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Abstract. Graph repair, restoring consistency of a graph, plays a promi-
nent role in several areas of computer science and beyond: For example,
in model-driven engineering, the abstract syntax of models is usually
encoded using graphs. Flexible edit operations temporarily create incon-
sistent graphs not representing a valid model, thus requiring graph repair.
Similarly, in graph databases—managing the storage and manipulation
of graph data—updates may cause that a given database does not satisfy
some integrity constraints, requiring also graph repair.

We present a logic-based incremental approach to graph repair, gen-
erating a sound and complete (upon termination) overview of least-
changing repairs. In our context, we formalize consistency by so-called
graph conditions being equivalent to first-order logic on graphs. We
present two kind of repair algorithms: State-based repair restores consis-
tency independent of the graph update history, whereas delta-based (or
incremental) repair takes this history explicitly into account. Technically,
our algorithms rely on an existing model generation algorithm for graph
conditions implemented in AUTOGRAPH. Moreover, the delta-based app-
roach uses the new concept of satisfaction (ST) trees for encoding if and
how a graph satisfies a graph condition. We then demonstrate how to
manipulate these STs incrementally with respect to a graph update.

1 Introduction

Graph repair, restoring consistency of a graph, plays a prominent role in several
areas of computer science and beyond. For example, in model-driven engineering,
models are typically represented using graphs and the use of flexible edit opera-
tions may temporarily create inconsistent graphs not representing a valid model,
thus requiring graph repair. This includes the situation where different views of
an artifact are represented by a different model, i.e., the artifact is described by a
multi-model, see, e.g. [6], and updates in some models may cause a global incon-
sistency in the multimodel. Similarly, in graph databases—managing the storage
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and manipulation of graph data—updates may cause that a given database does
not satisfy some integrity constraints [1], requiring also graph repair.

Numerous approaches on model inconsistency and repair (see [12] for an
excellent recent survey) operate in varying frameworks with diverse assumptions.
In our framework, we consider a typed directed graph (cf. [7]) to be inconsistent
if it does not satisfy a given finite set of constraints, which are expressed by
graph conditions [8], a formalism with the expressive power of first-order logic
on graphs. A graph repair is, then, a description of an update that, if applied
to the given graph, makes it consistent. Our algorithms do not just provide
one repair, but a set of them from which the user must select the right repair
to be applied. Moreover, we derive only least changing repairs, which do not
include other smaller viable repairs. Our approach uses techniques (and the tool
AUTOGRAPH) [17] designed for model generation of graph conditions.

We consider two scenarios: In the first one, the aim is to repair a given graph
(state-based repair). In the second one, a consistent graph is given together with
an update that may make it inconsistent. In this case, the aim is to repair the
graph in an incremental way (delta-based repair).

The main contributions of the paper are the following ones:

— A precise definition of what an update is, together with the definition of some
properties, like e.g. least changing, that a repair update may satisfy.

— Two kind of graph repair algorithms: state-based and incremental (for the
delta-based case). Moreover, we demonstrate for all algorithms soundness
(the repair result provided by the algorithms is consistent) and completeness
(upon termination, our algorithms will find all possible desired repairs)*.

Summarizing, most repair techniques do not provide guarantees for the func-

tional semantics of the repair and suffer from lack of information for the deploy-

ment of the techniques (see conclusion of the survey [12]). With our logic-based
graph repair approach we aim at alleviating this weakness by presenting formally
its functional semantics and describing the details of the underlying algorithms.

The paper is organized as follows: After introducing preliminaries in Sect. 2,
we proceed in Sect.3 with defining graph updates and repairs. In Sect. 4, we
present the state-based scenario. We continue with introducing satisfaction trees

in Sect. 5 that are needed for the delta-based scenario in Sect. 6. We close with a

comparison with related work in Sect.7 and conclusion with outlook in Sect. 8.

For proofs of theorems and example details we refer to our technical report [18].

2 Preliminaries on Graph Conditions

We recall graph conditions (GCs), defined here over typed directed graphs, used
for representing properties on such graphs. In our running example?, we employ

! Note that completeness implies totality (if the given set of constraints is satisfiable
by a finite graph, then the algorithms will find a repair for any inconsistent graph).

2 We refer to Sect. 1 with pointers to related work including diverse use cases in Soft-
ware Engineering for graph repair with more complex and motivating examples.
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By -3(a,~(3(a—E>b, true) A ~3(a=De, true)))

Fig. 1. The type graph TG (left) and the GC v (right) for our running example

the type graph T'G from Fig. 1 and we use nodes with names a; and b; to indicate
that they are of type :A and :B, respectively.

GCs state facts about the existence of graph patterns in a given graph, called
a host graph. For example, in the syntax used in our running example, the GC
J(a, true) means that the host graph must include a node of type :A. Also,
I(a—=b, true) means that the host graph must include a node of type :A,
another node of type :B, and an edge from the :A-node to the :B-node.

In general, in the syntax that we use in our running example, an atomic
GC is of the form 3(H, ¢) (or =3(H, ¢)) where H is a graph that must be (or
must not be) included in the host graph and where ¢ is a condition expressing
more restrictions on how this graph is found (or not found) in the host graph.
For instance, 3(a,-~3(a—5+b, true)) states that the host graph must include
an :A-node such that it has no outgoing edge e to a :B-node. Moreover, we use
the standard boolean operators to combine atomic GCs to form more complex
ones. For instance, 3(a,~(3(a—E+b, true) A =3(a<>e, true))) states that the
host graph must include an :A-node, such that it does not hold that there is
an outgoing edge e to a :B-node and node a has no loop. In addition, as an
abbreviation for readability, we may use the universal quantifier with the mean-
ing V(H, ¢) = =3(H, —¢). In this sense, the condition ¢ from Fig. 1, used in our
running example, states that every node of type : A must have an outgoing edge
to a node of type :B and that such an :A-node must have no loop.

Formally, the syntax of GCs [8], expressively equivalent to first-order logic on
graphs [5], is given subsequently. This logic encodes properties of graph exten-
sions, which must be explicitly mentioned as graph inclusions. For instance, the
GC 3(a,-3(a—E~b, true)) in simplified notation is formally given in the syn-
tax of GCs as I(iyg, ~I(a — (a—5+b), true)), where iy denotes the inclusion
() — H with H the graph consisting of node a. This is because it expresses a
property of the extension if. Moreover, therein the GC —3(a — (a—5+b), true)
is actually a property of the extension a — (a—%+b).

Definition 1 (Graph Conditions (GCs) [8]). The class of graph condi-
tions ®GC for the graph H is defined inductively:

- AS € DGC if S Caqy D4C.
— ¢ € BGC if ¢ € DGC.
- 3(a: H— H' ¢) € DG if ¢ € PGY.

In addition true, false, V.S, ¢1 = ¢2, and V(a,d) can be used as abbreviations,
with their obvious replacement.

A mono m : H — G satisfies a GC ¢ € ¢GC, written m =qc v, if one of
the following cases applies.
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- =AS and m Egc ¢ for each ¢ € S.

- 1 =-¢ and not m Egc ¢.
~¢Y=3(a:H—H',¢) and3q: H — G.qoa=mAq FEgc ¢.

A graph G satisfies a GC ¢ € @gc, written G Egc ¢ or G € [Y], if ic Ecc 9.

3 Graph Updates and Repairs

In this section, we define graph updates to formalize arbitrary modifications of
graphs, graph repairs as the desired graph updates resulting in repaired graphs,
as well as further desireable properties of graph updates.

In particular, it is well known that a modification or update of G; resulting
in a graph G2 can be represented by two inclusions or, in general two monos,
which we denote by (I : I — G1,r: I — G3), where I represents the part of Gy
that is preserved by this update. Intuitively, [ : I — G describes the deletion
of elements from G; (i.e., all elements in G \ I(I) are deleted) and r : I — G2
describes the addition of elements to I to obtain G (i.e., all elements in G\ (1)
are added).

Definition 2 (Graph Update). A (graph) update u is a pair (1 : I — Gy,r:
I — G3) of monos. The class of all updates is denoted by U.

Graph updates such as (ig : § — G,ig : § — G) where G is not the empty
graph delete all the elements in G that are added by r afterwards. To rule out
such updates, we define an update (I : I — Gy,r : I — G3) to be canonical
when the graph I is as large as possible, i.e. intuitively I = G; N G2. Formally:

Definition 3 (Canonical Graph Update). If (I : [ — Gy,r: I — G3) €U
and every (I' : I' — Gq1,r' : I' — Gg) € U and mono i : I — I' withl' oi =1
and v’ o i = r satisfies that i is an isomorphism then (I,r) is canonical, written
(I,7) € Uean-

Gy~ l ] — - Go

An update u; is a sub-update (see [14]) of u whenever the modifications defined
by u; are fully contained in the modifications defined by u. Intuitively, this is the
case when u; can be composed with another update uz such that (a) the resulting
update has the same effect as u and (b) us does not delete any element that was
added before by u;. This is stated, informally speaking, by requiring that I is
the intersection (pullback) of I; and I> and that G is its union (pushout).

Definition 4 (Sub-update [14]). Ifu = (I : I — Gy,r : I — G2) € U,
ulz(ll 211"—>G1,7"1 b ‘—>G3) Eu, u2:(l2:12<_>G3,7“2212<—>G2) EZ/[,
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(ry : T — Il . I — Io) is the pullback of (r1,l2), and (r1,12) is the pushout of
(rf,1%) then uy is a sub-update of u, written u; <*2 u or simply u; < u.

Iy 1 la o

G, > ] © Gy = > Iy © > (3
l I r

Moreover, we write w1 <*2 u or uy < u when uy <2 u and not u < uy.

We now define graph repairs as graph updates where the result graph satisfies
the given consistency constraint ).

Definition 5 (Graph Repair). If u = (1 : I — Gy,7r: [ — G2) € U, ¢ €
@gc, and Go Ege ¥ then u is a graph repair or simply repair of Gy with respect
to ¢, written u € U(G1,v).

To define a finite set of desirable repairs, we introduce the notion of least chang-
ing repairs that are repairs for which no sub-updates exist that are also repairs.

Definition 6 (Least Changing Graph Repair). If ¢ € @%C, u=(0:1<
G1,r: I — G3) €e U(G1,%), and there is no v’ € U(G1,v) such that v’ < u then
u is a least changing graph repair of G1 with respect to ¥, written u € Uic(G1,v).

Note that every least changing repair is canonical according to this definition.
Moreover, the notion of least changing repairs is unrelated to other notions of
repairs such as the set of all repairs that require a smallest amount of atomic
modifications of the graph at hand to result in a graph satisfying the consistency
constraint. For instance, a repair u; adding two nodes of type :A may be a least
changing repair even if there is a repair us adding only one node of type :B.

A graph repair algorithm is stable [12], if the repair procedure returns the
identity update (idg : G < G,idg : G — G) when graph G is already consistent.
Obviously, a graph repair algorithm that only returns least changing repairs is
stable, since the identity update is a sub-update of any other repair.

4 State-Based Repair

In this section, we introduce two state-based graph repair algorithms (see [1§]
for additional technical detail), which compute a set of graph repairs restoring
consistency for a given graph.

Definition 7 (State-Based Graph Repair Algorithm). A state-based
graph repair algorithm takes a graph G and a GC ¢ € @gc as inputs and returns
a set of graph repairs in U(G, ).

Note that the tool AUTOGRAPH [17] can be used to verify this condition as
follows: It determines the operation A that constructs a finite set of all minimal
graphs satisfying a given GC 4. Formally, A(y) = N{S C [¢] | VG’ € [¢¥]. 3G €
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S.3m : G — G'.true}. While AUTOGRAPH may not terminate when comput-
ing this operation due to the inherent expressiveness of GCs, it is known that
AUTOGRAPH terminates whenever ¢ is not satisfied by any graph.

The state-based algorithm Repairg, 1 uses A to obtain repairs. Repairgp 1
computes the set A(¢ A I(ig, true)) that contains all minimal graphs that (a)
satisfy ¢ and (b) include a copy of G. All these extensions of G correspond
to a graph repair. For our running example, we do not obtain any repair for
graph G/, from Fig.2 and GC 9 from Fig. 1 because the loop on node ay would
invalidate any graph including G/,. We state that Repairg, 1 indeed computes
the non-deleting least changing graph repairs.

Theorem 1 (Functional Semantics of Repairg, 1). Repairg, 1 is sound, i.e.,
Repairgy 1(G,¥) C U(G, ), and complete (upon termination) with respect to
non-deleting repairs in Uy.(G, ).

The second state-based algorithm Repairgy, o computes all least changing graph
repairs. In this algorithm we use the approach of Repairg, 1 but compute A(¢) A
I(ig., true)) whenever an inclusion [ : G, — G describes how G can be restricted
to one of its subgraphs G.. Every graph G’ obtained from the application of A
for one of these graphs G then results in one graph repair returned by Repairgy, 2
except for those that are not least changing.

To this extent we introduce the notion of a restriction tree (see example in
Fig.2) having all subgraphs G. of a given graph G as nodes as long as they
include the graph G, which is the empty graph in the state-based algorithm
Repairgy,2 but not in the algorithm Repairqp in Sect.6, and where edges are
given in this tree by inclusions that add precisely one node or edge.

Definition 8 (Restriction Tree RT). If G and Gy are graphs and S = {I :
G.— Gp | Gin C G, C G, C G,1 is an inclusion}, S’ is the least subset of S
such that the closure of S" under o equals S then a restriction tree RT(G, Gmin)
is a least subset of S’ such that for all two inclusions Iy : G — G1 € S’ and
ly: G — Gy €5 one of them is in RT(G, Guin)-

Considering our running example, the restriction tree in Fig.2 is traversed
entirely except for the four graphs without a border, which are not traversed
as they have the supergraph marked 9 satisfying 1 and therefore traversing
those would generate repairs that are not least changing. The resulting graph
repairs for the condition %) are given by the graphs marked by 3-6.

Our second state-based graph repair algorithm is indeed sound and complete
whenever the calls to AUTOGRAPH using A terminate.

Theorem 2 (Functional Semantics of Repairg, 2). Repairg, 2 is sound, i.e.,
Repairgy 2(G,¥) C Ui (G, ), and complete, i.e., Uic(G, 1) C Repairsy 2(G, 1),
upon termination.

5 Satisfaction Trees

The state-based algorithms introduced in the previous section are inefficient
when used in a scenario where a graph needs repair after a sequence of updates
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Fig. 2. The restriction tree RT (G, ?) (enclosed by the polygon) and four graph repairs
(marked 3-6) generated using Repairgp,2

that all need repair. We thus present in Sect. 6 an incremental algorithm reducing
the computational cost for a repair when an update is provided. This algorithm
uses an additional data structure, called satisfaction tree or ST, which stores
information on if and how a graph G satisfies a GC ¢ (according to Definition 1).
In this section, given ¥ and G, we define how such an ST + is constructed and
how it is updated once the graph G is updated.

If 4 is a conjunction of conditions, its associated ST = is a conjunction of STs
and if ¢ is a negation of a conditions, its associated 7 is a negation of an ST. In
the case when ¢ is a 3(a : H — H’, ¢), recall that a match m : H — G satisfies
¢ if there exists a ¢ : H' < G such that m = goa and ¢ Ego ¢. For this case, we
keep in ST each ¢ satisfying these two conditions and also each ¢ that satisfies
the first condition, but not the second. More precisely, for the case of existential
quantification, the corresponding ST is of the form 3(a : H — H', ¢, my, my),
where m; and m; are partial mappings (we use sup(f) to denoted the elements
actually mapped by a partial map f) that map matches ¢ : H — G that satisfy
m = goa (for a previously known m : H — G) to an ST for the subcondition
¢. The difference between both partial functions is that m; maps matches ¢ to
STs for which ¢ =gc ¢ while m; maps matches ¢ to STs for which ¢ g ¢.
Consider Fig.3b for an example of an ST .

The following definition describes the syntax of STs. The STs are defined
over matches into a graph G to allow for the basic well-formedness condition
that every mapped match ¢ satisfies g o a = m.

Definition 9 (Satisfaction Trees (STs)). The class of all Satisfaction Trees
F7SnT for a mono m : H — G contains v if one of the following cases applies.

- y=AS and S Cg, I'ST.

~ v =-x and x € ST,

— v =3a,p,my,my), a: H— H', ¢ € DEE, my,my Can {(¢: H — G,7) |
qgoa=m,y € FST}, and my,my are partial maps.
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1 r
@il €2 u @il u €1
a1 — b1 a2 > a1 — b1 ax Des

ar — b1 +— a2

Gu I, G,

(a) A graph update u = 1y : Iy = Gu,ry : Iy = GY,)

Yu = —3(a, (I a—E>b, true)A-3(a<e, true)), B, { az — Yu,1, a1 — Yu2})

Y1 = (I a—E>b, true, { as -2 by — true},0) A -3 (a<e, true, 0, 0))

Yz = (3(a—E>b, true, { a1 L by — true},0) A =I(a<e, true, 0, 0))

(b) The ST 7y for Gy (see Fig. 3a) and v (see Fig. 1).

%Il =-3(a,~(I(a—E>b, true)A-3(a=e, true)), { az 'ylll,l}7 {a1 — ’Yi,z})

o1 = ~(3(a—E>b, true,0,0) A =3(a<e, true, { as €3 > true}, D))

7},72 = —=(3(a—+b, true, { a1 ~-Z+ by — true}, 0) A ~I(a<e, true, 0, 1))

(c) The ST ~% for I, (see Fig. 3a) and 1 (see Fig. 1) that is obtained as the backward
propagation ppgB(vyu, lu) from 4 (see Fig. 3b) and 1, (see Fig. 3a)

Yo = —3(a,~(I(a—E>b, true) A~3(a<e, true)), { az (RJQ 7(1,1}7 {a1 — 'y(l’z})

Yo = (3(a—E>b, true, Dr2), 0) A =3 (aDe, true, { az €3 Ay true},0))

Yoz = ~(3(a—E>b, true, {alﬂﬂ)l — true}, 0) A =3(a<De, true, 0, 0))

(d) The ST «; for G} (see Fig. 3a) and v (see Fig. 1) that is obtained as the
forward propagation ppgF(v4,ru) from ~% (see Fig. 3b) and r, (see Fig. 3a). Also
e is the result of ppgU(yu,u) that applies backward and forward propagation. The
viable points for the delta-based repair discussed in Sec. 6 are indicated by (R1)—(R3).

Fig. 3. A graph update and an ST with its propagation over the graph update where
GCs are underlined in ST's for readability

The following satisfaction predicate Egc for STs defines when an ST v for
a mono m states that the contained GC 1 is satisfied by the morphism m.

Definition 10 (ST Satisfaction). An ST v € I'ST,_ . is satisfied, written
Est v, if one of the following cases applies.

- v=AS and st X (for each x € S)
-y =X and st X-
v =3(a,d,my, my) and my # 0.

The following recursive operation constructs an ST  for a graph G and a con-
dition % so that v represents how G satisfies (or not satisfies) 1. Note that the
match m in the definition of STs above and the construction of an ST below
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corresponds to the match m : H «— G from Definition 1 that we operationalize
in the following definition. For conjunction and negation, we construct the ST's
from the STs for the subconditions. For the case of existential quantification,
we consider all morphisms ¢q : H' — G for which the triangle ¢ o a = m com-
mutes and construct the STs for the subcondition ¢ under this extended match
g. The resulting ST's are inserted into m; and m; according to whether they are
satisfied.

Definition 11 (Construct ST (cst)). Given m : H — G and ¢ € ®GC, we
define cst(v,m) =y, with v € T5T as follows.

— Ifp = AS then v = A{cst(od,m) | ¢ € S}.

— If Y = —¢ then v = —cst(g, m).

- IfYv=3(a:H— H p), maqs={(q: H — G,x) | goa =m,cst(o,q) = x},
my = {(q7X) € Mgl H:ST X}7 my = mall\mty then Y= El(av(bvmt»mf)'

If G is a graph and ¢ € fﬁg’c, then cst(v, G) = cst(v),ig).

This construction of STs then ensures that =g 7 if and only if G Egc ¢. Note
that =g ~u holds for the ST ~, from Fig.3b, the GC % from Fig. 1, and the

graph Gy from Fig. 3.

Theorem 3 (Sound Construction of STs). Given m : H — G, ¢ € #GC,
and cst(y,m) = v then =gt v iff m Eac ¥.

Subsequently, we define a propagation operation ppgU of an ST ~ for a graph
update u = (I : I — G,r : I — G’) to obtain an ST 4 such that 7' =
cst(¢, G') whenever v = cst(¢, G). This overall propagation is performed by a
backward propagation of « for [ using the operation ppgB followed by a forward
propagation of the resulting ST for r using the operation ppgF.

For backward propagation, we describe how the deletion of elements in G by
l: I — @G affect its associated ST ~. To this end, we preserve those matches
q : H — G for which no matched elements are deleted. This is formalized by
requiring a mono ¢’ : H < I such that [ o ¢’ = q. The matches ¢ with deleted
matched elements can not be preserved and are therefore removed.

Definition 12 (Propagate Match (ppgMatch)). If ¢: H — G and 1: I — G
are monos, then ppgMatch(q,l) is the unique ¢' : H — I such thatloq = q if
it exists and 1 otherwise.

The following recursive backward propagation defines how deletions affect the
maps m; and my of the given ST. That is, when v = 3(a, ¢, my, my), we (a)
entirely remove a mapping (m,x) from m; or my if ppgMatch(q,l) = L and
(b) construct for a mapping (m, x) from m; or m; the pair (ppgMatch(q, 1), x")
where x’ is obtained from recursively applying the backward propagation on
x when ppgMatch(q,l) # L. The updated pair (ppgMatch(q,!),x’) must be
rechecked to decide to which partial map this pair must be added to ensure that
the resulting ST corresponds to the ST that would be constructed for G directly.
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Definition 13 (Backward Propagation (ppgB)). If m : H — G, v € TST,
l:1— G, ppgMatch(m,l) =m': H — I, and v € T5Y then ppgB(v,1) =+ if
one of the following cases applies.

- v =AS and v = N{ppgB(x,!) | x € S}.

—vy==-x and vy = ﬁppr(X,l)-

=7 =300, memy), man = {(dX') | (%) € me Uy A ppeMateh(q, 1) =
¢ # LAppeB(x. 1) = X'}, my = {(a.X) € mau [Fst X}, my = ma \ m,
and ' = 3(a, ¢, mivm/f)‘

Note that ppgMatch(ig,l) = i and, hence, the operation ppgB is applicable
for all ST v € Fisg, which is sufficient as we define consistency constraints using
GCs over the empty graph as well.

In the case of forward propagation where additions are given by r : I — G’
we can preserve all matches using an adaptation. But the addition of further
elements may result in additional matches as well that may satisfy the conditions
to be included in the corresponding m; and my from the ST at hand.

Definition 14 (Forward Propagation (ppgF)). Ify € 5T, r: [ — G,
FST

and v € T2, then ppgF(v,r) =~ if one of the following cases applies.

-y =AS and " = MppgF(x,r) [ x € 5}

-7 =X and v = ~ppgF(x,7).

- =3a,,me,;my), mau ={(roq,”') | (¢, x) € m¢Umys AppgF(x,r) =~} U
{(¢,7) | goa=rom, (ﬂq’ € sup(my) Usup(my). roq = q),cst(d, q) =74},
m; = {(¢,x) € mau l=st X}, M = mau \ mj, and ' = 3(a, ¢, mj, m’).

We now define the composition of both propagations to obtain the operation
ppgU that updates an ST for an entire graph update.

Definition 15 (Update Propagation (ppgU)). If m: H — G, v € TSI [ :

I — G, ppgMatch(m,l) =m’: H — G', and r : I — G’ then ppgU(~, (I,r)) =
ppeF (ppgB(y,1),7) € Th).

The overall propagation given by this operation is incremental, in the sense that
the operation cst is only used in the forward propagation on parts of the graph
G’, where the addition of graph elements by r from the graph update results in
additional matches ¢ according to the satisfaction relation for GCs. Finally, we
state that ppgU incrementally computes the ST obtained using cst. The proof of
this theorem relies on the fact that this property also holds for ppgB and ppgF.

Theorem 4 (ppgU is Compatible with cst). If G is a graph, ¢ € Q)gc,
l1:I1— G, andr:I— G then ppgU(cst(v, G), (I,1)) = cst(, G').

6 Delta-Based Repair

The local states of delta-based graph repair algorithms may contain, besides the
current graph as in state-based graph repair algorithms, an additional value. In
our delta-based graph repair algorithm this will be an ST.
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ar — by — a1 —b < a — b

Gy
re ® r’s
ar—> by a2 D +— a1 — b1 a2 D > a1 —>b1 az +— a1 — b1 az — a1 — b by +—a>
~ ® %

ar— b1 a2 D > a1 —> by by +~—ax D <+ a1 — b by +— a2

Fig. 4. An example for delta-based graph repair using Repairqgn

Definition 16 (Delta-Based Graph Repair Algorithm). Delta-based
graph repair algorithms take a graph G, a GC ¢ € @VC);C, and a value q as inputs
and return a set of pairs (u,q’) where u € U(G, ) is a graph repair and ¢’ is a
value.

Our delta-based graph repair algorithm Repairqp, will be based on the single step
operation Repairgy1. Given a graph G, a GC ¢ € @g’c, the ST ~ that equals
cst(¢, G), and a graph update u = (I : I — G,r : I — G'), the single step
operation Repairqy, first updates v using ppgU for the graph update u and then
determines using Repairqp1, if necessary, graph repairs for the resulting ST +/
according to the repair rules described in the following. The algorithm Repairgy,
then uses Repairgp; in a breadth first manner to obtain multi-step repairs.

For our example from Fig.3a, such a multi-step repair of G/, is given in
Fig. 4 where the graph updates are obtained resulting in the graphs marked 1-3,
of which only the graph marked 1 satisfies 1. The algorithm Repairqg, then com-
putes further graph updates resulting in the graph marked 4 also satisfying .

The operation Repairgp; for deriving single-step repairs depends on two local
modifications. Firstly, a GC 3(a : H — H',¢$) occurring as a subcondition in
the consistency constraint ¥ may be violated because, for the match m : H —
G that locates a copy of H in the graph G under repair, no suitable match
q : H — G can be found for which g oa = m and ¢ Fgc ¢ are satisfied.
The operation Repair,qq resolves this violation by (a) using AUTOGRAPH to
construct a suitable graph H, and by (b) integrating this graph H, into G
resulting in G’ such that a suitable match ¢ : H' <— G’ can be found.

Definition 17 (Local Addition Operation Repairaqq). Ifa: H — H', ¢ €
oG¢, m: H— G, Hy € A3(ig,3(a,))), k: H — H,, and (m : Hy — G',r :
G — @) is the pushout of (m, k) then r € Repairaqq(a, ¢, m).

k

H/‘a—)H(—'Hs

ml 1 m

G(—T'G,

In our running example, Repair,qq determines a graph repair resulting in the
graph marked 2 in Fig. 4. For this repair, we considered the sub-ST marked by
(R2) in Fig. 3d, where the morphism m matches the node a from 9 to the node
as in GY;, but where no extension of m can also match a node :B and an edge
between these two nodes. The repair performed then uses a—»b for the graph
H,, resulting in the addition of the node by and the edge from as to bs.
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Secondly, a GC 3(a : H — H', $) occurring as a subcondition in the consis-
tency constraint ¢ may be satisfied even though it should not when occurring
underneath some negation. Such a violation is determined, again for a given
match m : H — G, by some match ¢ : H <— G satisfying g o a = m and
q Ecc ¢. The local repair operation Repairge repairs such an undesired satis-
faction by selecting a graph H, such that H C H,, C H' using a restriction tree
(see Definition 8) and deleting G 4¢; = q(H') \ ¢(H)) from G. Technically, we can
not use the pushout complement of a’ and ¢ as it does not exists when edges
from G\ Gge; are attached to nodes in G 4. Hence, we determine the pushout
complement of a” and k', which must be constructed for this purpose suitably.

Definition 18 (Local Deletion Operation Repairqq ). Ifa: H — H', q:
H — G,d : H, — H € RT(H',H), mi : H — Xy where X5 is obtained
from q(H') by adding all edges (with their nodes) that are connected to nodes in
q(H')\ q(d/(Hp)), k' : Xo — G is obtained such that k' omy = q, ma : H, — X3
where X is obtained from Hy by adding all nodes in Xs \ q(H'), o : X1 — X>
is obtained such that a’ oms =myod, and (1: G' — G,m’ : X1 — G') is the
pushout complement of (a”’, k') then | € Repairga(a, q).

(I,l

S o H,

\’inl a” '}mz
q Xy — X,
lk' I 1m’

G+—¢G

In our example, Repairge determines a repair resulting in the graph marked 1
in Fig. 4. For this repair, we considered the sub-ST marked by (R1) in Fig.3d
where the mono m matches the node a from 4 to the node ay in GJ,. The
repair performed then uses H,, = () for the removal of the node ay along with its
adjacent loop (for which the technical handling in Repairqe is required).

The recursive operation Repairqp; below derives updates from an ST ~ that
corresponds to the current graph G (for our running example, these are 7/,
and G/, from Fig.3d). In the algorithm Repairqg,, we apply Repairgy; for the
initial match ig, v, and true where this boolean indicates that we want ~y to be
satisfied. This boolean is changed in Rule 3 whenever the recursion is applied
to an ST —/ because we expect that 7’ is not to be satisfied iff we expect that
-+ is to be satisfied. For conjunction, we either attempt to repair a sub-ST
for b = true in Rule 1 or we attempt to break one sub-ST for b = false. For
existential quantification and b = true, we use Repair,qq as discussed before in
Rule 4 or we attempt to repair one existing match contained in my in Rule 5.
Also, for existential quantification and b = false, we use Repairqe; as discussed
before in Rule 6 or we attempt to break one existing match contained in m; in
Rule 7.

Definition 19 (Single-Step Delta-Based Repair Algorithm Repairqp;).
Ifm: H— G, veTIST andbe Bthen(l:1— Gr:I1—G)e

m 7’

Repairqp1(m,,b) if one of the following cases applies.
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- Rule 1 (repair one subcondition of a conjunction):

b=true,y = NS, x €S, st X, (I,1) € Repairgp1 (m, x, b).
- Rule 2 (break one subcondition of a conjunction):

b= false,y = NS, x €S, Est X, (I,r) € Repairgp1 (m, x, b).
— Rule 3 (repair/break the subcondition of a negation):

v ==x, (I,r) € Repairqpi (m, x, b).
— Rule 4 (repair an existential quantification by local extension):

b= true,y = I(a, ¢, my, my), my =0, r € Repairaqqa(a, p,m), | =idg.
— Rule 5 (repair an existential quantification recursively):

b= true,y = 3I(a, ¢, my,mys), my =0, my(k) = x, (I,7) € Repairapi (k, x, b).
— Rule 6 (break an existential quantification by local removal):

b = false,y = A(a, d,m,my), my(k) # L, | € Repairge(a, k), r =idgr.
— Rule 7 (break an existential quantification recursively):

b= false,’y = El(a, ¢7 my, mf)! mt(k) =X (lv 7“) € Repairdbl(ka X b)

We define the recursive algorithm Repairg;, to apply Repairgp; to obtain repairs
as iterated applications of single-step repairs computed by Repairgp; .

Definition 20 (Delta-Based Repair Algorithm Repairgy, ). If u = (I: I —
Gr:I1—G)el,ye FiSGT, and v = ppgU(y,u) then Repairgy(u,y) = S if
one of the following cases applies.

- st and S = {((idg,ide),7')}-

- sty 8 ={(v,ppgU(y',v)) | v’ € Repairap: (ic, 7', true)}, and
S=A{W'7) €5 s VIO o', y") | (W/,7') € 5", st v, (u”,7") €
Repairqp (u',7),u” ou' # 1}.2

This computation does not terminate when repairs trigger each other ad
infinitum. However, a breadth-first-computation of Repairqy, gradually computes
a set of sound repairs. Obviously, GCs that trigger such nonterminating compu-
tations should be avoided but machinery for detecting such GCs is called for.

Note that the algorithm Repairqp, computes fewer graph repairs compared to
‘Repairgp, 2 because repairs are applied locally in the scope defined by the GC .
For example, no repair would be constructed resulting in the graph marked 4
in Fig.2. In general, explicitly also using bigger contexts in 1 results in the
additional computation of less—local graph repairs. For example, the condition
v may be rephrased into ¥’ = ¥ A—=3(a b, -I(a—E=b, true)) to also obtain the
graph repair marked 4 in Fig.2. We now define the updates, which we expect
to be computed by Repairgp1, as those that repair a single violation of the GC
1 by defining a local update to be embeddable into the resulting update via a
double pushout diagram as in the DPO approach to graph transformation [16].

Definition 21 (Locally Least Changing Graph Update). If G is a graph,
¢ S QS%C, Gl %GC 7% (l ] — Gl,’/’ I — GQ) S ulc(Glaw)7 G2 ':GC 7% Xl 18

a minimal subgraph of G1 with a violation of 1 that is also a violation of v in

3 If u; and us are updates then ui ouz = w if uy <2 w or u = L otherwise (see
Definition 4).
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G, and the diagram below exists and the right part of it is a DPO diagram then
(I,7) is a locally least changing graph update.

X1 < > Xy

R

G1<l—’[(—’r’G2

TRepairqp; indeed generates such locally least changing graph updates because
the graph X; in this definition corresponds to the H; and the Hs from an
ST J(a : Hi — Ha,¢,my,my) that is subject to Repairaqaq and Repairge,
respectively. For example, for Repairaqq, the graph H; in the ST determines a
subgraph in G that is a violation of the overall consistency condition given by
a GC v as its match can not be extended to the graph Hs.

We now define the locally least changing graph repairs (which are to be
computed by Repairg, such as for example the graphs marked 1 and 4 in Fig. 4)
as the composition of a sequence of locally least changing updates where precisely
the last graph update results in a graph satisfying the GC 1.

Definition 22 (Locally Least Changing Graph Repair). If G; is a graph,
YedFC m=(li: 1 = Grri: = Ga)...(ln: Iy = Guyry t Iy = Grya) is
a sequence of locally least changing graph updates, Gy € [¢] implies n = 0 and
Iy =r =idg,, G; ¢ [¥] (for each 2 <i<n), Goi1 € [¥], (I,7) is the iterated
composition of the updates in w, and (I,r) € U(G1,v) is a least changing graph
repair then (I,r) is a locally least changing graph repair.

We now state that our delta-based graph repair algorithm Repairg;, returns all
desired locally least changing graph repairs upon termination.

Theorem 5 (Functional Semantics of Repairg, ). Repairqy is sound (i.e.,
it generates only locally least changing graph repairs) and complete (upon termi-
nation) with respect to locally least changing graph repairs.

The state-based algorithms Repairg, 1 and Repairgy, o are inappropriate in envi-
ronments where numerous updates that may invalidate consistency are applied
to a large graph because the procedure of AUTOGRAPH has exponential cost. The
incremental delta-based algorithm Repairq;, is a viable alternative when addi-
tional memory requirements for storing the ST are acceptable. The AUTOGRAPH
applications for this algorithm have negligible costs because they may be per-
formed a priori and must only be performed for subconditions of the consistency
constraint, which can be assumed to feature reasonably small graphs only.

Finally, a classification of locally least changing repairs is useful for user-
based repair selection. Delta preserving repairs defined below represent such a
basic class, containing only those repairs that preserve the update resulting in a
graph not satisfying GC 1, i.e., it may be desirable to avoid repairs that revert
additions or deletions of this update. In our example, the repair related to the
graph marked 4 in Fig.4 is not delta preserving w.r.t. u from Fig. 3a.

Definition 23 (Delta Preserving Graph Repair). If ¢ € (pgc} ug = (lz :
Iy — Ga,ro : Iy — G3) € U(Go, ) is a graph repair, uy = (Iy : Iy — Gy, :
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I, — G3) is a graph update, and there exists a graph update u such that uy <"2 u
then us is a delta preserving graph repair with respect to u;.

7 Related Work

According to the recent survey on model repair [12], and the corresponding
exhaustive classification of primary studies selected in the literature review,
published online [11], we can see that the amount and wide variety of exist-
ing approaches makes a detailed comparison with all of them infeasible.

We consider our approach to be innovative, not only because of the proposed
solutions, but because it addresses the issues of completeness and least changing
for incremental graph repair in a precise and formal way. From the survey [11,12]
we can see that only two other approaches [10,19] address completeness and
least changing, relying also on constraint-solving technology. The main differ-
ence with our approach is that they are not incremental. In particular, the work
of Schoenboeck et al. [19] proposes a logic programming approach allowing the
exploration of model repair solutions ranked according to some quality crite-
ria, re-establishing conformance of a model with its metamodel. Soundness and
completeness of these repair actions is not formally proven. Moreover, the least
changing bidirectional model transformation approach of Macedo et al. [10] has
only a bounded search for repairs, relying on a bounded constraint solver.

Some recent work on rule-based graph repair [9] (not covered by the survey)
addresses the least-changing principle by developing so-called maximally preserv-
ing (items are preserved whenever possible) repair programs. This state-based
approach considers a subset of consistency constraints (up to nesting depth 2)
handled by our approach, and is not complete, since it produces repairs including
only a minimal amount of deletions. Some other recent rule-based graph repair
approach [13,20] (also not covered by the survey) proposes so-called change
preserving repairs (similar to what we define as delta-preserving). The main dif-
ference with our work is that we do not require the user to specify consistency-
preserving operations from which repairs are generated, since we derive repairs
using constraint solving techniques directly from the consistency constraints.

Finally, there is a variety of work on incremental evaluation of graph queries
(see e.g. [2,4]), developed with the aim of efficiently re-evaluating a graph query
after an update has been performed. Although not employed with the specific aim
of complete and least changing graph repair, this work is related to our newly
introduced concept of satisfaction trees, also using specific data structures to
record with some detail the set of answers to a given query (as described for
graph conditions, for example, also in [3]). It is part of ongoing work to evaluate
how STs can be employed similarly in this field of incremental query evaluation.

8 Conclusion and Future Work

We presented a logic-based incremental approach to graph repair. It is the first
approach to graph repair returning a sound and complete overview of least
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changing repairs with respect to graph conditions equivalent to first-order logic
on graphs. Technically, it relies on an existing model generation procedure for
graph conditions together with the newly introduced concept of satisfaction
trees, encoding if and how a graph satisfies a graph condition.

As future work, we aim at supporting partial consistency and gradually
improving it. We are confident that we can extend our work to support attributes,
since our underlying model generation procedure supports it. Ongoing work is
the support of more expressive consistency constraints, allowing path-related
properties. Moreover, we are in the process of implementing the algorithms pre-
sented here and evaluating them on a variety of case studies. The evaluation also
pertains to the overall efficiency (for which we employ techniques for localized
pattern matching) and includes a comparison with other approaches for graph
repair. Finally, we aim at presenting new and refined properties distinguishing
between all possible repairs supporting the implementation of interactive repair
selection procedures.
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