®

Check for
updates

Pyro: Generating Domain-Specific
Collaborative Online Modeling
Environments

Philip Zweihoff®™ | Stefan Naujokat, and Bernhard Steffen

Chair for Programming Systems, TU Dortmund University, Dortmund, Germany
{philip.zweihoff,stefan.naujokat,bernhard.steffen}@tu-dortmund.de

Abstract. We present Pyro, a framework for enabling domain-specific
modeling via the internet. Provided with an adequate metamodel spec-
ification, Pyro turns your browser into a collaborative, domain-specific,
graphical development environment with features reminiscent of desktop
IDEs for textual programming languages. The required metamodeling
is supported in a high-level, simplicity-driven fashion, and the entire
ready-to-run browser-based domain-specific development environment is
generated fully automatically. We will illustrate the steps of this devel-
opment along the realization of a graphical IDE for the Architecture
Analysis and Design Language (AADL).

1 Introduction

Domain-specific languages (DSLs) aim at closing the gap between domain knowl-
edge and software development by explicitly supporting the required domain
concepts. Graphical domain-specific languages have turned out to be particu-
larly suitable for domain experts without any programming background. The
bottleneck in practice is the enormous effort to develop the required domain-
specific graphical modeling tools. The CINcO SCCE Meta Tooling Suite [26] has
been designed to overcome this bottleneck by providing a holistic, simplicity-
driven [22] approach for the creation of such domain-specific graphical modeling
tools. A key feature of CINCO is that it generates the entire graphical modeling
environment (referred to as ‘CINCO Products’ in the remainder of the paper)
from high-level specifications of the defined model structures and functionali-
ties. The (translational) semantics of the specified modeling language is defined
in terms of code generation, model transformation, evaluation, and/or interpre-
tation [20]. CINCO Products are Eclipse-based, graphical modeling tools that are
realized via a number of Eclipse plug-ins [13]. Thus, setting up a CINCO Prod-
uct involves some technical aspects that are beyond the competence of typical
domain experts, and it becomes even more tedious when one wants to enable a
cooperative development.

In this paper, we present Pyro, a tool that enables one to generate CINCO
Products for collaborative modeling that run in a web browser. Conceptually,
Pyro borrows from modern online editors for collaborative work, like Google

© The Author(s) 2019
R. Hiahnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 101-115, 2019.
https://doi.org/10.1007/978-3-030-16722-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_6

102 P. Zweihoff et al.

CINCO Product

Specification Models

Eclipse based CINCO Product Pyro Modeling Environment

Generated Parts Generated Parts

Graphiti

Pyro runtime

CINCO Generator Pyro Generator

Eclipse RCP

Fig. 1. Cinco generation architecture.

Docs, Microsoft Office 365, or solutions like ShareLaTeX/Overleaf that even
free one from maintaining a corresponding build and runtime environment.

Key to the realization of Pyro is that CINCO follows a fully generative app-
roach on the meta level, which allows one to modularly ‘retarget’ the CiNCO
Product Generation for the web (cf. Fig.1). Technically, Pyro web modeling
environments utilize Dy WA [27] (Dynamic Web Application) for data modeling,
empowering prototype-driven application development.

In order to achieve this retargeting and to enable collaborative work, Pyro
needs to, in particular, compensate for all the required functionality provided
by the Eclipse platform, like the EMF framework with GMF or Graphiti for
graphical editors. Altogether, this poses the following three key challenges:

— Developing an adequate web solution for the metamodel-based model han-
dling (API, persistence, event system, etc.) that in the Eclipse world is pro-
vided by the EMF framework [33] (see Architecture Backend, Sect.3.1).

— Developing a frontend on top of these model structures that feels like a modern
integrated development environment with a graphical editor for the models,
which in the Eclipse world is provided by the Rich Client Platform (RCP) [24]
and the Graphiti editor framework [2] (see Architecture Frontend, Sect.3.2).

— Enabling real-time live collaborative working on models, which is not foreseen
in an offline client like Eclipse (see Collaborative Editing, Sect. 4).

In the course of this tool paper, Pyro is illustrated along the development of a
graphical modeling environment for the Architecture Analysis and Design Lan-
guage (AADL), an SAE standard for modeling the architecture of embedded
real-time systems [29]. CINCO was used to develop a graphical AADL modeling
tool supporting a subset of AADL’s features tailored to be used in teaching [28],

Pyro: Generating Domain-Specific Collaborative Online Modeling 103

é) Pyro Project~ File~

ME:W— 4 thermostat.aadl X

Project Explorer Palette

A My Project i = Components

3 thermostat.aadl /' &
Process_
controlPre Device
m n

Minature View

]
| tempControl |
fancmd B>

EPorts

EventPort

DataPort

EventDataPort

Model Validation

v O Device

O Classifier of
Devicelmpl must not
be empty.

O ispatch protocol
of fan cannot be
NONE

dispatchProtocol

Fig. 2. Pyro web-based modeling environment for the AADL language.

where it replaces the graphical editor of the OSATE tool [8] (AADL’s refer-
ence implementation). Furthermore, a dedicated code generator was developed
to support verification with behavior specified with the BLESS language [17].
Another example for Pyro realizing a DSL for point and click adventures can be
found in [21].

Figure 2 shows the web-based graphical AADL editor in Pyro!. We will use
this editor in the remainder of this paper to illustrate CINCO’s and Pyro’s core
ideas and concepts. The user interface is designed after commonly known con-
cepts from integrated development environments, like Eclipse or IntelliJ. The
main area in the center is covered by the modeling canvas showing the currently
edited model. On the right, there is the palette showing the available types of
modeling elements. They can be placed onto the canvas just by drag&drop. The
attributes of the currently selected element in the editor can be set via the prop-
erties view at the bottom. The validation view (bottom right corner) constantly
checks for the syntax and static semantics of the model in the canvas and pro-
vides appropriate error or warning messages. Finally, a project explorer and a
menu bar complete the IDE-like appearance.

The remainder of the paper is organized as follows: While Sect. 2 briefly describes
the use of CINCO’s specification languages to define a sophisticated graphical

! The editor is available for experimentation on the Pyro website: https://pyro.scce.info.

https://pyro.scce.info

104 P. Zweihoff et al.

modeling language, the generation to a web-based environment and the resulting
architecture is explained in Sect.3. The mechanisms and techniques used to
enable simultaneous collaboration are explained in Sect. 4. The paper closes with
a summary, related work, and an outlook of the future development in Sect. 5.

2 DSL Development with Cinco

CINCO is a language workbench [11] for the simplicity-driven development of
graphical modeling environments that are domain-specific [12], support full code
generation [10,15], and easily integrate existing solutions in the form of ser-
vices [23]. As CINCO is itself a meta-level application of these principles [25], it
is specialized to the domain of ‘graph-based graphical modeling tools’ and fully
generates such tools from meta-level descriptions (models) — the key enabling
factor for the whole Pyro approach. Primarily relevant in this regard are two
CINCO metamodeling languages:?

1. The Meta Graph Language (MGL) allows for the definition of the abstract
syntax of the developed language, i.e., which types of language elements exist
and how they can be related. In the context of AADL, this means, for instance,
that a system model consists of devices, processes and threads, and that all
of them have ports (of different types) that can be connected with data/in-
formation flow edges.

2. The Meta Style Language (MSL) is used to specify the concrete graphical
syntax of those MGL-defined concepts by means of simple hierarchical shapes
and their appearance (such as color, line type/width, etc.). As can be seen in
Fig. 2, for instance, devices are depicted by a black thick line rectangle, while
threads appear as a grey dashed line parallelogram.

With these meta-level specification files, the CINCO Product Generator
(which is part of CINCO) generates plug-ins for the Eclipse Rich Client Plat-
form (RCP) that realize the editor based on the Eclipse Modeling Framework
(EMF) and the Graphiti graphical editor framework. Further additions to the
editor, which are not covered by these two specification files, can be injected in
an aspect-oriented fashion [16]: CINCO provides a so-called mechanism of hooks
that are triggered on the occurrence of certain events, for instance, when a node
is created, moved, or deleted. Hooks are inserted into the MGL file with anno-
tations on the model elements defined therein. The effect of a hook can either
be modeled in a transformation language [20] or directly be written as Java
code using the generated model API. In the context of the AADL editor, e.g., a
postMoveHook is used to move a port to the nearest border within its container
after it has been moved by the user. This results in a very natural ‘snapping to
the border’ effect during modeling.

As Cinco follows a fully generative approach, the very same specification
files are utilized by Pyro to generate a web-based modeling editor that runs in

2 For a more elaborate introduction on how to define a graphical editor with CINcoO,
as well as other case studies and exemplary modeling languages, please refer to [26].

Pyro: Generating Domain-Specific Collaborative Online Modeling 105

the browser (cf. Fig. 1). Of course, in this context, the running platform won’t be
based on Eclipse anymore, but based on common web frameworks like Angular
for the frontend and Java EE for the backend. The aspects of a CINCO Product
included in a service-oriented fashion via native components written in Java (for
instance a code generator or editor-assisting features like the hooks discussed
above) can thus directly be run also in the backend of the Pyro editor.

In the following, we will focus on two particularly important aspects of Pyro:
After discussing the frontend/backend architecture of the generated Pyro mod-
eling environments in Sect. 3, we will take a deeper look at the communication
pattern between the involved components that facilitates synchronous collabo-
rative modeling (cf. Sect.4).

3 Architecture

In contrast to developing an Eclipse-based modeling environment, for the real-
ization of a web-based solution one nearly has to start from scratch. Eclipse
itself is built on a huge amount of plug-ins, developed over the past seventeen
years. In particular, the Eclipse Modeling Project provides many frameworks for
developing modeling languages based on metamodels and bundling them into
a rich IDE. In the context of the web, development of integrated environments
has just started, so that only a few best practices, plug-ins, and frameworks are
available. This means, even fundamental features often have to be implemented
to enable basic functionalities. The main difference between local desktop IDEs
and a web-based environment like Pyro is the opportunity to provide distributed
access to a centralized instance by multiple users at the same time. This results
in new challenges and requirements regarding the synchronization between mul-
tiple users and conflict resolution for oppositional modifications.

Thus, the Pyro architecture must be built in a way that adequately substi-
tutes what Eclipse already provides in the desktop application context, but also
be prepared for the distributed setting with multiple users — in particular for
supporting live collaborative editing on the same models. In this section, the
generation of Pyro web-based modeling environments is described in a way that
shows how the needed information is collected from CINCO’s high-level specifi-
cation metamodels and where the generated code is placed and distributed in
the overall context to build the Pyro architecture.

The previously introduced specification of the AADL modeling language con-
stitutes the source for the tool generation step. After the Pyro generator is trig-
gered, all MGL and MSL files for a CINCO-based modeling tool are collected to
gather the required information. At this point, all modeling languages, including
their available node and edge types, are visible for the generator.

In the next step, a template of the modeling environment web application
is created. The gray parts with dotted borders in Fig.3 show the static ele-
ments independent of the given language specification, whereas the blue parts
with solid borders are specifically generated from this specification. The tem-
plate consists of a DyWA-based backend, extended by a specific Domain Layer

106 P. Zweihoff et al.

Backend Frontend

...

Registration

Domain Layer

Project Management

Angular Dart

Fig. 3. Overall architecture of the generated web-based modeling environment.

for communication. On the client side, some general parts provide Registration,
Login, and Project Management, but the main component is the specific Editor
generated to handle instances of the graphical modeling language. The underly-
ing single-page web application framework Angular Dart [1] is utilized to enable
the required features of a rich internet application, like versatile user interaction
and asynchronous communication.

Essentially, in the backend, the challenge of providing the metamodel-based
model handling (persistence, API, event handling, etc.) is solved, which in the
CINcO desktop client world is provided by the EMF framework. The frontend,
on the other hand, realizes the rich IDE-like frame application with the graph-
ical editor for the models. In the following, these two parts are explained in
more detail to show how the different layers are connected and which parts are
generated to establish the entire integrated environment.

3.1 Backend

The backend of a modeling environment generated using Pyro consists of two
main layers: One is responsible for the centralized persistence of model instances,
the other for receiving and distributing modifications. The lowest level of the
web application is the database to store information in a centralized fashion.
This layer handles the representation of predefined metamodels for the given
domain-specific languages. Pyro modeling environments utilize the DyWA as
an abstraction layer of a database to store types and objects in a dynamic
and loosely coupled fashion [27]. Based on the specified languages’ node and
edge types, a Domain Data Plug-in (see Fig.4) is generated by Pyro which
declares types, associations, attributes, and inheritance. The main reason for
using the DyWA as model layer is its Domain Generator, which generates a
specific DyWA API providing entities and controllers for the previously given
types to handle their instances on a simplified layer above the database. This
closely resembles the APIs generated by EMF in the Eclipse world, so that
the effort of generating the required Cinco API adapters is greatly reduced,
which provides functionalities with identical signatures as EMF, so that already

Pyro: Generating Domain-Specific Collaborative Online Modeling 107

Backend

..

user
modification REST Interface

Transfer Types
¢ generator/ Static Endpoint ‘ @
Command . action :

Domain Data
Plug-in
N—

Database

Domain Layer

DyWA API

Domain
Generator

Fig. 4. Backend component architecture and interaction.

existing code can directly be applied (see below). Beyond that, DyWA is prepared
for dynamic change of the metamodel, which becomes necessary during modeling
language evolution (see [19]).

Since CINCO supports to extend the definition of graphical modeling lan-
guages by user-written Java code for hooks, actions, validation checks, and code
generators, a holistic reuse mechanism has to be provided in the context of
Pyro. To meet this goal, the same CINCO interfaces are rebuilt in the generated
web-based modeling environment, providing the same structure and identical
signatures. As a result of this, the domain-specific interfaces (see Fig. 4, Cinco
API) generated by Pyro are compatible to the one CINCO generates for Eclipse
and EMF to be used identically by these extensions. In contrast to the desktop-
based CINCcO Product, a Pyro graph model instance is not persisted in a file on
the local system. The Pyro web modeling environment as a distributed system
utilizes the DyWA database for storage and centralized access as a server. Thus,
the Cinco API is internally connected to the corresponding generated Dy WA
API to persist changes in the database, which is hidden from the extensions.

Multi-user collaborative editing with the generated domain-specific modeling
languages is one of the main challenges for Pyro. All changes to a centrally held
instance of a graph model have to be shared with all participants. For the distri-
bution of the changes performed on a graph model by calling the Cinco API)
methods, a Command Stack is used, to store each individual modification. Since
CINCO provides hooks for aspect-oriented extensions, a single action like the
movement of a node on the canvas can result in multiple successive commands.
As a result, all modifications on a model or any of their elements at runtime are
encoded in commands and sequentially stored in the stack. The recorded com-
mands during the CINCO API usage are used to synchronize between different

108 P. Zweihoff et al.

clients looking at the same model as well as the realization of redo and undo
functionalities. This synchronization mechanism is described in more detail in
Sect. 4.

To use the web modeling environment in a desktop application fashion, an
uninterruptible user interaction is necessary. Thus, Pyro utilizes REST-based
asynchronous communication for non-blocking data exchange. As a result of
this, the outermost component of the generated web application is a REST
Interface. The interface consists of Static Endpoints for project, file, and user
management, which are independent from the given modeling languages. These
parts are supplemented by generated Endpoints, which are based on the CINCO
specification and provide methods to create, read, update, and delete (CRUD)
a single graph model. In addition to this, the interface contains the central
endpoint for commands sent from a client’s frontend to the backend. Depending
on the used FExtensions, additional Endpoints are generated to fetch and trigger
user-written actions or a generator.

3.2 Frontend

To mimic the look and feel of a local desktop modeling environment, the web-
based variant generated by Pyro has to provide versatile user interactions. As a
result of this, the Frontend of the generated web application (see Fig.5), which
realizes the interface for the user, is focused on quick responses and familiar input
behavior. To achieve this goal, the frontend part of a web modeling environment
is built upon the Angular Dart [1] framework, which is used to realize single-
page web applications with built-in cross-platform support and comprises an
architecture focused on reusable components. In addition to this, it is tailored
to asynchronous user interaction and client-side routing, so that it can be used
to build rich internet applications, like, for instance, ones resembling integrated
development environments (IDEs).

In contrast to a local desktop application, a web application requires addi-
tional multi-user focused interfaces. Therefore, the template for the frontend,
which is initially created, consists of static user interfaces for Registration and
Login as well as a Project Management area to create, edit, and share projects.
The specifically generated parts are used by the Editor, which comprises domain-
specific components. Its user interface is similar to the known Eclipse IDE used
by regular CINCO Products (see Fig. 2).

The challenge of preventing delays in the system’s response on a user input
to enable fluent interaction can be met by avoiding synchronized communication
with the backend. The editor facilitates this frontend-side computation by two
layers used to interact with instances of the graph models. The Mirror Layer
stores a snapshot of the model present in the database, whereas the Interaction
Layer is a direct representation of a visible graph which can be modified by
the user. This separation enables a delta between the last valid graph, stored
in the Mirror Layer and the currently visible graph. Thanks to this, generated
syntactical validators (e.g., for ensuring lower bounds of given cardinalities) can

Pyro: Generating Domain-Specific Collaborative Online Modeling 109

Frontend

Registration Login Project Management

JointdS Palette Properties View
SVG Markup

Canvas <—> User Event Controller

: WH Interaction Layer

Angular Dart

Editor

Fig. 5. Front end architecture.

raise errors and the appropriate rollback operation works immediately on the
client side without additional communication with the backend.

Pyro specifically aims at supporting users switching from already existing
CincO Products to the web-based modeling environment. Thus, the FEditor,
which is the main part of the frontend, provides multiple components similar
to the Eclipse IDE. To not confuse users, functions, behavior and arrangement
are recreated. Besides common user interface parts like a project explorer and a
menu, specific components for the modeling environment are generated, like the
Canwvas, a Properties View, and the Palette.

The Canvas is based on the JointJS framework [9], which in general renders
SVGs and adds versatile user interaction for manipulation of nodes and edges
via drag&drop functionalities. Using this, it was possible that the web modeling
environment running in a browser provides very similar handling to the Eclipse-
based desktop application with its Graphiti editor. The exact replication of the
node and edge appearance is a central goal of the generated Canvas. Ideally,
a user cannot distinguish between a Pyro and CINCO visualization of a graph
model. This requires the same hierarchical shape structure for the web as in
the Graphiti editor, which can be realized by scalable vector graphics (SVGs).
The SVG Markup, which defines the shapes and styling information of the nodes
and edges, is generated based on the concrete syntax specified in the MSL files
of CiNco. The JointJS framework and SVG Markup files are observed by a
domain-specific User Event Controller, which realizes the listeners and stream
handling mechanisms for a single graph model to modify the underlying layers.

Besides the distinct and visible modifications available directly in the Can-
vas, attributes of an edge, node or the graph model (as defined in the MGL
metamodel) can be modified using the Properties View. It has a generic frame
based on a tree view to recursively walk through associated types of the currently

110 P. Zweihoff et al.

selected element. For every type present in an MGL file, a form for editing the
primitive attributes (e.g string, Boolean or integer) is generated. The single fields
are tailored to the specified data type of the attribute, to give as much support as
possible. Thanks to the two-way data binding of the underlying Angular frame-
work, every change to an attribute is immediately propagated to the underlying
layer.

The Palette is generated based on the given MGL specifications. It lists all
node types available for modeling. In addition to this, the optional annotations
of the MGL, e.g. for grouping nodes and dedicated icons for visual support, are
considered as well.

4 Collaborative Editing

One of the main features of modeling environments generated by Pyro is the
simultaneous editing of graph models by multiple clients at the same time.
The continuous synchronization between clients avoids classical revision control
repositories for distributed access and instead enables immediate collaboration.
To reach the goal of simultaneous synchronization, different aspects have been
considered to maintain consistency, scalability and achieve a real-time effect.

In this section, the mechanism used for Pyro web-based modeling environ-
ments to communicate is presented and explained. The first part discusses the
different challenges of a distributed system with respect to the domain of graph-
ical modeling environments, whereas the second part describes the realization of
the command pattern used to exchange modifications on a graph model.

4.1 Simultaneous Synchronization Mechanism

The main communication concept of a generated modeling environment by Pyro
as a distributed system is the optimistic replication strategy [30]. This concept
replicates data and allows the single replicas to diverge, which in the context of
Pyro is realized by the separated graph model replicas held in each client. The
optimistic replication belongs to the eventually consistent consistency model
and is furthermore classified as basically available, soft state and eventually con-
sistent (BASE) [36]. It benefits from high availability, since it only exchanges
updates on given items. In the context of a web-based modeling environment,
the updates are based on the modifications a client can do to a node or edge.
To enable conflict resolution and maintain consistency regarding commutativity
and idempotency, conflict-free replicated data types (CRDTS) are represented
by commands. CRDT was originally used for text-based synchronization as a
simplification of operational transformation [34]. It utilizes an additional data
structure, based on an identifier of the client, the changed value and the position
to create a unique identifier for each changed character of the text. Regarding
the graph models handled by Pyro, CRDTs are realized by commands for each
type of possible model element modification, which store a unique identifier and
the changed properties of the relevant element. In addition to this, the previous

Pyro: Generating Domain-Specific Collaborative Online Modeling 111

values of the updated properties are stored as well, to enable rollback, undo, and
redo functionalities. Thus, Pyro uses operation-based and state-based CRDTs.
Thanks to the CRDTSs, conflicts of simultaneously editing the same model ele-
ment at the same time can be detected. In the context of graphical DSLs, conflicts
can arise by violating the given static semantics defined in the metamodel. If
a conflict is detected, the corresponding command is flagged for rollback and
returned to its sender. The client then inverts the modification encoded by the
command and applies it to revert the conflicting change.

4.2 Distributed Command Pattern

The distribution of modifications made to a graph model in the Pyro web model-
ing environment is realized by a command pattern [14]. It belongs to the behav-
ioral design pattern, which is used to encapsulate all information needed to per-
form an update on an object. The commands are sent as HT'TP POST requests,
combining the graph model and client identifier. An exemplified collaboration of
two clients (red and green) modifying the same graph model simultaneously is
presented in Fig. 6.

After the initial read from the database, a client only calculates, exchanges
and receives commands when a modification is done (see Fig.6(1)). For every
possible change on nodes and edges (e.g., moving a node or bending an edge), a
dedicated command encoding the modification is created and sent to the server,
extended with a unique identifier of the sender. Thanks to this assignment, all
commands can be differentiated (see red commands by client A and green com-
mands by client B in Fig.6). As an example, the command for the creation of
a node consists of the node type, the position and an identifier of the container
where it should be instantiated. Other commands, e.g., the move node com-
mands, contain information of the previous as well as the new position, so that
they store the delta of the modification.

The Serializer (see Fig. 6(2)) is used to parse the received payload and assign
the commands to the associated Command Applier. Thanks to additional reflec-
tive type annotations, the received payload can be parsed to recreate the correct
command type. The assignment depends on the given graph model type the
command belongs to.

The Command Applier (see Fig.6(3)) is the main component of the web
server, since it receives, validates and executes the commands. Every modifica-
tion encoded by a command is initially validated against the syntactical con-
straints defined by the graph model type. In the case of a constraint violation,
the command is inverted based on the given delta, and returned to undo the
invalid operation sent from a client. After a successful validation, the modifica-
tion encoded by the command is applied to the generated domain-specific API,
which also triggers the annotated hooks and finally modify the node or edge
instances in the central database. Modifications performed on the API itself
(e.g., performed by a hook implementation) are again internally encoded as
commands for further distribution to other clients. The updates resulting from
the hook execution inside the API are combined with the initial command to be

112 P. Zweihoff et al.

N

[

o |

Web Server

EEEA DN
\0<||:g Client B
N NN

A

-]

(]

Fig. 6. Concept of the distributed command pattern. (Color figure online)

interpreted as a single transaction shown by the packages of Fig. 6. To ensure the
consistency between the sender of a command and the other clients, the initiator
is also informed about internally arisen modification based on hook execution.
All commands, collected during the execution of the initial modification, are
broadcast to other listening clients (see Fig. 6(4)). This mechanism uses bidirec-
tional ongoing connections, so that clients can request to listen on changes made
to their currently open graph model.

The commands received by a client (see Fig. 6(5)) are parsed and inspected,
to ensure that commands initiated by the client itself are neglected. New changes
from other clients are applied to all layers and displayed on the canvas. In addi-
tion to this, the client is notified about received changes. Updates caused as a
result of self-sent commands (e.g., a modification performed during a hook exe-
cution), are only partially applied to guarantee that nodes and edges will not be
modified twice.

The command pattern applied to the generated modeling environments is
tailored to enable real-time collaborative editing. The main design decisions are
focused on scalability and high availability by BASE and CRDT. The operational
approach realized with this command pattern is more suitable than a textual
language protocol like the Language Server Protocol (LSP) [3]. The main dif-
ference between the command pattern and the LSP is the way of distributing
modifications on the model. In contrast to the presented communication protocol
of Pyro, the LSP uses changed regions of a text document for propagation. The
intention of the modification has to be evaluated afterwards, whereas in graph-
ical DSLs the commands are used for a direct representation of the occurred
change.

Pyro: Generating Domain-Specific Collaborative Online Modeling 113

5 Conclusion and Perspectives

We have presented Pyro, a framework for enabling domain-specific modeling via
the internet. Provided with an adequate metamodel specification, Pyro turns
a browser into a collaborative, domain-specific, graphical development envi-
ronment with features reminiscent of desktop IDEs for programming textual
languages. The required metamodeling is supported in a high-level, simplicity-
driven fashion: The MGL describes the available node types, edge types, and
syntactical constraints, whereas the MSL defines the visual appearance of the
modeling artifacts defined in the MGL. Based on these specifications, the entire
ready-to-run browser-based domain-specific development environment is gener-
ated fully automatically, as has been illustrated along the construction of a
graphical development environment for the Architecture Analysis and Design
Language (AADL).

The field of web-based development environments is still quite young, so
that not many related solutions exist yet. There are the aforementioned collab-
orative online text editors like Google Docs, Microsoft Office 365 and ShareLa-
TeX/Overleaf, but in the area of DSLs and modeling, so far we only encountered
WebGME [5], an (early stage) online adaption of Vanderbilt University’s Generic
Modeling Environment [18] and Theia [4], a cross-platform web and desktop IDE
for textual DSLs. In addition, itemis (the German company who significantly
contributed to the well-known Xtext [6] DSL framework) is currently working
on a platform called ‘Convecton’, which aims at bringing modeling with and
execution of domain-specific languages online into the cloud [35]. However, none
of these solutions provide a Pyro-like, graphical, collaborative modeling support.

Pyro is still in an early stage of development, and there is a lot of room for
improvement, like further enhancing and easing the graphical modeling features,
or improving the performance of collaborative modeling by taking advantage
of peer-to-peer communication. Pyro is envisioned to enable cross-competence
collaboration on a single project in a domain/purpose-specific fashion according
to the Language-Driven Engineering (LDE) paradigm [31]. LDE aims at allowing
the different stakeholders to formulate their intents in they way they are used to,
i.e., in their domain language, and restricted in a fashion that the efforts of the
other involved stakeholders are maintained, or as we say, constitute Archimedean
points [32] of the considered domain-specific language. Currently, we are starting
to explore the impact of the Pyro technology on a larger scale for DIME [7], our
framework for developing Web applications.

References

1. About AngularDart. https://webdev.dartlang.org/angular. Accessed 13 Feb 2019

2. Graphiti - A Graphical Tooling Infrastructure. http://www.eclipse.org/graphiti/.
Accessed 13 Feb 2019

3. Official page for Language Server Protocol. https://microsoft.github.io/language-
server-protocol/. Accessed 12 Feb 2019

4. Theia - Cloud and Desktop IDE. https://www.theia-ide.org. Accessed 12 Feb 2019

https://webdev.dartlang.org/angular
http://www.eclipse.org/graphiti/
https://microsoft.github.io/language-server-protocol/
https://microsoft.github.io/language-server-protocol/
https://www.theia-ide.org

114

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

P. Zweihoff et al.

WebGME. https://webgme.org/. Accessed 13 Feb 2019

Xtext - Language Engineering Made Easy! http://www.eclipse.org/Xtext/.
Accessed 13 Feb 2019

Boflelmann, S., et al.: DIME: a programming-less modeling environment for web
applications. In: Margaria, T., Steffen, B. (eds.) ISoLA 2016. LNCS, vol. 9953, pp.
809-832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47169-3_60
Carnegie Mellon University: Welcome to OSATE. http://osate.org/. Accessed 13
Feb 2019

client IO: Joint API. http://www.jointjs.com/api. Accessed 13 Feb 2019

. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and

Applications. ACM Press/Addison-Wesley Publishing Co., New York (2000)
Fowler, M.: Language Workbenches: The Killer-App for Domain Specific Lan-
guages? June 2005. http://martinfowler.com/articles/language Workbench.html.
Accessed 13 Feb 2019

Fowler, M., Parsons, R.: Domain-Specific Languages. Addison-Wesley/ACM Press
(2011). http://books.google.de/books?id=rilmuolw_YwC

Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)
Toolkit. Addison-Wesley, Boston (2008)

Hannemann, J., Kiczales, G.: Design pattern implementation in Java and AspectJ.
In: Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2002). ACM SIG-
PLAN Notices, vol. 37, pp. 161-173. ACM (2002)

Kelly, S., Tolvanen, J.P.: Domain-Specific Modeling: Enabling Full Code Genera-
tion. Wiley/IEEE Computer Society Press, Hoboken (2008)

Kiczales, G., et al.: Aspect-oriented programming. In: Aksgit, M., Matsuoka, S.
(eds.) ECOOP 1997. LNCS, vol. 1241, pp. 220-242. Springer, Heidelberg (1997).
https://doi.org/10.1007/BFb0053381

Larson, B.R., Chalin, P., Hatcliff, J.: BLESS: formal specification and verification
of behaviors for embedded systems with software. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 276-290. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4_19

Ledeczi, A., et al.: The generic modeling environment. In: Workshop on Intelligent
Signal Processing (WISP 2001) (2001)

Lybecait, M., Kopetzki, D., Naujokat, S., Steffen, B.: Towards Language-to-
Language Transformation (2019, to appear)

Lybecait, M., Kopetzki, D., Steffen, B.: Design for ‘X’ through model transfor-
mation. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp.
381-398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4_23
Lybecait, M., Kopetzki, D., Zweihoff, P., Fuhge, A., Naujokat, S., Steffen, B.:
A tutorial introduction to graphical modeling and metamodeling with CINCO.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp. 519-538.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4_31

Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90-92 (2010)

Margaria, T., Steffen, B.: Service-orientation: conquering complexity with XMDD.
In: Hinchey, M., Coyle, L. (eds.) Conquering Complexity, pp. 217-236. Springer,
London (2012). https://doi.org/10.1007/978-1-4471-2297-5_10

McAffer, J., Lemieux, J.M., Aniszczyk, C.: Eclipse Rich Client Platform, 2nd edn.
Addison-Wesley Professional (2010)

https://webgme.org/
http://www.eclipse.org/Xtext/
https://doi.org/10.1007/978-3-319-47169-3_60
http://osate.org/
http://www.jointjs.com/api
http://martinfowler.com/articles/languageWorkbench.html
http://books.google.de/books?id=ri1muolw_YwC
https://doi.org/10.1007/BFb0053381
https://doi.org/10.1007/978-3-642-38088-4_19
https://doi.org/10.1007/978-3-030-03418-4_23
https://doi.org/10.1007/978-3-030-03418-4_31
https://doi.org/10.1007/978-1-4471-2297-5_10

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Pyro: Generating Domain-Specific Collaborative Online Modeling 115

Naujokat, S.: Heavy Meta. Model-Driven Domain-Specific Generation of Gener-
ative Domain-Specific Modeling Tools. Dissertation, TU Dortmund, Dortmund,
Germany, August 2017. http://hdl.handle.net/2003/36060

Naujokat, S., Lybecait, M., Kopetzki, D., Steffen, B.: CINCO: a simplicity-driven
approach to full generation of domain-specific graphical modeling tools. Softw.
Tools Technol. Transf. 20(3), 327-354 (2017)

Neubauer, J., Frohme, M., Steffen, B., Margaria, T.: Prototype-driven development
of web applications with DyWA. In: Margaria, T., Steffen, B. (eds.) ISoLA 2014.
LNCS, vol. 8802, pp. 56—72. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45234-9_5

Robby, Hatcliff, J., Belt, J.: Model-based development for high-assurance embed-
ded systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol. 11244, pp.
539-545. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03418-4_32
SAE International: Architecture Analysis & Design Language (AADL), January
2017. https://www.sae.org/standards/content/asb506c/. SAE Standard AS5506C
Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. (CSUR) 37(1),
42-81 (2005)

Steffen, B., Gossen, F., Naujokat, S., Margaria, T.: Language-driven engineering;:
from general-purpose to purpose-specific languages. In: Steffen, B., Woeginger, G.
(eds.) Computing and Software Science: State of the Art and Perspectives. LNCS,
vol. 10000. Springer, Heidelberg (2019, to appear)

Steffen, B., Naujokat, S.: Archimedean points: the essence for mastering change.
LNCS Trans. Found. Mastering Change (FoMaC) 1(1), 22-46 (2016)

Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework, 2nd edn. Addison-Wesley, Boston (2008)

Sun, C.; Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: Proceedings of the 1998 ACM Conference on
Computer Supported Cooperative Work (CSCW 1998), pp. 59-68. ACM (1998)
Voelter, M.: Convecton Presentation at LangDev Meetup at CWI 8-
9 March 2018. https://github.com/cwi-swat/langdev/blob/gh-pages/slides/
Convecton@LangDev.pdf. Accessed 13 Feb 2019

Vogels, W.: Eventually consistent. Commun. ACM 52(1), 40-44 (2009)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://hdl.handle.net/2003/36060
https://doi.org/10.1007/978-3-662-45234-9_5
https://doi.org/10.1007/978-3-662-45234-9_5
https://doi.org/10.1007/978-3-030-03418-4_32
https://www.sae.org/standards/content/as5506c/
https://github.com/cwi-swat/langdev/blob/gh-pages/slides/Convecton@LangDev.pdf
https://github.com/cwi-swat/langdev/blob/gh-pages/slides/Convecton@LangDev.pdf
http://creativecommons.org/licenses/by/4.0/

	Pyro: Generating Domain-Specific Collaborative Online Modeling Environments
	1 Introduction
	2 DSL Development with Cinco
	3 Architecture
	3.1 Backend
	3.2 Frontend

	4 Collaborative Editing
	4.1 Simultaneous Synchronization Mechanism
	4.2 Distributed Command Pattern

	5 Conclusion and Perspectives
	References

