
A Causal Bayesian Networks Viewpoint
on Fairness

Silvia Chiappa(B) and William S. Isaac

DeepMind, London, UK
{csilvia,williamis}@google.com

Abstract. We offer a graphical interpretation of unfairness in a dataset
as the presence of an unfair causal effect of the sensitive attribute in the
causal Bayesian network representing the data-generation mechanism.
We use this viewpoint to revisit the recent debate surrounding the COM-
PAS pretrial risk assessment tool and, more generally, to point out that
fairness evaluation on a model requires careful considerations on the pat-
terns of unfairness underlying the training data. We show that causal
Bayesian networks provide us with a powerful tool to measure unfairness
in a dataset and to design fair models in complex unfairness scenarios.

1 Introduction

Machine learning is increasingly used in a wide range of decision-making scenar-
ios that have serious implications for individuals and society, including financial
lending [10,35], hiring [8,27], online advertising [26,40], pretrial and immigra-
tion detention [5,42], child maltreatment screening [13,46], health care [18,31],
and social services [1,22]. Whilst this has the potential to overcome undesirable
aspects of human decision-making, there is concern that biases in the data and
model inaccuracies can lead to decisions that treat historically discriminated
groups unfavourably. The research community has therefore started to investi-
gate how to ensure that learned models do not take decisions that are unfair
with respect to sensitive attributes (e.g. race or gender).

This effort has led to the emergence of a rich set of fairness definitions [12,
15,20,23,37] providing researchers and practitioners with criteria to evaluate
existing systems or to design new ones. Many such definitions have been found
to be mathematically incompatible [7,12,14,15,29], and this has been viewed
as representing an unavoidable trade-off establishing fundamental limits on fair
machine learning, or as an indication that certain definitions do not map on to
social or legal understandings of fairness [16].

Most fairness definitions focus on the relationship between the model out-
put and the sensitive attribute. However, deciding which relationship is appro-
priate for the model under consideration requires careful considerations about
the patterns of unfairness underlying the training data. Therefore, the choice
of a fairness definition always needs to consider the dataset used to train the
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model. In this manuscript, we use the framework causal Bayesian network draw
attention to this point, by visually describing unfairness in a dataset as the pres-
ence of an unfair causal effect of the sensitive attribute in the data-generation
mechanism. We then use this viewpoint to raise concern on the fairness debate
surrounding the COMPAS pretrial risk assessment tool. Finally, we show that
causal Bayesian networks offer a powerful tool for representing, reasoning about,
and dealing with complex unfairness scenarios.

2 A Graphical View of (Un)fairness

Consider a dataset Δ = {an, xn, yn}N
n=1, corresponding to N individuals, where

an indicates a sensitive attribute, and xn a set of observations that can be used
(together with an) to form a prediction ŷn of outcome yn. We assume a binary
setting an, yn, ŷn ∈ {0, 1} (unless otherwise specified), and indicate with A,X ,
Y , and Ŷ the (set of) random variables1 corresponding to an, xn, yn, and ŷn.

In this section we show at a high-level that a correct use of fairness defini-
tions concerned with statistical properties of Ŷ with respect to A requires an
understanding of the patterns of unfairness underlying Δ, and therefore of the
relationships among A, X and Y . More specifically we show that:

(i) Using the framework of causal Bayesian networks (CBNs), unfairness in Δ
can be viewed as the presence of an unfair causal path from A to X or Y .

(ii) In order to determine which properties Ŷ should possess to be fair, it is
necessary to question and understand unfairness in Δ.

A Q

D Y

fair?
unfair
fair?

Assume a dataset Δ = {an, xn = {qn, dn}, yn}N
n=1 correspond-

ing to a college admission scenario in which applicants are
admitted based on qualifications Q, choice of department D,
and gender A; and in which female applicants apply more often
to certain departments. This scenario can be represented by

the CBN on the left (see AppendixA for an overview of BNs, and Sect. 3 for a
detailed treatment of CBNs). The causal path A → Y represents direct influence
of gender A on admission Y , capturing the fact that two individuals with the
same qualifications and applying to the same department can be treated differ-
ently depending on their gender. The indirect causal path A → D → Y repre-
sents influence of A on Y through D, capturing the fact that female applicants
more often apply to certain departments. Whilst the direct influence A → Y
is certainly an unfair one, the paths A → D and D → Y , and therefore
A → D → Y , could either be considered as fair or as unfair. For example, reject-
ing women more often due to department choice could be considered fair with
respect to college responsibility. However, this could be considered unfair with
respect to societal responsibility if the departmental differences were a result of
systemic historical or cultural factors (e.g. if female applicants apply to specific

1 Throughout the paper, we use capital and small letters for random variables and
their values, and calligraphic capital letters for sets of variables.
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departments at lower rates because of overt or covert societal discouragement).
Finally, if the college were to lower the admission rates for departments chosen
more often by women, then the path D → Y would be unfair.

Deciding whether a path is fair or unfair requires careful ethical and socio-
logical considerations and/or might not be possible from a dataset alone. Never-
theless, this example illustrates that we can view unfairness in a dataset as the
presence of an unfair causal path from the sensitive attribute A to X or Y .

Different (un)fair path labeling requires Ŷ to have different characteristics in
order to be fair. In the case in which the causal paths from A to Y are all unfair
(e.g. if A → D → Y is considered unfair), a Ŷ that is statistically independent
of A (denoted with Ŷ ⊥⊥ A) would not contain any of the unfair influence of A
on Y . In such a case, Ŷ is said to satisfy demographic parity.

DemographicParity (DP). Ŷ satisfies demographic parity if Ŷ ⊥⊥ A, i.e. p(Ŷ =
1|A = 0) = p(Ŷ = 1|A = 1), where e.g. p(Ŷ = 1|A = 0) can be estimated as

p(Ŷ = 1|A = 0) ≈ 1
N0

N∑

n=1

1ŷn=1,an=0,

with 1ŷn=1,an=0 = 1 if ŷn = 1 and an = 0 (and zero otherwise), and where N0 is
the number of individuals with an = 0. Notice that many classifiers, rather than
a binary prediction ŷn ∈ {0, 1}, output a degree of belief that the individual
belongs to class 1, rn, also called score. This could correspond to the probability
of class 1, rn = p(yn = 1|an, xn), as in the case of logistic regression. To obtain
the prediction ŷn ∈ {0, 1} from rn, it is common to use a threshold θ, i.e. ŷn =
1rn>θ. In this case, we can rewrite the estimate for p(Ŷ = 1|A = 0) as

p(Ŷ = 1|A = 0) ≈ 1
N0

N∑

n=1

1rn>θ,an=0.

Notice that R ⊥⊥ A implies Ŷ ⊥⊥ A for all values of θ.
In the case in which the causal paths from A to Y are all fair (e.g. if A → Y is

absent and A → D → Y is considered fair), a Ŷ such that Ŷ ⊥⊥ A|Y or Y ⊥⊥ A|Ŷ
would be allowed to contain such a fair influence, but the (dis)agreement between
Y and Ŷ would not be allowed to depend on A. In these cases, Ŷ is said to satisfy
equal false positive/false negative rates and calibration respectively.

Equal False Positive and Negative Rates (EFPRs/EFNRs). Ŷ satisfies
EFPRs and EFNRs if Ŷ ⊥⊥ A|Y , i.e. (EFPRs) p(Ŷ = 1|Y = 0, A = 0) = p(Ŷ =
1|Y = 0, A = 1) and (EFNRs) p(Ŷ = 0|Y = 1, A = 0) = p(Ŷ = 0|Y = 1, A = 1).

Calibration. Ŷ satisfies calibration if Y ⊥⊥ A|Ŷ . In the case of score output
R, this condition is often instead called predictive parity at threshold θ, p(Y =
1|R > θ,A = 0) = p(Y = 1|R > θ,A = 1), and calibration defined as requiring
Y ⊥⊥ A|R.

In the case in which at least one causal path from A to Y is unfair (e.g. if
A → Y is present), EFPRs/EFNRs and calibration are inappropriate criteria, as
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they would not require the unfair influence of A on Y to be absent from Ŷ (e.g. a
perfect model (Ŷ = Y ) would automatically satisfy EFPRs/EFNRs and calibra-
tion, but would contain the unfair influence). This observation is particularly
relevant to the recent debate surrounding the correctional offender management
profiling for alternative sanctions (COMPAS) pretrial risk assessment tool. We
revisit this debate in the next section.

2.1 The COMPAS Debate

Over the past few years, numerous state and local governments around the
United States have sought to reform their pretrial court systems with the aim of
reducing unprecedented levels of incarceration, and specifically the population
of low-income defendants and racial minorities in America’s prisons and jails
[2,24,30]. As part of this effort, quantitative tools for determining a person’s
likelihood for reoffending or failure to appear, called risk assessment instruments
(RAIs), were introduced to replace previous systems driven largely by opaque
discretionary decisions and money bail [6,25]. However, the expansion of pretrial
RAIs has unearthed new concerns of racial discrimination which would nullify
the purported benefits of these systems and adversely impact defendants’ civil
liberties.

An intense ongoing debate, in which the research community has also been
heavily involved, was triggered by an exposé from investigative journalists at
ProPublica [5] on the COMPAS pretrial RAI developed by Equivant (formerly
Northpointe) and deployed in Broward County in Florida. The COMPAS general
recidivism risk scale (GRRS) and violent recidivism risk scale (VRRS), the focus
of ProPublica’s investigation, sought to leverage machine learning techniques to
improve the predictive accuracy of recidivism compared to older RAIs such as the
level of service inventory-revised [3] which were primarily based on theories and
techniques from a sub-field of psychology known as the psychology of criminal
conduct [4,9]2.

ProPublica’s criticism of COMPAS centered on two concerns. First, the
authors argued that the distribution of the risk score R ∈ {1, . . . , 10} exhib-
ited discriminatory patterns, as black defendants displayed a fairly uniform dis-
tribution across each value, while white defendants exhibited a right skewed

2 While the exact methodology underlying GRRS and VRRS is proprietary, publicly
available reports suggest that the process begins with a defendant being administered
a 137 point assessment during intake. This is used to create a series of dynamic risk
factor scales such as the criminal involvement scale and history of violence scale.
In addition, COMPAS also includes static attributes such as the defendant’s age
and prior police contact (number of prior arrests). The raw COMPAS scores are
transformed into decile values by ranking and calibration with a normative group to
ensure an equal proportion of scores within each scale value. Lastly, to aid practi-
tioner interpretation, the scores are grouped into three risk categories. The scale
values are displayed to court officials as either Low (1–4), Medium (5–7), and High
(8–10) risk.
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Fig. 1. Number of black and white defendants in each of two aggregate risk categories
[14]. The overall recidivism rate for black defendants is higher than for white defendants
(52% vs. 39%), i.e. Y��⊥⊥A. Within each risk category, the proportion of defendants who
reoffend is approximately the same regardless of race, i.e. Y ⊥⊥ A|Ŷ . Black defendants
are more likely to be classified as medium or high risk (58% vs. 33%) i.e. Ŷ��⊥⊥A. Among
individuals who did not reoffend, black defendants are more likely to be classified as
medium or high risk than white defendants (44.9% to 23.5%). Among individuals who
did reoffend, white defendant are more likely to be classified as low risk than black
defendants (47.7% vs 28%), i.e. Ŷ��⊥⊥A|Y .

distribution, suggesting that the COMPAS recidivism risk scores disproportion-
ately rated white defendants as lower risk than black defendants. Second, the
authors claimed that the GRRS and VRRS did not satisfy EFPRs and EFNRs, as
FPRs = 44.9% and FNRs = 28.0% for black defendants, whilst FPRs = 23.5%
and FNRs = 47.7% for white defendants (see Fig. 1). This evidence led ProP-
ublica to conclude that COMPAS had a disparate impact on black defendants,
leading to public outcry over potential biases in RAIs and machine learning writ
large.

In response, Equivant published a technical report [19] refuting the claims of
bias made by ProPublica and concluded that COMPAS is sufficiently calibrated,
in the sense that it satisfies predictive parity at key thresholds. Subsequent analy-
ses [12,15,29] confirmed Equivant’s claims of calibration, but also demonstrated
the incompatibility of EFPRs/EFNRs and calibration due to differences in base
rates across groups (Y��⊥⊥A) (see Appendix B). Moreover, the studies suggested
that attempting to satisfy these competing forms of fairness force unavoidable
trade-offs between criminal justice reformers’ purported goals of racial equity
and public safety.

As explained in Sect. 2, R ⊥⊥ A is an appropriate fairness criterion when
influence from A is considered unfair, whilst EFPRs/EFNRs and calibration, by
requiring the rate of (dis)agreement between Y and Ŷ to be the same for black
and white defendants (and therefore by not being concerned with dependence
of Y on A), are appropriate when influence from A is considered fair. Therefore,
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if dependence of Y on A includes influence of A in Y through an unfair causal
path, both EFPRs/EFNRs and calibration would be inadequate, and the fact
that they cannot be satisfied at the same time irrelevant.

A

Y

M

F

Fig. 2. Possible CBN
underlying the dataset
used for COMPAS.

As previous research has shown [28,34,43], modern polic-
ing tactics center around targeting a small number of
neighborhoods—often disproportionately populated by
non-white and low income residents—with recurring
patrols and stops. This uneven distribution of police
attention, as well as other factors such as funding for
pretrial services [30,45], means that differences in base
rates between racial groups are not reflective of ground
truth rates. We can rephrase these findings as indicating
the presence of a direct path A → Y (through unob-

served neighborhood) in the CBN representing the data-generation mechanism
(Fig. 2). Such tactics also imply an influence of A on Y through the set of vari-
ables F containing number of prior arrests. In addition, the influence of A on
Y through A → Y and A → F → Y could be more prominent or contain more
unfairness due to racial discrimination.

These observations indicate that EFPRs/EFNRs and calibration are inappro-
priate criteria for this case, and more generally that the current fairness debate
surrounding COMPAS gives insufficient consideration to the patterns of unfair-
ness underlying the data. Our analysis formalizes the concerns raised by social
scientists and legal scholars on mismeasurement and unrepresentative data in the
US criminal justice system. Multiple studies [21,33,36,45] have argued that the
core premise of RAIs, to assess the likelihood a defendant reoffends, is impossible
to measure and that the empirical proxy used (e.g. arrest or conviction) intro-
duces embedded biases and norms which render existing fairness tests unreliable.

This section used the CBN framework to describe at a high-level different
patterns of unfairness that can underlie a dataset and to point out issues with
current deployment of fairness definitions. In the remainder of the manuscript, we
use this framework more extensively to further advance our analysis on fairness.
Before doing that, we give some background on CBNs [17,38,39,41,44], assuming
that all variables except A are continuous.

3 Causal Bayesian Networks

A Bayesian network is a directed acyclic graph where nodes and edges represent
random variables and statistical dependencies. Each node Xi in the graph is asso-
ciated with the conditional distribution p(Xi|pa(Xi)), where pa(Xi) is the set of
parents of Xi. The joint distribution of all nodes, p(X1, . . . , XI), is given by the
product of all conditional distributions, i.e. p(X1, . . . , XI) =

∏I
i=1 p(Xi|pa(Xi))

(see Appendix A for more details on Bayesian networks).
When equipped with causal semantic, namely when representing the data-

generation mechanism, Bayesian networks can be used to visually express causal
relationships. More specifically, CBNs enable us to give a graphical definition of
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causes and causal effects: if there exists a directed path from A to Y , then A is
a potential cause of Y . Directed paths are also called causal paths.

Fig. 3. (a): CBN with a confounder C
for the effect of A on Y . (b): Modified
CBN resulting from intervening on A.

The causal effect of A on Y can be
seen as the information traveling from
A to Y through causal paths, or as the
conditional distribution of Y given A
restricted to causal paths. This implies
that, to compute the causal effect, we
need to disregard the information that
travels along non-causal paths, which
occurs if such paths are open. Since
paths with an arrow emerging from A
are either causal or closed (blocked) by
a collider, the problematic paths are
only those with an arrow pointing into

A, called back-door paths, which are open if they do not contain a collider.
An example of an open back-door path is given by A ← C → Y in the CBN G

of Fig. 3(a): the variable C is said to be a confounder for the effect of A on Y , as
it confounds the causal effect with non-causal information. To understand this,
assume that A represents hours of exercise in a week, Y cardiac health, and
C age: observing cardiac health conditioning on exercise level from p(Y |A) does
not enable us to understand the effect of exercise on cardiac health, since p(Y |A)
includes the dependence between A and Y induced by age.

Each parent-child relationship in a CBN represents an autonomous mecha-
nism, and therefore it is conceivable to change one such a relationship without
changing the others. This enables us to express the causal effect of A = a on Y
as the conditional distribution p→A=a(Y |A = a) on the modified CBN G→A=a of
Fig. 3(b), resulting from replacing p(A|C) with a Dirac delta distribution δA=a

(thereby removing the link from C to A) and leaving the remaining conditional
distributions p(Y |A,C) and p(C) unaltered – this process is called intervention
on A. The distribution p→A=a(Y |A = a) can be estimated as p→A=a(Y |A =
a) =

∫
C

p→A=a(Y |A = a,C)p→A=a(C|A = a) =
∫

C
p(Y |A = a,C)p(C). This is

a special case of the following back-door adjustment formula.

Back-Door Adjustment. If a set of variables C satisfies the back-door crite-
rion relative to {A, Y }, the causal effect of A on Y is given by p→A(Y |A) =∫

C p(Y |A, C)p(C). C satisfies the back-door criterion if (a) no node in C is a
descendant of A and (b) C blocks every back-door path from A to Y .

The equality p→A=a(Y |A = a, C) = p(Y |A = a, C) follows from the fact that
GA→, obtained by removing from G all links emerging from A, retains all (and
only) the back-door paths from A to Y . As C blocks all such paths, Y ⊥⊥ A|C
in GA→. This means that there is no non-causal information traveling from A
to Y when conditioning on C and therefore conditioning on A coincides with
intervening.
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Fig. 4. (a): CBN in which conditioning on
C closes the paths A ← C ← X → Y and
A ← C → Y but opens the path A ←
E → C ← X → Y . (b): CBN with one
direct and one indirect causal path from A
to Y .

Conditioning on C to block an open
back-door path may open a closed
path on which C is a collider. For
example, in the CBN of Fig. 4(a), con-
ditioning on C closes the paths A ←
C ← X → Y and A ← C → Y , but
opens the path A ← E → C ← X →
Y (additional conditioning on X would
close A ← E → C ← X → Y ).

The back-door criterion can also be
derived from the rules of do-calculus
[38,39], which indicate whether and
how p→A(Y |A) can be estimated
using observations from G: for many
graph structures with unobserved con-
founders the only way to compute
causal effects is by collecting observa-
tions directly from G→A – in this case the effect is said to be non-identifiable.

Potential Outcome Viewpoint. Let YA=a be the random variable with distri-
bution p(YA=a) = p→A=a(Y |A = a). YA=a is called potential outcome and, when
not ambiguous, we will refer to it with the shorthand Ya. The relation between Ya

and all the variables in G other than Y can be expressed by the graph obtained
by removing from G all the links emerging from A, and by replacing Y with Ya. If
Ya is independent on A in this graph, then3 p(Ya) = p(Ya|A = a) = p(Y |A = a).
If Ya is independent of A in this graph when conditioning on C, then

p(Ya) =
∫

C
p(Ya|C)p(C) =

∫

C
p(Ya|A = a, C)p(C) =

∫

C
p(Y |A = a, C)p(C),

i.e. we retrieve the back-door adjustment formula.
In the remainder of the section we show that, by performing different interven-

tions on A along different causal paths, it is possible to isolate the contribution
of the causal effect of A on Y along a group of paths.

Direct and Indirect Effect

Consider the CBN of Fig. 4(b), containing the direct path A → Y and one
indirect causal path through the variable M . Let Ya(Mā) be the random variable
with distribution equal to the conditional distribution of Y given A restricted
to causal paths, with A = a along A → Y and A = ā along A → M → Y . The
average direct effect (ADE) of A = a with respect to A = ā, defined as

ADEāa = 〈Ya(Mā)〉p(Ya(Mā)) − 〈Yā〉p(Yā),

3 The equality p(Ya|A = a) = p(Y |A = a) is called consistency.
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where e.g. 〈Ya〉p(Ya) =
∫

Ya
Yap(Ya), measures the difference in flow of causal

information from A to Y between the case in which A = a along A → Y and
A = ā along A → M → Y and the case in which A = ā along both paths.

Analogously, the average indirect effect (AIE) of A = a with respect to A = ā,
is defined as AIEāa = 〈Yā(Ma)〉p(Yā(Ma)) − 〈Yā〉p(Yā).

The difference ADEāa −AIEaā gives the average total effect (ATE) ATEāa =
〈Ya〉p(Ya) − 〈Yā〉p(Yā)

4.

Path-Specific Effect

Fig. 5. Top: CBN with the direct path
from A to Y and the indirect paths
passing through M highlighted in red.
Bottom: CBN corresponding to (1).
(Color figure online)

To estimate the effect along a specific
group of causal paths, we can generalize
the formulas for the ADE and AIE by
replacing the variable in the first term
with the one resulting from performing
the intervention A = a along the group
of interest and A = ā along the remaining
causal paths. For example, consider the
CBN of Fig. 5 (top) and assume that we
are interested in isolating the effect of A
on Y along the direct path A → Y and
the paths passing through M , A → M →
, . . . ,→ Y , namely along the red links.
The path-specific effect (PSE) of A = a
with respect to A = ā for this group of
paths is defined as

PSEāa = 〈Ya(Ma, Lā(Ma))〉 − 〈Yā〉,

where p(Ya(Ma, Lā(Ma))) is given by
∫

C,M,L

p(Y |A = a,C,M,L)p(L|A = ā, C,M)p(M |A = a,C)p(C).

In the simple case in which the CBN corresponds to a linear model, e.g.

A ∼ Bern(π), C = εc,

M = θm + θm
a A + θm

c C + εm, L = θl + θl
aA + θl

cC + θl
mM + εl,

Y = θy + θy
aA + θy

c C + θy
mM + θy

l L + εy, (1)

4 Often the AIE of A = a with respect to A = ā is defined as AIEa
āa = 〈Ya〉p(Ya) −

〈Ya(Mā)〉p(Ya(Mā)) = −AIEaā, which differs in setting A to a rather than to ā along
A → Y . In the linear case, the two definitions coincide (see Eqs. (2) and (3)). Simi-
larly the ADE can be defined as ADEa

āa = 〈Ya〉p(Ya)−〈Yā(Ma)〉p(Yā(Ma)) = −ADEaā.
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where εc, εm, εl and εy are unobserved independent zero-mean Gaussian variables,
we can compute 〈Yā〉 by expressing Y as a function of A = ā and the Gaussian
variables, by recursive substitutions in C,M and L, i.e.

Yā = θy + θy
aā + θy

c εc + θy
m(θm + θm

a ā + θm
c εc + εm)

+ θy
l (θl + θl

aā + θl
cεc + θl

m(θm + θm
a ā + θm

c εc + εm) + εl) + εy,

and then take the mean, obtaining 〈Yā〉 = θy + θy
aā + θy

m(θm + θm
a ā) + θy

l (θl +
θl

aā + θl
m(θm + θm

a ā)). Analogously

〈Ya(Ma, Lā(Ma))〉 = θy + θy
aa + θy

m(θm + θm
a a) + θy

l (θl + θl
aā + θl

m(θm + θm
a a)).

For a = 1 and ā = 0, this gives

PSEāa = θy
a(a − ā) + θy

mθm
a (a − ā) + θy

l θl
mθm

a (a − ā) = θy
a + θy

mθm
a + θy

l θl
mθm

a .

The same conclusion could have been obtained by looking at the graph annotated
with path coefficients (Fig. 5 (bottom)). The PSE is obtained by summing over
the three causal paths of interest (A → Y , A → M → Y , and A → M → L → Y )
the product of all coefficients in each path.

Notice that AIEāa, given by

AIEāa = 〈Yā(Ma, La(Ma))〉 − 〈Yā〉
= θy + θy

aā + θy
m(θm + θm

a a) + θy
l (θl + θl

aa + θl
m(θm + θm

a a))

− θy + θy
aā + θy

m(θm + θm
a ā) + θy

l (θl + θl
aā + θl

m(θm + θm
a ā))

= θy
mθm

a (a − ā) + θy
l (θl

a(a − ā) + θl
mθm

a (a − ā)), (2)

coincides with AIEa
āa, given by

AIEa
āa = 〈Ya〉 − 〈Ya(Mā, Lā(Mā))〉

= θy + θy
aa + θy

m(θm + θm
a a) + θy

l (θl + θl
aa + θl

m(θm + θm
a a))

− θy + θy
aa + θy

m(θm + θm
a ā) + θy

l (θl + θl
aā + θl

m(θm + θm
a ā)). (3)

Effect of Treatment on Treated. Consider the conditional distribution
p(Ya|A = ā). This distribution measures the information travelling from A
to Y along all open paths, when A is set to a along causal paths and to ā
along non-causal paths. The effect of treatment on treated (ETT) of A = a
with respect to A = ā is defined as ETTāa = 〈Ya〉p(Ya|A=ā) − 〈Yā〉p(Yā|A=ā) =
〈Ya〉p(Ya|A=ā) − 〈Y 〉p(Y |A=ā). As the PSE, the ETT measures difference in flow
of information from A to Y when A takes different values along different paths.
However, the PSE considers only causal paths and different values for A along
different causal paths, whilst the ETT considers all open paths and different
values for A along causal and non-causal paths respectively. Similarly to ATEāa,
ETTāa for the CBN of Fig. 4(b) can be expressed as

ETTāa = 〈Ya(Mā)〉 − 〈Yā〉︸ ︷︷ ︸
ADEāa|ā

−(〈Ya(Mā)〉 − 〈Ya〉︸ ︷︷ ︸
AIEaā|ā

).
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Notice that, if we define difference in flow of non-causal (along the open back-
door paths) information from A to Y when A = a with respect to when A = ā
as NCIāa = 〈Yā〉p(Yā|A=a) − 〈Y 〉p(Y |A=ā), we obtain

〈Y 〉p(Y |A=a) − 〈Y 〉p(Y |A=ā) = 〈Yā〉p(Yā|A=a) − 〈Y 〉p(Y |A=ā)

− (〈Yā〉p(Yā|A=a) − 〈Y 〉p(Y |A=a))
= NCIāa − ETTaā = NCIāa − ADEaā|a + AIEāa|a.

4 Fairness Considerations Using CBNs

Equipped with the background on CBNs from Sect. 3, in this section we further
investigate unfairness in a dataset Δ = {an, xn, yn}N

n=1, discuss issues that might
arise when building a decision system from it, and show how to measure and
deal with unfairness in complex scenarios, revisiting and extending material from
[11,32,47].

4.1 Back-Door Paths from A to Y

In Sect. 2 we have introduced a graphical interpretation of unfairness in a dataset
Δ as the presence of an unfair causal path from A to X or Y . More specifically,
we have shown through a college admission example that unfairness can be due
to an unfair link emerging (a) from A or (b) from a subsequent variable in a
causal path from A to Y (e.g. D → Y in the example). Our discussion did not
mention paths from A to Y with an arrow pointing into A, namely back-door
paths. This is because such paths are not problematic.

A E

Y

To understand this, consider the hiring scenario described by the
CBN on the left, where A represents religious belief and E edu-
cational background of the applicant, which influences religious
participation (E → A). Whilst Y��⊥⊥A due to the open back-door
path from A to Y , the hiring decision Y is only based on E.

4.2 Opening Closed Unfair Paths from A to Y

In Sect. 2, we have seen that, in order to reason about fairness of Ŷ , it is neces-
sary to question and understand unfairness in Δ. In this section, we warn that
another crucial element needs to be considered in the fairness discussion around
Ŷ , namely

(i) The subset of variables used to form Ŷ could project into Ŷ unfair patterns
in X that do not concern Y .

This could happen, for example, if a closed unfair path from A to Y is opened
when conditioning on the variables used to form Ŷ .
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Fig. 6. CBN under-
lying a music degree
scenario.

As an example, assume the CBN in Fig. 6 representing the
data-generation mechanism underlying a music degree sce-
nario, where A corresponds to gender, M to music aptitude
(unobserved, i.e. M /∈ Δ), X to the score obtained from
an ability test taken at the beginning of the degree, and
Y to the score obtained from an ability test taken at the
end of the degree. Individuals with higher music aptitude
M are more likely to obtain higher initial and final scores
(M → X, M → Y ). Due to discrimination occurring at

the initial testing, women are assigned a lower initial score than men for the
same aptitude level (A → X). The only path from A to Y , A → X ← M → Y ,
is closed as X is a collider on this path. Therefore the unfair influence of A on
X does not reach Y (Y ⊥⊥ A). Nevertheless, as Y��⊥⊥A|X, a prediction Ŷ based
on the initial score X only would contain the unfair influence of A on X. For
example, assume the following linear model: Y = γM, X = αA + βM , with
〈A2〉p(A) = 1 and 〈M2〉p(M) = 1. A linear predictor of the form Ŷ = θXX min-
imizing 〈(Y − Ŷ )2〉p(A)p(M) would have parameters θX = γβ/(α2 + β2), giving
Ŷ = γβ(αA+βM)/(α2+β2), i.e. Ŷ��⊥⊥A. Therefore, this predictor would be using
the sensitive attribute to form a decision, although implicitly rather than explic-
itly. Instead, a predictor explicitly using the sensitive attribute, Ŷ = θXX+θAA,
would have parameters

(
θX

θA

)
=

(
α2 + β2 α

α 1

)−1 (
γβ
0

)
=

(
γ/β

−αγ/β

)
,

i.e. Ŷ = γM . Therefore, this predictor would be fair. From the CBN we can see
that the explicit use of A can be of help in retrieving M . Indeed, since M��⊥⊥A|X,
using A in addition to X can give information about M . In general (e.g. in
a non-linear setting) it is not guaranteed that using A would ensure Ŷ ⊥⊥ A.
Nevertheless, this example shows how explicit use of the sensitive attribute in a
model can ensure fairness rather than lead to unfairness.

This observation is relevant to one of the simplest fairness definitions, moti-
vated by legal requirements, called fairness through unawareness, which states
that Ŷ is fair as long as it does not make explicit use of the sensitive attribute
A. Whilst this fairness criterion is often indicated as problematic because some
of the variables used to form Ŷ could be a proxy for A (such as neighborhood
for race), the example above shows a more subtle issue with it.

4.3 Path-Specific Population-Level Unfairness

In this section, we show that the path-specific effect introduced in Sect. 3 can be
used to quantify unfairness in Δ in complex scenarios.

Consider the college admission example discussed in Sect. 2 (Fig. 7). In the
case in which the path A → D, and therefore A → D → Y , is considered
unfair, unfairness overall population can be quantified with 〈Y 〉p(Y |a)−〈Y 〉p(Y |ā)
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(coinciding with ATEāa = 〈Ya〉p(Ya) − 〈Yā〉p(Yā)) where, for example, A = a and
A = ā indicate female and male applicants respectively.

Fig. 7. CBN underlying
a college admission sce-
nario.

In the more complex case in which the path A → D →
Y is considered fair, unfairness can instead be quantified
with the path-specific effect along the direct path A →
Y , PSEāa, given by

〈Ya(Dā)〉p(Ya(Dā)) − 〈Yā〉p(Yā).

Notice that computing p(Ya(Dā)) requires knowledge
of the CBN. If the CBN structure is not known or esti-
mating its conditional distributions is challenging, the

resulting estimate could be imprecise.

4.4 Path-Specific Individual-Level Unfairness

In the college admission example of Fig. 7 in which the path A → D → Y is
considered fair, rather than measuring unfairness overall population, we might
want to know e.g. whether a rejected female applicant {an = a = 1, qn, dn, yn =
0} was treated unfairly. We can answer this question by estimating whether the
applicant would have been admitted had she been male (A = ā = 0) along the
direct path A → Y from p(Yā(Da)|A = a,Q = qn,D = dn) (notice that the
outcome in the actual world, yn, corresponds to p(Ya(Da)|A = a,Q = qn,D =
dn) = 1Ya(Da)=yn).

To understand how this can be achieved, consider the following linear model
associated to a CBN with the same structure as the one in Fig. 7

A ∼ Bern(π), Q = θq + εq,D = θd + θd
aA + εd, Y = θy + θy

aA + θy
q Q + θy

dD + εy.

εd

εy

εq

A

D

Y

Q

Da

Yā(Da)

Q∗

The relationships between A,Q,D, Y and
Yā(Da) in this model can be inferred from the
twin Bayesian network [38] on the left result-
ing from the intervention A = a along A → D
and A = ā along A → Y : in addition to
A,Q,D, Y , the network contains the variables
Q∗, Da and Yā(Da) corresponding to the coun-
terfactual world in which A = ā along A →
Y . The two groups of variables are connected
through εd, εq, εy, indicating that the factual
and counterfactual worlds share the same unob-
served randomness. From this network, we can
deduce that Yā(Da) ⊥⊥ {A,Q,D}|{εq, εd}5, and
therefore that we can express p(Yā(Da)|A =
a,Q = qn,D = dn) as

5 Notice that Yā(Da) ⊥⊥ A, but Yā(Da)��⊥⊥A|D.



16 S. Chiappa and W. S. Isaac

p(Yā(Da)|a, qn, dn) =
∫

εq,εd

p(Yā(Da)|εq, εd, �a,��q
n,��dn)p(εq, εd|a, qn, dn). (4)

As εn
q = qn−θq, εn

d = dn−θd−θd
a, we obtain6 〈Yā(Da)〉p(Yā(Da)|A=a,Q=qn,D=dn) =

θy + θy
q qn + θy

ddn.
Equation (4) suggests that, in more complex scenarios (e.g. in which the

variables are non-linearly related), we can obtain a Monte-Carlo estimate of
p(Yā(Da)|a, qn, dn) by sampling εq and εd from p(εq, εd|a, qn, dn).

In [11], we used this approach to introduce a prediction system such that
the two distributions p(Ŷā(Da)|A = a,Q = qn,D = dn) and p(Ŷa(Da)|A =
a,Q = qn,D = dn) coincide – we called this property path-specific counterfactual
fairness.

5 Conclusions

We used causal Bayesian networks to provide a graphical interpretation of unfair-
ness in a dataset as the presence of an unfair causal effect of a sensitive attribute.
We used this viewpoint to revisit the recent debate surrounding the COMPAS
pretrial risk assessment tool and, more generally, to point out that fairness eval-
uation on a model requires careful considerations on the patterns of unfairness
underlying the training data. We then showed that causal Bayesian networks
provide us with a powerful tool to measure unfairness in a dataset and to design
fair models in complex unfairness scenarios.

Our discussion did not cover difficulties in making reasonable assumptions
on the structure of the causal Bayesian network underlying a dataset, nor on
the estimations of the associated conditional distributions or of other quantities
of interest. These are obstacles that need to be carefully considered to avoid
improper usage of this framework.

Acknowledgements. The authors would like to thank Ray Jiang, Christina Heinze-
Deml, Tom Stepleton, Tom Everitt, and Shira Mitchell for useful discussions.

Appendix A Bayesian Networks

A graph is a collection of nodes and links connecting pairs of nodes. The links may
be directed or undirected, giving rise to directed or undirected graphs respectively.
A path from node Xi to node Xj is a sequence of linked nodes starting at Xi and
ending at Xj . A directed path is a path whose links are directed and pointing
from preceding towards following nodes in the sequence.

6 Notice that 〈Yā(Da)〉p(Yā(Da)|A=a,Q=qn,D=dn) = 〈Y 〉p(Y |A=a,Q=qn,D=dn) − PSE�aāa.
Indeed 〈Y 〉p(Y |A=a,Q=qn,D=dn) = θy + θy

a + θy
q qn + θy

ddn and PSEāa = θy
a. This

equivalence does not hold in the non-linear setting.
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Fig. 8. Directed (a) acyclic and (b) cyclic
graph.

A directed acyclic graph (DAG) is
a directed graph with no directed
paths starting and ending at the
same node. For example, the directed
graph in Fig. 8(a) is acyclic. The
addition of a link from X4 to X1

makes the graph cyclic (Fig. 8(b)). A
node Xi with a directed link to Xj is
called parent of Xj . In this case, Xj

is called child of Xi.
A node is a collider on a path if it has (at least) two parents on that path.
Notice that a node can be a collider on a path and a non-collider on another
path. For example, in Fig. 8(a) X3 is a collider on the path X1 → X3 ← X2 and
a non-collider on the path X2 → X3 → X4.
A node Xi is an ancestor of a node Xj if there exists a directed path from Xi

to Xj . In this case, Xj is a descendant of Xi.
A Bayesian network is a DAG in which nodes represent random variables and
links express statistical relationships between the variables. Each node Xi in the
graph is associated with the conditional distribution p(Xi|pa(Xi)), where pa(Xi)
is the set of parents of Xi. The joint distribution of all nodes, p(X1, . . . , XI),
is given by the product of all conditional distributions, i.e. p(X1, . . . , XI) =∏I

i=1 p(Xi|pa(Xi)).
In a Bayesian network, the sets of variables X and Y are statistically inde-

pendent given Z (X ⊥⊥ Y |Z) if all paths from any element of X to any element
of Y are closed (or blocked). A path is closed if at least one of the following
conditions is satisfied:

(a) There is a non-collider on the path which belongs to the conditioning set Z.
(b) There is a collider on the path such that neither the collider nor any of its

descendants belong to the conditioning set Z.

Appendix B EFPRs/EFNRs and Calibration

Assume that EFPRs/EFNRs are satisfied, i.e. p(Ŷ = 1|A = 0, Y = 1) = p(Ŷ =
1|A = 1, Y = 1) ≡ pŶ1|Y1

and p(Ŷ = 1|A = 0, Y = 0) = p(Ŷ = 1|A = 1, Y =
0) ≡ pŶ1|Y0

. From

p(Y = 1|A = 0, Ŷ = 1) =
pŶ1|Y1

pY1|A0︷ ︸︸ ︷
p(Y = 1|A = 0)

pŶ1|Y1
pY1|A0 + pŶ1|Y0

(1 − pY1|A0)
,

p(Y = 1|A = 1, Ŷ = 1) =
pŶ1|Y1

pY1|A1

pŶ1|Y1
pY1|A1 + pŶ1|Y0

(1 − pY1|A1)
,

we see that, to also satisfy p(Y = 1|A = 0, Ŷ = 1) = p(Y = 1|A = 1, Ŷ = 1),
we need

(
������pŶ1|Y1

pY1|A1 + ���pŶ1|Y0
(1 − ���pY1|A1)

)
pY1|A0 =

(
������pŶ1|Y1

pY1|A0 + ���pŶ1|Y0
(1 −

���pY1|A0)
)
pY1|A1 , i.e. pY1|A0 = pY1|A1 .
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