®

Check for
updates

Solving Nonlinear Algebraic Equations

NEWTON'S METHOD. ITER.); X=-0.6; F(-0.6)=2436E+00 NEWTON'S METHOD. ITER. 2: X=-0.226347; £(-0.226347)=6180E-0)
N D. I 6, 6)=2UG6E + EWTON: D. ITER 6347 6347026

— f
— APPROX. ROOT
- yo

— APPROX. LINE

- FOO

— APPROX. ROOT
=T Y=o

—— APPROX. LINE

As areader of this book, you might be well into mathematics and often “accused” of
being particularly good at solving equations (a typical comment at family dinners!).
How true is it, however, that you can solve many types of equations with pen and
paper alone? Restricting our attention to algebraic equations in one unknown x, you
can certainly do linear equations: ax + b = 0, and quadratic ones: ax? + bx + ¢ =
0. You may also know that there are formulas for the roots of cubic and quartic
equations too. Maybe you can do the special trigonometric equation sin x 4+ cosx =
1 as well, but there it (probably?) stops. Equations that are not reducible to one of
those mentioned, cannot be solved by general analytical techniques, which means
that most algebraic equations arising in applications cannot be treated with pen and
paper!

If we exchange the traditional idea of finding exact solutions to equations with
the idea of rather finding approximate solutions, a whole new world of possibilities
opens up. With such an approach, we can in principle solve any algebraic equation.

Let us start by introducing a common generic form for any algebraic equation:

f(x)=0.

© The Author(s) 2020 175
S. Linge, H. P. Langtangen, Programming for Computations - Python,

Texts in Computational Science and Engineering 15,
https://doi.org/10.1007/978-3-030-16877-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16877-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-16877-3_7

176 7 Solving Nonlinear Algebraic Equations
Here, f(x) is some prescribed formula involving x. For example, the equation
e “sinx =cosx
has
f(x) =e Fsinx —cosx.

Just move all terms to the left-hand side and then the formula to the left of the
equality sign is f(x).

So, when do we really need to solve algebraic equations beyond the simplest
types we can treat with pen and paper? There are two major application areas. One
is when using implicit numerical methods for ordinary differential equations. These
give rise to one or a system of algebraic equations. The other major application type
is optimization, i.e., finding the maxima or minima of a function. These maxima and
minima are normally found by solving the algebraic equation F’(x) = 0 if F(x) is
the function to be optimized. Differential equations are very much used throughout
science and engineering, and actually most engineering problems are optimization
problems in the end, because one wants a design that maximizes performance and
minimizes cost.

We first consider one algebraic equation in one variable, for which we present
some fundamental solution algorithms that any reader should get to know. Our
focus will, as usual, be placed on the programming of the algorithms. Systems of
nonlinear algebraic equations with many variables arise from implicit methods for
ordinary and partial differential equations as well as in multivariate optimization.
Our attention will be restricted to Newton’s method for such systems of nonlinear
algebraic equations.

Root Finding

When solving algebraic equations f(x) = 0, we often say that the solution x
is a root of the equation. The solution process itself is thus often called root

finding.

7.1 Brute Force Methods

The representation of a mathematical function f(x) on a computer takes two forms.
One is a Python function returning the function value given the argument, while the
other is a collection of points (x, f(x)) along the function curve. The latter is the
representation we use for plotting, together with an assumption of linear variation
between the points. This representation is also very well suited for equation solving:
we simply go through all points and see if the function crosses the x axis, or for
optimization: we test for local maximum or minimum points. Because there is a lot
of work to examine a huge number of points, and also because the idea is extremely
simple, such approaches are often referred to as brute force methods.

7.1 Brute Force Methods 177

7.1.1 Brute Force Root Finding

Assume that we have a set of points along the curve of a continuous function f(x):

—05¢F

0.0 0.5 1.0 15 2.0 2.5 3.0 3.5 4.0

We want to solve f(x) = 0, i.e., find the points x where f crosses the x axis.
A brute force algorithm is to run through all points on the curve and check if one
point is below the x axis and if the next point is above the x axis, or the other way
around. If this is found to be the case, we know that, when f is continuous, it has to
cross the x axis at least once between these two x values. In other words, f is zero
at least once on that sub-interval.

Note that, in the following algorithm, we refer to “the” root on a sub-interval,
even if there may be more than one root in principle. Whether there are more than
one root on a sub-interval will of course depend on the function, as well as on the
size and location of the sub-interval. For simplicity, we will just assume there is at
most one root on a sub-interval (or that it is sufficiently precise to talk about one
root, even if there could be more).

Numerical Algorithm More precisely, we have a set of n + 1 points (x;, y;), yi =
f(xi),i =0,...,n, where xo < ... < x,. We checkif y; < O and y;4+1 > 0 (or
the other way around). A compact expression for this check is to perform the test
yiyi+1 < 0.1If so, the root of f(x) = 01isin [x;, xj+1].

Assuming a linear variation of f between x; and x;1, we have the approximation

Yi+1 — Vi

f i) — f(xi)(x —Xi) + fxi) = x

Xi+l — Xi

fx)~ (x —x;) + yi,

i+1 — Xi
which, when set equal to zero, gives the root

Xi+1 — X
X =X; —
Yi+l — Vi

178 7 Solving Nonlinear Algebraic Equations

Implementation Given some Python implementation f (x) of our mathematical
function, a straightforward implementation of the above algorithm that quits after
finding one root, looks like

b4
y

linspace(0, 4, 10001)
f(x)

root = None # Initialization
for i in range(len(x)-1):
if y[il*y[i+1] < O:
root = x[i] - (x[i+1] - x[i1)/(y[i+1] - y[iD)*yl[il
break # Jump out of loop
elif y[i] ==
root = x[i]
break # Jump out of loop

if root is None:

print (’Could not find any root in [{:g}, {:g}]’.format(x[0], x[-11))
else:

print (’Find (the first) root as x={:.17f}’.format(root))

(See the file brute_force_root_finder_flat.py.)

Note the nice use of setting root to None: we can simply test if root is None
to see if we found a root and overwrote the None value, or if we did not find any
root among the tested points.

Running this program with some function, say f(x) = e™* ? cos(4x) (which has
a solution at x = ’g), gives the root 0.39269910538048097, which has an error of
2.4 x 1078, Increasing the number of points with a factor of ten gives a root with an
error of 2.9 x 10710,

After such a quick “flat” implementation of an algorithm, we should always try
to offer the algorithm as a Python function, applicable to as wide a problem domain
as possible. The function should take f and an associated interval [a, b] as input, as
well as a number of points (), and return a list of all the roots in [a, b]. Here is our
candidate for a good implementation of the brute force root finding algorithm:

def brute_force_root_finder(f, a, b, n):
from numpy import linspace
x = linspace(a, b, n)
y = £(x)
roots = []
for i in range(n-1):
if y[il*y[i+1] < O:
root = x[i] - (x[i+1] - x[i1)/(y[i+1] - y[il)*yl[il
roots.append(root)
elif y[i] == O:
root = x[i]
roots.append(root)
return roots

(See the file brute_force_root_finder_function.py.)

This time we use another elegant technique to indicate if roots were found or not:
roots is an empty list if the root finding was unsuccessful, otherwise it contains all
the roots. Application of the function to the previous example can be coded as

https://github.com/slgit/prog4comp_2/blob/master/py36-src/brute_force_root_finder_flat.py
https://github.com/slgit/prog4comp_2/blob/master/py36-src/brute_force_root_finder_function.py

7.1 Brute Force Methods 179

def demo():
from numpy import exp, cos
roots = brute_force_root_finder(
lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)
if roots:
print(roots)
else:
print(’Could not find any roots’)

Note that if roots evaluates to True if roots is non-empty. This is a general test
in Python: if X evaluates to True if X is non-empty or has a nonzero value.
Running the program gives the output

[0.39270091800495166, 1.1781066425246509, 1.9635022750438742,
2.7489089483136029, 3.534319340895673]

7.1.2 Brute Force Optimization

Numerical Algorithm We realize that x; corresponds to a maximum point if
Yi—1 < ¥i > yi4+1. Similarly, x; corresponds to a minimum if y;—1 > y; < yi41.
We can do this test for all “inner” pointsi = 1,...,n — 1 to find all local minima
and maxima. In addition, we need to add an end point, i = 0 or i = n, if the
corresponding y; is a global maximum or minimum.

Implementation The algorithm above can be translated to the following Python
function (file brute_force_optimizer.py):

def brute_force_optimizer(f, a, b, n):
from numpy import linspace
x = linspace(a, b, n)
y = £(x)
Let maxima and minima hold the indices corresponding
to (local) maxima and minima points
minima = []
maxima = []
for i in range(l, n-1):
if y[i-1] < y[i] > yl[i+1]:
maxima.append (i)
if y[i-1] > y[i] < y[i+1]:
minima.append (i)

What about the end points?
y_max_inner = max([y[i] for i in maxima])
y_min_inner = min([y[i] for i in minima])
if y[0] > y_max_inner:
maxima.append(0)
if y[len(x)-1] > y_max_inner:
maxima.append(len(x)-1)
if y[0] < y_min_inner:
minima.append(0)
if y[len(x)-1] < y_min_inner:
minima.append(len(x)-1)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/brute_force_optimizer.py

180 7 Solving Nonlinear Algebraic Equations

Return x and y values
return [(x[i], y[i]) for i in minimal, \
[(x[i], y[i]) for i in maxima]

The max and min functions are standard Python functions for finding the maximum
and minimum element of a list or an object that one can iterate over with a for loop.

An application to f(x) = e_)‘2 cos(4x) looks like

def demo():
from numpy import exp, cos
minima, maxima = brute_force_optimizer(
lambda x: exp(-x**2)*cos(4*x), 0, 4, 1001)
print (’Minima:\n’, minima)
print (’Maxima:\n’, maxima)

Running the program gives

Minima:

[(0.70000000000000007, -0.5772302750838405), (2.1520000000000001,
-0.0066704807422565023), (3.6600000000000001, -7.3338267339366542e-07)]
Maxima:

[(1.4159999999999999, 0.10965467991643564), (2.8999999999999999,
0.00012651823896373234), (0.0, 1.0)]

7.1.3 Model Problem for Algebraic Equations

We shall consider the very simple problem of finding the square root of 9. That is,
we want to solve x> = 9, but will (for simplicity) seek only the positive solution.
Knowing the solution beforehand, allows us to easily investigate how the numerical
method (and the implementation of it) performs in the search for a solution. The
f (x) function that corresponds to the equation x> = 9 is

fx)=x>-9.

Our interval of interest for solutions will be [0, 1000] (the upper limit here is chosen
somewhat arbitrarily).

In the following, we will present several efficient and accurate methods for solv-
ing nonlinear algebraic equations, both single equation and systems of equations.
The methods all have in common that they search for approximate solutions. The
methods differ, however, in the way they perform the search for solutions. The idea
for the search influences the efficiency of the search and the reliability of actually
finding a solution. For example, Newton’s method is very fast, but not reliable, while
the bisection method is the slowest, but absolutely reliable. No method is best at all
problems, so we need different methods for different problems.

7.2 Newton's Method 181

What Is the Difference Between Linear and Nonlinear Equations?

You know how to solve linear equations ax + b = 0: x = —b/a. All other
types of equations f(x) = 0, i.e., when f(x) is not a linear function of x,
are called nonlinear. A typical way of recognizing a nonlinear equation is to
observe that x is “not alone” as in ax, but involved in a product with itself,
such as in x> 4 2x2 — 9 = 0. We say that x* and 2x? are nonlinear terms. An
equation like sin x +e* cos x = 0 is also nonlinear although x is not explicitly
multiplied by itself, but the Taylor series of sin x, e*, and cos x all involve
polynomials of x where x is multiplied by itself.

7.2 Newton’s Method

Newton’s method, also known as Newton-Raphson’s method, is a very famous and
widely used method for solving nonlinear algebraic equations.! Compared to the
other methods presented in this chapter, i.e., secant and bisection, it is generally the
fastest one (although computational speed rarely is an issue with a single equation
on modern laptops). However, it does not guarantee that an existing solution will be
found.

A fundamental idea of numerical methods for nonlinear equations is to construct
a series of linear equations (since we know how to solve linear equations) and hope
that the solutions of these linear equations bring us closer and closer to the solution
of the nonlinear equation. The idea will be clearer when we present Newton’s
method and the secant method.

7.2.1 Deriving and Implementing Newton’s Method

Figure 7.1 shows the f(x) function in our model equation x> — 9 = 0. Numerical
methods for algebraic equations require us to guess at a solution first. Here, this
guess is called xp. The fundamental idea of Newton’s method is to approximate
the original function f(x) by a straight line, i.e., a linear function, since it is
straightforward to solve linear equations. There are infinitely many choices of how
to approximate f(x) by a straight line. Newton’s method applies the tangent of f (x)
at xo, see the rightmost tangent in Fig. 7.1. This linear tangent function crosses the x
axis at a point we call x1. This is (hopefully) a better approximation to the solution
of f(x) = 0 than x¢. The next fundamental idea is to repeat this process. We find
the tangent of f at x1, compute where it crosses the x axis, at a point called x»,
and repeat the process again. Figure 7.1 shows that the process brings us closer and
closer to the left. It remains, however, to see if we hit x = 3 or come sufficiently
close to this solution.

! Read more about Newton’s method, e.g., on https://en.wikipedia.org/wiki/Newton%27s_method.

https://en.wikipedia.org/wiki/Newton%27s_method

182 7 Solving Nonlinear Algebraic Equations

f(x)
1000000

800000 -

600000 -

400000 -

200000 -

0_

—200000

0 200 400 600 800 1000
X

Fig. 7.1 Illustrates the idea of Newton’s method with f(x) = x2 — 9, repeatedly solving for
crossing of tangent lines with the x axis

How do we compute the tangent of a function f(x) at a point xo? The tangent
function, here called f(x), is linear and has two properties:

1. the slope equals to f’(xo)
2. the tangent touches the f(x) curve at xg

So, if we write the tangent function as f (x) = ax + b, we must require f "(x0) =
S/ (x0) and f(xg) = f(xo), resulting in

Fx) = f(xo) + f'(x0)(x — x0) -

The key step in Newton’s method is to find where the tangent crosses the x axis,
which means solving f(x) = 0:

f (xo0)

fx) =0 = x:xo—f/(xo).

This is our new candidate point, which we call x;:

f(x0)
f(xo)

X1 = X0 —

7.2 Newton's Method 183

With xp = 1000, we get x; & 500, which is in accordance with the graph in Fig. 7.1.
Repeating the process, we get

fx1)

— ~ 250.
f(x1)

X2 = X1

The general scheme? of Newton’s method may be written as

S xn)

e n=0,1,2,... (7.1)

Xn4+1 = Xn —

The computation in (7.1) is repeated until f (x,) is close enough to zero. More
precisely, we test if | f (x,)| < €, with € being a small number.

We moved from 1000 to 250 in two iterations, so it is exciting to see how
fast we can approach the solution x = 3. A computer program can automate
the calculations. Our first try at implementing Newton’s method is in a function
naive_Newton (found in naive_Newton.py):

def naive_Newton(f, dfdx, x, eps):
while abs(f(x)) > eps:

x =x - (f(x))/dfdx(x)
return x

The argument x is the starting value, called x¢ in our previous mathematical
description.
To solve the problem x? = 9 we also need to implement

def f(x):
return x**2 - 9

def dfdx(x):
return 2%*x

print(naive_Newton(f, dfdx, 1000, 0.001))

which in naive_Newton.pyis included by use of an extra function and a test block.

2 The term scheme is often used as a synonym for method or computational recipe.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/naive_Newton.py

184 7 Solving Nonlinear Algebraic Equations

Why Not Use an Array for the x Approximations?

Newton’s method is normally formulated with an iteration index n,

S (xn)
JHEDN

Xn+l = Xn —

Seeing such an index, many would implement this as

x[n+1] = x[n] - f(x[n])/dfdx(x[n])

Such an array is fine, but requires storage of all the approximations. In large
industrial applications, where Newton’s method solves millions of equations
at once, one cannot afford to store all the intermediate approximations in
memory, so then it is important to understand that the algorithm in Newton’s
method has no more need for x, when x,,41 is computed. Therefore, we can
work with one variable x and overwrite the previous value:

x = x - f(x)/dfdx(x)

Runningnaive_Newton(f, dfdx, 1000, eps=0.001) results in the approx-
imate solution 3.000027639. A smaller value of eps will produce a more accurate
solution. Unfortunately, the plain naive_Newton function does not return how
many iterations it used, nor does it print out all the approximations xg, x, x2, . . .,
which would indeed be a nice feature. If we insert such a printout (print (x) in the
while loop), a rerun results in

500.0045
250.011249919
125.02362415
62.5478052723
31.3458476066
15.816483488
8.1927550496
4.64564330569
3.2914711388
3.01290538807
3.00002763928

We clearly see that the iterations approach the solution quickly. This speed of the
search for the solution is the primary strength of Newton’s method compared to
other methods.

7.2.2 Making a More Efficient and Robust Implementation

The naive_Newton function works fine for the example we are considering here.
However, for more general use, there are some pitfalls that should be fixed in an
improved version of the code. An example may illustrate what the problem is.

Let us use naive_Newton to solve tanh(x) = 0, which has solution x = 0
(interactively, you may define f(x) = tanh(x) and f'(x) = 1 —tanh?(x) as Python

7.2 Newton's Method 185

functions and import the naive_Newton function from naive_Newton.py). With
|xo| < 1.08 everything works fine. For example, xo = 1.08 leads to six iterations if
€ =0.001:

-1.05895313436
0.989404207298
-0.784566773086
0.36399816111
-0.0330146961372
2.3995252668e-05

Adjusting xg slightly to 1.09 gives division by zero! The approximations computed
by Newton’s method become

-1.09331618202
1.10490354324
-1.14615550788
1.30303261823
-2.06492300238
13.4731428006
-1.26055913647e+11

The division by zero is caused by x7 = —1.26055913647 x 10'!, because tanh(x7)
is 1.0 to machine precision, and then f/(x) = 1 — tanh(x)2 becomes zero in the
denominator in Newton’s method.

The underlying problem, leading to the division by zero in the above example,
is that Newton’s method diverges: the approximations move further and further
away from x = 0. If it had not been for the division by zero, the condition in
the while loop would always be true and the loop would run forever. Divergence
of Newton’s method occasionally happens, and the remedy is to abort the method
when a maximum number of iterations is reached.

Another disadvantage of the naive_Newton function is that it calls the f(x)
function twice as many times as necessary. This extra work is of no concern when
f(x) is fast to evaluate, but in large-scale industrial software, one call to f (x) might
take hours or days, and then removing unnecessary calls is important. The solution
in our function is to store the call £ (x) in a variable (f_value) and reuse the value
instead of making a new call f (x).

To summarize, we want to write an improved function for implementing
Newton’s method where we

e handle division by zero properly
e allow a maximum number of iterations
e avoid the extra evaluation of f(x)

A more robust and efficient version of the function, inserted in a complete program
(Newtons_method. py) for solving x> — 9 = 0, is listed below.

import sys

def Newton(f, dfdx, x, eps):
f_value = f(x)

https://github.com/slgit/prog4comp_2/blob/master/py36-src/Newtons_method.py

186 7 Solving Nonlinear Algebraic Equations

iteration_counter = 0
while abs(f_value) > eps and iteration_counter < 100:
try:
x = x - f_value/dfdx(x)
except ZeroDivisionError:
print (’Error! - derivative zero for x = ’, x)
sys.exit (1) # Abort with error

f_value = f(x)
iteration_counter = iteration_counter + 1

Here, either a solution is found, or too many iterations
if abs(f_value) > eps:

iteration_counter = -1
return x, iteration_counter

if name ==’ _ main__’:

def f(x):
return x**x2 - 9

def dfdx(x):
return 2%x

solution, no_iterations = Newton(f, dfdx, x=1000, eps=1.0e-6)

if no_iterations > 0: # Solution found
print (’Number of function calls: {:d}’.format(1+2*no_iterations))
print(’A solution is: {:f}’.format(solution))

else:
print (’Solution not found!’)

Handling of the potential division by zero is done by a try-except construc-
tion.

The division by zero will always be detected and the program will be stopped.
The main purpose of our way of treating the division by zero is to give the user a
more informative error message and stop the program in a gentler way.

Calling sys.exit with an argument different from zero (here 1) signifies that
the program stopped because of an error. It is a good habit to supply the value 1,
because tools in the operating system can then be used by other programs to detect
that our program failed.

To prevent an infinite loop because of divergent iterations, we have introduced
the integer variable iteration_counter to count the number of iterations in
Newton’s method. With iteration_counter we can easily extend the condition in
the while loop such that no more iterations take place when the number of iterations
reaches 100. We could easily let this limit be an argument to the function rather than
a fixed constant.

The Newton function returns the approximate solution and the number of
iterations. The latter equals —1 if the convergence criterion | f(x)| < € was not
reached within the maximum number of iterations. In the calling code, we print out

3 Professional programmers would avoid calling sys . exit inside a function. Instead, they would
raise a new exception with an informative error message, and let the calling code have another
try-except construction to stop the program.

7.2 Newton's Method 187

the solution and the number of function calls. The main cost of a method for solving
f(x) = 0 equations is usually the evaluation of f(x) and f’(x), so the total number
of calls to these functions is an interesting measure of the computational work. Note
that in function Newton there is an initial call to f(x) and then one call to f and
one to f’ in each iteration.

Running Newtons_method. py, we get the following printout on the screen:

Number of function calls: 25
A solution is: 3.000000

The Newton scheme will work better if the starting value is close to the solution.
A good starting value may often make the difference as to whether the code actually
finds a solution or not. Because of its speed (and when speed matters), Newton’s
method is often the method of first choice for solving nonlinear algebraic equations,
even if the scheme is not guaranteed to work. In cases where the initial guess may
be far from the solution, a good strategy is to run a few iterations with the bisection
method (see Sect. 7.4) to narrow down the region where f is close to zero and then
switch to Newton’s method for fast convergence to the solution.

Using sympy to Find the Derivative Newton’s method requires the analytical
expression for the derivative f’(x). Derivation of f’(x) is not always a reliable
process by hand if f(x) is a complicated function. However, Python has the
symbolic package SymPy, which we may use to create the required dfdx function.
With our sample problem, we get:

import sympy as sym

x = sym.symbols(’x’)
f_expr = x**2 - 9 # symbolic expression for f(x)
dfdx_expr = sym.diff(f_expr, x) # compute f’(x) symbolically

turn f_expr and dfdx_expr into plain Python functions
f = sym.lambdify ([x], # argument to f
f_expr) # symbolic expression to be evaluated

dfdx = sym.lambdify([x], dfdx_expr)
print (£(3), dfdx(3)) # will print O and 6

The nice feature of this code snippet is that dfdx_expr is the exact analytical
expression for the derivative, 2*x (seen if you print it out). This is a symbolic
expression, so we cannot do numerical computing with it. However, with lambdify,
such symbolic expression are turned into callable Python functions, as seen here
with f and dfdx.

The next method is the secant method, which is usually slower than Newton’s
method, but it does not require an expression for f’(x), and it has only one function
call per iteration.

188 7 Solving Nonlinear Algebraic Equations

7.3 The Secant Method

When finding the derivative f/(x) in Newton’s method is problematic, or when
function evaluations take too long; we may adjust the method slightly. Instead of
using tangent lines to the graph we may use secants.* The approach is referred to as
the secant method, and the idea is illustrated graphically in Fig. 7.2 for our example
problem x> — 9 = 0.

The idea of the secant method is to think as in Newton’s method, but instead of
using f'(x,), we approximate this derivative by a finite difference or the secant,
i.e., the slope of the straight line that goes through the points (x,, f(x,)) and
(xn—1, f (xn—1)) on the graph, given by the two most recent approximations x,, and
Xp—1. This slope reads

) — fxnz1)

Xn — Xn—1

(7.2)

Inserting this expression for f’(x,) in Newton’s method simply gives us the secant
method:

- o)
Tl =T)= f () ?
Xn—Xn—1

or

Xn — Xn—1

fOn) — fn-1))

Comparing (7.3) to the graph in Fig. 7.2, we see how two chosen starting points
(xo = 1000, x; = 700, and corresponding function values) are used to compute
x2. Once we have x;, we similarly use x; and x> to compute x3. As with Newton’s
method, the procedure is repeated until f(x,) is below some chosen limit value,
or some limit on the number of iterations has been reached. We use an iteration
counter here too, based on the same thinking as in the implementation of Newton’s
method.

We can store the approximations x, in an array, but as in Newton’s method,
we notice that the computation of x,| only needs knowledge of x, and x,_1, not
“older” approximations. Therefore, we can make use of only three variables: x for
Xn+1, x1 for x,,, and x0 for x,_;1. Note that x0 and x1 must be given (guessed) for
the algorithm to start.

A program secant_method. py that solves our example problem may be written
as:

Xpt1 = Xp — f(xn) (7.3)

import sys
def secant(f, x0, x1, eps):

f_x0 = f£(x0)
f x1 = £(x1)

4 https://en.wikipedia.org/wiki/Secant_line.

https://en.wikipedia.org/wiki/Secant_line
https://github.com/slgit/prog4comp_2/blob/master/py36-src/secant_method.py
https://en.wikipedia.org/wiki/Secant_line

7.3 The Secant Method 189

1000000

800000 -

600000 -

400000 -

200000 -

—200000

f(x)

e L e b
X3 X2 X1 Xo

0 200 400 600 800 1000
X

Fig. 7.2 Illustrates the use of secants in the secant method when solving x2-9=0,x ¢ [0, 1000].
From two chosen starting values, xg = 1000 and x; = 700 the crossing x, of the corresponding
secant with the x axis is computed, followed by a similar computation of x3 from x; and x>

if

iteration_counter = 0
while abs(f_x1) > eps and iteration_counter < 100:
try:
denominator = (f_x1 - f_x0)/(x1 - x0)
x = x1 - f_x1/denominator
except ZeroDivisionError:

print (’Error! - denominator zero for x = ’, x)
sys.exit(1) # Abort with error

x0 = x1

xl = x

f x0 = £f_x1

f_x1 = f(x1)

iteration_counter = iteration_counter + 1
Here, either a solution is found, or too many iterations
if abs(f_x1) > eps:

iteration_counter = -1
return x, iteration_counter

__hame == ’_main__’:

def f(x):
return x**2 - 9

x0 = 1000; x1 =x0 -1
solution, no_iterations = secant(f, x0, x1, eps=1.0e-6)

if no_iterations > O: # Solution found

190 7 Solving Nonlinear Algebraic Equations

print (’Number of function calls: {:d}’.format(2+no_iterations))
print(’A solution is: {:f}’.format(solution))

else:
print (’Solution not found!’)

The number of function calls is now related to no_iterations, i.e., the
number of iterations, as 2 + no_iterations, since we need two function calls
before entering the while loop, and then one function call per loop iteration.
Note that, even though we need two points on the graph to compute each
updated estimate, only a single function call (f(x1)) is required in each it-
eration since f(x0) becomes the “old” f(x1) and may simply be copied as
f_x0 = f_x1 (the exception is the very first iteration where two function evalu-
ations are needed).

Running secant_method. py, gives the following printout on the screen:

Number of function calls: 19
A solution is: 3.000000

7.4 The Bisection Method

Neither Newton’s method nor the secant method can guarantee that an existing
solution will be found (see Exercises 7.1 and 7.2). The bisection method, however,
does that. However, if there are several solutions present, it finds only one of them,
just as Newton’s method and the secant method. The bisection method is slower
than the other two methods, so reliability comes with a cost of speed (but, again, for
a single equation that is rarely an issue with laptops of today).

Tosolvex2—9 =0, x € [0, 1000], with the bisection method, we reason as
follows. The first key idea is that if f(x) = x? — 9 is continuous on the interval and
the function values for the interval endpoints (x; = 0, xg = 1000) have opposite
signs, f(x) must cross the x axis at least once on the interval. That is, we know
there is at least one solution.

The second key idea comes from dividing the interval in two equal parts, one
to the left and one to the right of the midpoint x); = 500. By evaluating the sign
of f(xpm), we will immediately know whether a solution must exist to the left or
right of xys. This is so, since if f(xp) > 0, we know that f(x) has to cross the x
axis between x;, and xj at least once (using the same argument as for the original
interval). Likewise, if instead f(xp7) < 0, we know that f(x) has to cross the x axis
between x,s and x at least once.

In any case, we may proceed with half the interval only. The exception is if
f(xp) = 0, in which case a solution is found. Such interval halving can be
continued until a solution is found. A “solution” in this case, is when | f(xps)| is
sufficiently close to zero, more precisely (as before): | f(xpy)| < €, where € is a
small number specified by the user.

7.4 The Bisection Method 191

The sketched strategy seems reasonable, so let us write a reusable function that
can solve a general algebraic equation f(x) = 0 (bisection_method.py):

import sys

def bisection(f, x_L, x_R, eps):

if

f L =f(x_L)

if £f_L*xf(x_R) > O:
print (’Error! Function does not have opposite \

signs at interval endpoints!’)

sys.exit (1)

x M= (x_L + x_R)/2.0

f M= f(x_M

iteration_counter = 1

while abs(f_M) > eps:

if £ Lxf_ M > O: # i.e. same sign
x L =xM
fL=1FfM

else:
x_ R =xM

x M= (x_L + x_R)/2

£f M= f(x_M

iteration_counter = iteration_counter + 1
return x_M, iteration_counter

__hame == ’_main__’:

def f(x):
return x**2 - 9

a = 0; b = 1000
solution, no_iterations = bisection(f, a, b, eps=1.0e-6)

print (’Number of function calls: {:d}’.format(1l + 2%no_iterations))
print(’A solution is: {:f}’.format(solution))

Note that we first check if f changes sign in [a, b], because that is a requirement
for the algorithm to work. The algorithm also relies on a continuous f(x) function,
but this is very challenging for a computer code to check.

We get the following printout to the screen when bisection_method.pyis run:

Number of function calls: 63
A solution is: 3.000000

We notice that the number of function calls is much higher than with the previous
methods.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/bisection_method.py

192 7 Solving Nonlinear Algebraic Equations

Required Work in the Bisection Method

If the starting interval of the bisection method is bounded by @ and b, and the
solution at step n is taken to be the middle value, the error is bounded as

b —al
o (7.4)

because the initial interval has been halved n times. Therefore, to meet a
tolerance €, we need n iterations such that the length of the current interval
equals €:

b—al _ (G- a)/e)
n =€ T " 2

This is a great advantage of the bisection method: we know beforehand how
many iterations » it takes to meet a certain accuracy € in the solution.

7.5 Rate of Convergence

With the methods above, we noticed that the number of iterations or function calls
could differ quite substantially. The number of iterations needed to find a solution is
closely related to the rate of convergence, which dictates the speed of error reduction
as we approach the root. More precisely, we introduce the error in iteration n as
e, = |x — x,|, and define the convergence rate q as

ent1 = Cefl, (7.5)

where C is a constant. The exponent g measures how fast the error is reduced from
one iteration to the next. The larger g is, the faster the error goes to zero (when
e, < 1), and the fewer iterations we need to meet the stopping criterion | f (x)| < €.

Convergence Rate and Iterations

When we previously addressed numerical integration (Chap. 6), the approx-
imation error E was related to the size i of the sub-intervals and the
convergence rate r as E = Kh", K being some constant.

Observe that (7.5) gives a different definition of convergence rate. This
makes sense, since numerical integration is based on a partitioning of the
original integration interval into n sub-intervals, which is very different from
the iterative procedures used here for solving nonlinear algebraic equations.

7.5 Rate of Convergence 193

A single g in (7.5) is defined in the limit n — oo. For finite n, and especially
smaller n, g will vary with n. To estimate g, we can compute all the errors e, and
set up (7.5) for three consecutive experiments n — 1, n, and n + 1:

q
en=Ce, ,,

q
ent1 = Cey .

Dividing, e.g., the latter equation by the former, and solving with respect to g, we
get that

__ln(en+l/en)
__ln(en/en—l).

Since this g will vary somewhat with n, we call it g,,. As n grows, we expect g, to
approach a limit (g, — q).

Modifying Our Functions to Return All Approximations To compute all the g,
values, we need all the x,, approximations. However, our previous implementations
of Newton’s method, the secant method, and the bisection method returned just the
final approximation.

Therefore, we have modified our solvers® accordingly, and placed them in
nonlinear_solvers.py. A user can choose whether the final value or the whole
history of solutions is to be returned. Each of the extended implementations now
takes an extra parameter return_x_1list. This parameter is a boolean, set to True
if the function is supposed to return all the root approximations, or False, if the
function should only return the final approximation.

As an example, let us take a closer look at Newton:

def Newton(f, dfdx, x, eps, return_x_list=False):
f_value = f(x)
iteration_counter = 0
if return_x_list:
x_list = []

while abs(f_value) > eps and iteration_counter < 100:
try:
x = x - float(f_value)/dfdx(x)
except ZeroDivisionError:
print (CError! - derivative zero for x = {:g}’.format(x))
sys.exit(1) # Abort with error

f_value = f(x)

iteration_counter += 1

if return_x_list:
x_list.append(x)

Here, either a solution is found, or too many iterations

if abs(f_value) > eps:
iteration_counter = -1 # i.e., lack of convergence

3 An implemented numerical solution algorithm is often called a solver.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/nonlinear_solvers.py

194 7 Solving Nonlinear Algebraic Equations

if return_x_list:

return x_list, iteration_counter
else:

return x, iteration_counter

‘We can now make a call
x, iter = Newton(f, dfdx, x=1000, eps=1le-6, return_x_list=True)

and get a list x returned. With knowledge of the exact solution x of f(x) = 0 we can
compute all the errors e, and all the associated g, values with the compact function
(also found in nonlinear_solvers.py)

def rate(x, x_exact):
e = [abs(x_ - x_exact) for x_ in x]
q = [log(e[n+1]/e[n])/log(e[n]l/e[n-11)
for n in range(l, len(e)-1, 1)]
return q

The error model (7.5) works well for Newton’s method and the secant method.
For the bisection method, however, it works well in the beginning, but not when the
solution is approached.

We can compute the rates g, and print them nicely (print_rates.py),

def print_rates(method, x, x_exact):
q = [’{:.2f}’ .format(q_) for q_ in rate(x, x_exact)]
print (method + ’:7)
for q_ in q:
print(q_, " ", end="") # end="" suppresses newline

The result for print_rates(’Newton’, x, 3)is

Newton:
1.01 1.02 1.03 1.07 1.14 1.27 1.51 1.80 1.97 2.00

indicating that ¢ = 2 is the rate for Newton’s method. A similar computation using
the secant method, gives the rates
secant:

1.26 0.93 1.05 1.01 1.04 1.05 1.08 1.13 1.20 1.30 1.43
1.54 1.60 1.62 1.62

Here it seems that ¢ ~ 1.6 is the limit.

Remark If we in the bisection method think of the length of the current interval

containing the solution as the error e,, then (7.5) works perfectly since ;1 = %en,

ie,g=1landC = %, but if e, is the true error |x —x,|, it is easily seen from a sketch

that this error can oscillate between the current interval length and a potentially very
small value as we approach the exact solution. The corresponding rates g, fluctuate
widely and are of no interest.

https://github.com/slgit/prog4comp_2/blob/master/py36-src/print_rates.py

7.6 Solving Multiple Nonlinear Algebraic Equations 195

7.6 Solving Multiple Nonlinear Algebraic Equations

So far in this chapter, we have considered a single nonlinear algebraic equation.
However, systems of such equations arise in a number of applications, foremost
nonlinear ordinary and partial differential equations. Of the previous algorithms,
only Newton’s method is suitable for extension to systems of nonlinear equa-
tions.

7.6.1 Abstract Notation

Suppose we have n nonlinear equations, written in the following abstract form:

Fo(x()s xla-~-sxn) :07 (76)
F](x(),xl,...,xn):(), (77)

P (7.8)
F,(x0,x1,...,x,) =0. (7.9)

It will be convenient to introduce a vector notation
F=(F09'-~3F1)s x:(-an'~-a-xn)'
The system can now be written as F (x) = 0.
As a specific example on the notation above, the system

x2 = y — x cos(mrx) (7.10)

yx4+e ¥ =x"" (7.11)
can be written in our abstract form by introducing xo = x and x; = y. Then

Fo(xo, x1) = x> — y + x cos(rx) = 0,

Fi(xo,x)) =yx+e Y —x1=0.

7.6.2 Taylor Expansions for Multi-Variable Functions

We follow the ideas of Newton’s method for one equation in one variable:
approximate the nonlinear f by a linear function and find the root of that function.
When n variables are involved, we need to approximate a vector function F (x) by
some linear function F = Jx + ¢, where J is an n x n matrix and ¢ is some vector
of length n.

The technique for approximating F by a linear function is to use the first two
terms in a Taylor series expansion. Given the value of F and its partial derivatives
with respect to x at some point x;, we can approximate the value at some point x;1

196 7 Solving Nonlinear Algebraic Equations

by the two first term in a Taylor series expansion around x;:
F(xip1) = F(xi) + VF(x;)(Xj41 — xi) .

The next terms in the expansions are omitted here and of size ||x;+1 — x;| |2, which
are assumed to be small compared with the two terms above.
The expression VF is the matrix of all the partial derivatives of F. Component

(i, j)in VF is

F;

ij '
For example, in our 2 x 2 system (7.10) and (7.11) we can use SymPy to compute
the Jacobian:

In [1]: from sympy import *

In [2]: x0, x1 = symbols(’x0 x1°)

In [3]: FO = x0%*2 - x1 + xO*cos(pi*x0)
In [4]: F1 = x0*x1 + exp(-x1) - xO0*x(-1)

In [5]: diff(FO, x0)
Out [6]: -pi*x0*sin(pi*x0) + 2%x0 + cos(pi*x0)

In [6]: diff(FO, x1)
Qut[6]: -1

In [7]: diff(F1, x0)
Out[7]: x1 + xO0*x(-2)

In [8]: diff(F1, x1)
Out[8]: x0 - exp(-x1)

‘We can then write

_— (353 gf;)) B (2x0 + cos(mwxp) — wxg sin(mwxp) —1)

oF; 0F; -2 -
dxg 9xy X1+X0 X0 —¢

The matrix VF is called the Jacobian of F and often denoted by J.

7.6.3 Newton’s Method

The idea of Newton’s method is that we have some approximation x; to the root and
seek a new (and hopefully better) approximation x; 1 by approximating F (x;41) by
a linear function and solve the corresponding linear system of algebraic equations.
We approximate the nonlinear problem F(x;+1) = 0 by the linear problem

Fxi)+ Jx)(xir1 —x;) =0, (7.12)

7.6 Solving Multiple Nonlinear Algebraic Equations 197

where J (x;) is just another notation for VF (x;). The Eq. (7.12) is a linear system
with coefficient matrix J and right-hand side vector F (x;). We therefore write this
system in the more familiar form

J(x)d = —F(x)),

where we have introduced a symbol § for the unknown vector x;4; — x; that
multiplies the Jacobian J.

The i-th iteration of Newton’s method for systems of algebraic equations consists
of two steps:

1. Solve the linear system J (x;)8 = —F (x;) with respect to 4.
2. Setx;y1 =x; + 6.

Solving systems of linear equations must make use of appropriate software. Gaus-
sian elimination is the most common, and in general the most robust, method for this
purpose. Python’s numpy package has a module 1inalg that interfaces the well-
known LAPACK package with high-quality and very well tested subroutines for
linear algebra. The statement x = numpy.linalg.solve(A, b) solves a system
Ax = b with a LAPACK method based on Gaussian elimination.

When nonlinear systems of algebraic equations arise from discretization of
partial differential equations, the Jacobian is very often sparse, i.e., most of its
elements are zero. In such cases it is important to use algorithms that can take
advantage of the many zeros. Gaussian elimination is then a slow method, and
(much) faster methods are based on iterative techniques.

7.6.4 Implementation

Here is a very simple implementation of Newton’s method for systems of nonlinear
algebraic equations:

import numpy as np

def Newton_system(F, J, x, eps):
nnn
Solve nonlinear system F=0 by Newton’s method.
J is the Jacobian of F. Both F and J must be functions of x.
At input, x holds the start value. The iteration continues
until ||F|| < eps.
nnn
F_value = F(x)
F_norm = np.linalg.norm(F_value, ord=2) # 12 norm of vector
iteration_counter = 0
while abs(F_norm) > eps and iteration_counter < 100:
delta = np.linalg.solve(J(x), -F_value)
x = x + delta
F_value = F(x)
F_norm = np.linalg.norm(F_value, ord=2)
iteration_counter = iteration_counter + 1

198 7 Solving Nonlinear Algebraic Equations

Here, either a solution is found, or too many iterations
if abs(F_norm) > eps:

iteration_counter = -1
return x, iteration_counter

We can test the function Newton_systemwith the 2 x2 system (7.10) and (7.11):

def test_Newton_systeml():
from numpy import cos, sin, pi, exp

def F(x):
return np.array(
[x[0]**2 - x[1] + x[0]*cos(pi*x[0]),
x[0]*x[1] + exp(-x[1]) - x[0I**(-1.)1)

def J(x):
return np.array(
[[2*x[0] + cos(pi*x[0]) - pi*x[0]*sin(pi*x[0]), -11,
[x[1] + x[01*x(-2.), x[0] - exp(-x[11)11)

expected = np.array([1, 0])

tol = le-4

x, n = Newton_system(F, J, x=np.array([2, -1]), eps=0.0001)
print(n, x)

error_norm = np.linalg.norm(expected - x, ord=2)

assert error_norm < tol, ’norm of error ={:g}’.format(error_norm)
print ("norm of error ={:g}’.format(error_norm))

Here, the testing is based on the L2 norm® of the error vector. Alternatively,
we could test against the values of x that the algorithm finds, with appropriate
tolerances. For example, as chosen for the error norm, if eps=0.0001, a tolerance
of 10~ can be used for x [0] and x [1].

7.7 Exercises

Exercise 7.1: Understand Why Newton’s Method Can Fail

The purpose of this exercise is to understand when Newton’s method works and
fails. To this end, solve tanhx = 0 by Newton’s method and study the intermediate
details of the algorithm. Start with xo = 1.08. Plot the tangent in each iteration of
Newton’s method. Then repeat the calculations and the plotting when xo = 1.09.
Explain what you observe.

Filename: Newton_failure.*.

Exercise 7.2: See If the Secant Method Fails
Does the secant method behave better than Newton’s method in the problem
described in Exercise 7.17 Try the initial guesses

1. xo =1.08 and x; = 1.09
2. xo=1.09and x; = 1.1

6 https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm.

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

7.7 Exercises 199

3. xp=1and x; =2.3
4. xo=1landx; =24

Filename: secant_failure. *.

Exercise 7.3: Understand Why the Bisection Method Cannot Fail

Solve the same problem as in Exercise 7.1, using the bisection method, but let the
initial interval be [—5, 3]. Report how the interval containing the solution evolves
during the iterations.

Filename: bisection_nonfailure.*.

Exercise 7.4: Combine the Bisection Method with Newton’s Method
An attractive idea is to combine the reliability of the bisection method with the speed
of Newton’s method. Such a combination is implemented by running the bisection
method until we have a narrow interval, and then switch to Newton’s method for
speed.

Write a function that implements this idea. Start with an interval [a, b] and switch
to Newton’s method when the current interval in the bisection method is a fraction s
of the initial interval (i.e., when the interval has length s (b—a)). Potential divergence
of Newton’s method is still an issue, so if the approximate root jumps out of the
narrowed interval (where the solution is known to lie), one can switch back to the
bisection method. The value of s must be given as an argument to the function, but
it may have a default value of 0.1.

Try the new method on tanh(x) = O with an initial interval [—10, 15].
Filename: bisection_Newton.py.

Exercise 7.5: Write a Test Function for Newton’s Method

The purpose of this function is to verify the implementation of Newton’s method
in the Newton function in the file nonlinear_solvers.py. Construct an algebraic
equation and perform two iterations of Newton’s method by hand or with the aid of
SymPy. Find the corresponding size of | f(x)| and use this as value for eps when
calling Newton. The function should then also perform two iterations and return the
same approximation to the root as you calculated manually. Implement this idea for
a unit test as a test function test_Newton ().

Filename: test_Newton.py.

Exercise 7.6: Halley’s Method and the Decimal Module
A nonlinear algebraic equation f(x) = 0 may also be solved by Halley’s method,’
given as:

2 Gen) f'(xn)

— , =0,1,...,
2f"(en)? = f o) £ Cn)

Xn+1 = Xn

with some starting value x.

7 http://mathworld. wolfram.com/HalleysMethod.html.

http://mathworld.wolfram.com/HalleysMethod.html

200 7 Solving Nonlinear Algebraic Equations

a) Implement Halley’s method as a function Halley. Place the function in a module
that has a test block, and test the function by solving x> —9 = 0, using xo = 1000
as your initial guess.

b) Compared to Newton’s method, more computations per iteration are needed
with Halley’s method, but a convergence rate of 3 may be achieved close
to the root. You are now supposed to extend your module with a function
compute_rates_decimal, which computes the convergence rates achieved
with your implementation of Halley (for the given problem).

The implementation of compute_rates_decimal should involve the
decimal module (you search for the right documentation!), to better handle
very small errors that may enter the rate computations. For comparison, you
should also compute the rates without using the decimal module. Test and
compare with several parameter values.

Hint The logarithms in the rate calculation might require some extra consideration
when you use the decimal module.
Filename: Halleys_method. py.

Exercise 7.7: Fixed Point Iteration

A nonlinear algebraic equation f(x) = 0 may be solved in many different ways, and
we have met some of these in this chapter. Another, very useful, solution approach
is to first re-write the equation into x = ¢ (x) (this re-write is not unique), and then
formulate the iteration

xn+1:¢(~xn)a n:Oala"' ’

with some starting value xg. If ¢ (x) is continuous, and if ¢ (x,) approaches « as x,
approaches « (i.e., we get o = ¢ («) as n — 00), the iteration is called a fixed point
iteration and « is referred to as a fixed point of the mapping x — ¢ (x). Clearly, if
a fixed point « is found, o will also be a solution to the original equation f(x) = 0.

In this exercise, we will briefly explore the fixed point iteration method by
solving

B 42x=e, xe[-22].

For comparison, however, you will first be asked to solve the equation by
Newton’s method (which, in fact, can be seen as fixed point iterationg).

a) Write a program that solves this equation by Newton’s method. Use x = 1
as your starting value. To better judge the printed answer found by Newton’s
method, let the code also plot the relevant function on the given interval.

b) The given equation may be rewritten as x = e_xz_ ** Extend your program with
a function fixed_point_iteration, which takes appropriate parameters, and
uses fixed point iteration to find and return a solution (if found), as well as the

number of iterations required. Use x = 1 as starting value.

8 Check out https://en.wikipedia.org/wiki/Fixed_point_iteration.

https://en.wikipedia.org/wiki/Fixed_point_iteration

7.7 Exercises 201

When the program is executed, the original equation should be solved both
with Newton’s method and via fixed point iterations (as just described). Compare
the output from the two methods.

Filename: fixed_point_iteration.py.

Exercise 7.8: Solve Nonlinear Equation for a Vibrating Beam

An important engineering problem that arises in a lot of applications is the vibrations
of a clamped beam where the other end is free. This problem can be analyzed
analytically, but the calculations boil down to solving the following nonlinear
algebraic equation:

coshfBcosf = —1,
where B is related to important beam parameters through

4 204

Br=w"

where o is the density of the beam, A is the area of the cross section, E is Young’s
modulus, and I is the moment of the inertia of the cross section. The most important
parameter of interest is w, which is the frequency of the beam. We want to compute
the frequencies of a vibrating steel beam with a rectangular cross section having
width b = 25 mm and height 4 = 8 mm. The density of steel is 7850 kg/m?, and
E = 2 x 10'"'Pa. The moment of inertia of a rectangular cross section is I =
bh3/12.

a) Plot the equation to be solved so that one can inspect where the zero crossings
occur.

Hint When writing the equation as f(8) = 0, the f function increases its
amplitude dramatically with B. It is therefore wise to look at an equation with
damped amplitude, g(8) = e~# f(B) = 0. Plot g instead.

b) Compute the first three frequencies.

Filename: beam_vib.py.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	7 Solving Nonlinear Algebraic Equations
	7.1 Brute Force Methods
	7.1.1 Brute Force Root Finding
	7.1.2 Brute Force Optimization
	7.1.3 Model Problem for Algebraic Equations

	7.2 Newton's Method
	7.2.1 Deriving and Implementing Newton's Method
	7.2.2 Making a More Efficient and Robust Implementation

	7.3 The Secant Method
	7.4 The Bisection Method
	7.5 Rate of Convergence
	7.6 Solving Multiple Nonlinear Algebraic Equations
	7.6.1 Abstract Notation
	7.6.2 Taylor Expansions for Multi-Variable Functions
	7.6.3 Newton's Method
	7.6.4 Implementation

	7.7 Exercises
	Exercise 7.1: Understand Why Newton's Method Can Fail
	Exercise 7.2: See If the Secant Method Fails
	Exercise 7.3: Understand Why the Bisection Method Cannot Fail
	Exercise 7.4: Combine the Bisection Method with Newton's Method
	Exercise 7.5: Write a Test Function for Newton's Method
	Exercise 7.6: Halley's Method and the Decimal Module
	Exercise 7.7: Fixed Point Iteration
	Exercise 7.8: Solve Nonlinear Equation for a Vibrating Beam

