ω → Ω

putj(x) = cons([πj(x)]n) get([xi]i≤n) = cons([πi(xi)]i≤n)

The trick here is that the get operation does not change the state (by setting the
new state to the current one), while put does not depend on the current state
(by having the same computation in every argument of cons). The usual four
equations for the interaction of put and get can be obtained by unfolding the
definitions and using the (beta-π) and (eta-π) equations:

putj(putk(x)) = putk(x) putj(get([xi]i≤n)) = putj(xj)

get([get([xi]i≤n)]n) = get([xi]i≤n) get([puti(xi)]i≤n) = get([xi]i≤n)

The connection with the implementation of state in programming becomes evi-
dent when we take a closer look at the endofunctor of the induced monad from
Theorem 4. Consider the following informal calculation:

∀X.(A → n → X) → n → X
∼= ∀X.n → (A → n → X) → X (flipping the arguments)
∼= n → ∀X.(A → n → X) → X (∀ commutes with arrows)
∼= n → ∀X.(A × n → X) → X (Curry)
∼= n → A × n (Church)

This means that not only do we prove that the equational theory corresponds to
the usual state monad, but we can actually derive the implementation of state
as the endofunctor A �→ (n → A × n).

5.3 Backtracking with Local State

We obtain one way to combine nondeterminism with state using the functor
PX = n × X, for n ∈ N, that is, d = 1, c1 = n and e1 = 1. It has two sorts,
Ω and K, which play roles similar to those detailed in the previous section.
However, this time K additionally has the structure of a monoid. This gives
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us the theory of backtracking with local state, which means that whenever we
make a choice using the γ operation, the computations in each argument carry
separate, non-interfering states. In particular, in a computation γ(x, y), both
subcomputations x and y start with the same state, which is the initial state of
the entire computation. This non-interference is guaranteed simply by the system
of sorts: the arguments of γ are of the sort K, which means that the stateful
computations inside the arguments begin with π, which sets a new state.

We can also obtain a single-sorted theory, similar to the case of the pure
state. To the put and get macro-operations, we add choice and failure as follows:

choose : Ω × Ω → Ω fail : Ω

choose(x, y) = cons([γ(πj(x), πj(y))]j≤n) fail = cons([ε]n)

Then, the locality of state can be summarised by the following equality, which
is easy to show using the (beta-π) and (eta-π) equations:

putk(choose(x, y)) = choose(putk(x), putk(y))

5.4 Backtracking with Global State

Another way to compose nondeterminism and state is by using global state,
which is obtained for n ∈ N and PX = Xn, that is, d = 1, c1 = 1, and e1 = n.
As in the case of pure backtracking nondeterminism, it means that the sorts Ω
and K are isomorphic. The intuitive understanding of the expression γ(x, [yi]i≤n)
is: first perform the computation x, and then the computation yi, where i is the
final state of the computation x. The operation εj is: fail, but set the current
state to j. In this case, the equations (beta-ε) instantiate to the following for
all j ≤ n:

γ(εj , [yi]i≤n) = yj

It states that if the first computation fails but sets the state to j, the next step
is to try the computation yj . Note that there is no other way to give a new state
than via failure, but this can be circumvented using γ(x, [εk]n) to set the state
to k after performing x. The (eta-ε) instantiates to:

γ(x, [εj ]j≤n) = x

This reads that if we execute x and then set the current state to the resulting
state of x, it is the same as just executing x.

6 Direct-Style Implementation

Free algebras of the theory T from Definition 5 can also be presented as terms
of a certain shape. They are best described as terms built using the operations
from T that are well-typed according to the following typing rules, where the
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types are called Ω, Ki, and Pi for i ≤ d. The type of the entire term is Ω, and
Var(x) means that x is a variable.

[[tji : Ki]j≤ci ]i≤d

cons([[tji ]j≤ci ]i≤d) : Ω
εj

i : Ki

t : Pj [wk : Ki]k≤ej

γj
i (t, [wk]k≤ej

) : Ki

Var(x)

πj
i (x) : Pi

Note that even though variables appear as arguments to the operations π, they
are not of the type Ω. This means that the entire term cannot be a variable, as
it is always constructed with cons as the outermost operation. Each argument
of cons is a term of the type Ki for an appropriate i, which is built out of the
operations ε and γ. Note that the first argument of γ is always a variable wrapped
in π, while all the other arguments are again terms of the type Ki. Overall, such
terms can be captured as the following endofunctors on Set, where W i represents
terms of the type Ki, while WΩ represents terms of the type Ω. By μY.GY we
mean the carrier of the initial algebra of an endofunctor G.

W iX = μY.ei +
∑d

j=1 (
∑ci X) × ∏ej Y

WΩX =
∏d

i=1

∏ci W iX

Clearly, ei in the definition of W i represents the εi constants, while the second
component of the coproduct is a choice between the γi operations with appro-
priate arguments.

It is the case that every term of the sort Ω can be normalised to a term of
the type Ω by a term-rewriting system obtained by orienting the “beta” and
“assoc” equations left to right, and eta-expanding variables at the top-level:

πj
i (cons([[x

j
i ]j≤ci ]i≤d)) � xj

i

γj
i (εk

j , [xt]t≤ej
) � xk

γj
i (γk

j (x, [yt]t≤ek
), [zs]s≤ej

) � γk
i (x, [γj

i (yt, [zs]s≤ej
)]t≤ek

)

x � cons([[γi
i(π

j
i (x), [εk

i ]k≤ei
)]j≤ci ]i≤d)

This term rewriting system gives rise to a natural implementation of the monadic
structure, where the “beta” and “assoc” rules normalise the two-level term struc-
ture, thus implementing the monadic multiplication, while the eta-expansion rule
implements the monadic unit.

7 Discussion

The idea for employing Cayley representations to explore implementations of
monads induced by equational theories is inspired by Hinze [8], who suggested
a connection between codensity monads, Church representation of lists, and the
Cayley theorem for monoids. We note that Hinze’s discussion is informal, but
he suggests using ends, which, as we discuss in Sect. 2, is not sound.

Most of related work follows one of two main paths: it either concentrates
on algebraic explanation of monads already used in programming and semantics
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(for example, [11,19,23]), or on the general connection between different kinds
of algebraic theories and computational effects, but without much interest in
whether it leads to structures implementable in a programming language. Some
exceptions are the construction of the sum of a theory and a free theory [9] or the
sum of ideal monads [6]. What we propose in Sect. 4 is a form of a “functional
combinatorics”: given a type, what kind of algebra describes the possible values?

As our approach veers off the main paths of the recent work on effects, there
are many possible directions of future work. One interesting direction would be
to generalise Set, the base category used throughout this paper, to more abstract
categories. After all, we want to talk about structures definable only in terms of
(co)products, exponentials, and quantifiers—which are all constructions whose
universal properties are singled out and explored using (co)cartesian (or even
monoidal) closed categories. However, the current development relies heavily on
the particular properties of Set, such as extensional equality of functions, which
appears in disguise in the condition (f) in Definition 2.

One can also try to extend the type used as a Cayley representation. For
example, we could consider the polynomial P in (3) to range over the space of
all sets, that is, allow the coefficients ci to vary over sets rather than natural
numbers. In the Cayley representation, it would be enough to consider functions
from ci in place of ci-fold products. We would immediately gain expressiveness,
as the obtained state monad would no longer need to be defined only for a finite
set of possible states. On the flip side, this would make the resulting theory
infinitary – which, of course, is not uncommon in the field of algebraic treatment
of computational effects. However, we decide to stick to the simplest possible
setting in this paper, which greatly simplifies the presentation, but still gives us
some novel observations, like the fact that the theory of finite state is simply
the theory of 2-sorted tuples in Sect. 5.2, or the novel theory of backtracking
nondeterminism with global state in Sect. 5.4. Other future extensions that we
believe are worth exploring include iterating the construction to obtain a from
of a distributive tensor (compare Rivas et al.’s [25] “double” representation of
near-semirings) or quantifying over more variables, leading to less interaction
between sorts.
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