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Abstract. Static program analysis often encounters problems in analyz-
ing library code. Most real-world programs use library functions inten-
sively, and library functions are usually written in different languages.
For example, static analysis of JavaScript programs requires analysis of
the standard built-in library implemented in host environments. A com-
mon approach to analyze such opaque code is for analysis developers to
build models that provide the semantics of the code. Models can be built
either manually, which is time consuming and error prone, or automati-
cally, which may limit application to different languages or analyzers. In
this paper, we present a novel mechanism to support automatic modeling
of opaque code, which is applicable to various languages and analyzers.
For a given static analysis, our approach automatically computes anal-
ysis results of opaque code via dynamic testing during static analysis.
By using testing techniques, the mechanism does not guarantee sound
over-approximation of program behaviors in general. However, it is fully
automatic, is scalable in terms of the size of opaque code, and provides
more precise results than conventional over-approximation approaches.
Our evaluation shows that although not all functionalities in opaque code
can (or should) be modeled automatically using our technique, a large
number of JavaScript built-in functions are approximated soundly yet
more precisely than existing manual models.

Keywords: Automatic modeling - Static analysis - Opaque code -
JavaScript

1 Introduction

Static analysis is widely used to optimize programs and to find bugs in them,
but it often faces difficulties in analyzing library code. Since most real-world pro-
grams use various libraries usually written in different programming languages,
analysis developers should provide analysis results for libraries as well. For exam-
ple, static analysis of JavaScript apps involves analysis of the builtin functions
implemented in host environments like the V8 runtime system written in C++.
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A conventional approach to analyze such opaque code is for analysis devel-
opers to create models that provide the analysis results of the opaque code.
Models approximate the behaviors of opaque code, they are often tightly inte-
grated with specific static analyzers to support precise abstract semantics that
are compatible with the analyzers’ internals.

Developers can create models either manually or automatically. Manual mod-
eling is complex, time consuming, and error prone because developers need
to consider all the possible behaviors of the code they model. In the case of
JavaScript, the number of APIs to be modeled is large and ever-growing as
the language evolves. Thus, various approaches have been proposed to model
opaque code automatically. They create models either from specifications of the
code’s behaviors [2,26] or using dynamic information during execution of the
code [8,9,22]. The former approach heavily depends on the quality and format
of available specifications, and the latter approach is limited to the capability of
instrumentation or specific analyzers.

In this paper, we propose a novel mechanism to model the behaviors of
opaque code to be used by static analysis. While existing approaches aim to cre-
ate general models for the opaque code’s behaviors, which can produce analysis
results for all possible inputs, our approach computes specific results of opaque
code during static analysis. This on-demand modeling is specific to the abstract
states of a program being analyzed, and it consists of three steps: sampling,
run, and abstraction. When static analysis encounters opaque code with some
abstract state, our approach generates samples that are a subset of all possible
inputs of the opaque code by concretizing the abstract state. After evaluating the
code using the concretized values, it abstracts the results and uses it during anal-
ysis. Since the sampling generally covers only a small subset of infinitely many
possible inputs to opaque code, our approach does not guarantee the soundness
of the modeling results just like other automatic modeling techniques.

The sampling strategy should select well-distributed samples to explore the
opaque code’s behaviors as much as possible and to avoid redundant ones. Gen-
erating too few samples may miss too much behaviors, while redundant samples
can cause the performance overhead. As a simple yet effective way to control the
number of samples, we propose to use combinatorial testing [11].

We implemented the proposed automatic modeling as an extension of SAFE,
a JavaScript static analyzer [13,17]. For opaque code encountered during anal-
ysis, the extension generates concrete inputs from abstract states, and executes
the code dynamically using the concrete inputs via a JavaScript engine (Node.js
in our implementation). Then, it abstracts the execution results using the oper-
ations provided by SAFE such as lattice-join and our over-approximation, and
resumes the analysis.

Our paper makes the following contributions:

— We present a novel way to handle opaque code during static analysis by
computing a precise on-demand model of the code using (1) input samples
that represent analysis states, (2) dynamic execution, and (3) abstraction.
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— We propose a combinatorial sampling strategy to efficiently generate well-
distributed input samples.

— We evaluate our tool against hand-written models for large parts of
JavaScript’s builtin functions in terms of precision, soundness, and
performance.

— Our tool revealed implementation errors in existing hand-written models,
demonstrating that it can be used for automatic testing of static analyzers.

In the remainder of this paper, we present our Sample-Run-Abstract app-
roach to model opaque code for static analysis (Sect. 2) and describe the sampling
strategy (Sect.3) we use. We then discuss our implementation and experiences
of applying it to JavaScript analysis (Sect. 4), evaluate the implementation using
ECMAScript 5.1 builtin functions as benchmarks (Sect. 5), discuss related work
(Sect. 6), and conclude (Sect. 7).

2 Modeling via Sample-Run-Abstract

Our approach models opaque code by designing a universal model, which is able
to handle arbitrary opaque code. Rather than generating a specific model for
each opaque code statically, it produces a single general model, which produces
results for given states using concrete semantics via dynamic execution. We call
this universal model the SRA model.

In order to create the SRA model for a given static analyzer 4 and a dynamic
executor &£, we assume the following:

— The static analyzer A is based on abstract interpretation [6]. It provides the
abstraction function « : p(S) — S and the concretization function v : § —
p(S) for a set of concrete states S and a set of abstract states S.

— An abstract domain forms a complete lattice, which has a partial order among
its values from L (bottom) to T (top).

— For a given program point ¢ € C, either A or £ can identify the code corre-
sponding to the point.

Then, the SRA model consists of the following three steps:

— Sample : § — (9)
For a given abstract state s € S , Sample chooses a finite set of elements from
~(8), a possible set of values for 5. Because it is, in the general case, impossible
to execute opaque code dynamically with all possible inputs, Sample should
select representative elements efficiently as we discuss in the next section.

— Run:C xS — S
For a given program point and a concrete state at this point, Run generates
executable code corresponding to the point and state, executes the code, and
returns the result state of the execution.

— Abstract : p(S) — S
For a given set of concrete states, Abstract produces an abstract state that
encompasses the concrete states. One can apply a to each concrete state, join
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Fig. 1. An abstract domain for even and odd integers

all the resulting abstract states, and optionally apply an over-approximation
heuristic, comparable to widening Broaden : S — S to mitigate missing
behaviors of the opaque code due to the under-approximate sampling.

We write the SRA model as ||sga: C X S — S and define it as follows:

Jsra (¢,3) = Abstract({Run(c,s) | s € Sample(s)})
= Broaden(|_{a({Run(c,s)}) | s € Sample(s)})

We now describe how |lsga works using an example abstract domain for
even and odd integers as shown in Fig.1. Let us consider the code snippet
x := abs(x) at a program point ¢ where the library function abs is opaque.
We use maps from variables to their concrete values for concrete states, maps
from variables to their abstract values for abstract states, and the identity func-
tion for Broaden in this example.

Case 1 = [x : n] where n is a constant integer:

Jsra (¢,51) = [ {a({Run(c,s)}) | s € Sample(s1)}
= [ {a({Run(c,s)}) | s €{[x:n]}}
= | {a({Run(c, [x : n])})}
= |[_|{CT(~HX s n]})}

Because the given abstract state §; contains a single abstract value corresponding
to a single concrete value, Sample produces the set of all possible states, which
makes {}srpa provide a sound and also the most precise result.

Case $3 = [x : Even):

Vsra (¢,82) = | {a({Run(c,s)}) | s € Sample(52)}
= [H{a({Run(c,s)}) | s€{[lx:—=2][x:0],[x:2]}}
= H{o({[x: 0], [x:2]})}

= [x : Even]

When Sample selects three elements from the set of all possible states repre-
sented by $2, executing abs results in {[x : 0], [x : 2]}. Since joining these two
abstract states produces Even, {|sg4 models the correct behavior of abs by tak-
ing advantage of the abstract domain.
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Case 53 = [x : Int] :

Usra (c,53)

= [ [{a({Run(c, s)}
= [ [{a({Run(c, s)}
= [ {a({Run(c, s)}
= [H{a({[x:0],[x:

= [x : Int]

o~

(53)
(52)

X

}

U Sample([x : 0dd])}

x: =] [ O] [ 1] [x0 2], [x 2 3]3)

) | s € Sample
) | s€ Sample
) | se{lx:-2],
1, [x: 2, [x = 3]})}

When an abstract value has a finite number of elements that are immediately
below it in the abstract domain lattice, our sampling strategy selects samples
from them recursively. Thus, in this example, Sample([x : Int]) becomes the
union of Sample([x : Even]) and Sample([x : 0dd]). We explain this recursive
sampling strategy in Sect. 3.

Case 54 = [x : 0dd]:

Vsra (¢,54) = | {a({Run(c,s)}) | s € Sample(54)}
= [ H{a({Run(c,s)}) | s€{[x:—1],[x:1]}}
= I[_l{Oi(]{[ 1)}

While |sgra produces sound and precise results for the above three cases, it
does not guarantee soundness; it may miss some behaviors of opaque code due
to the limitations of the sampling strategy. Let us assume that Sample([x : 0dd])
selects {[x : —1], [x : 1]} this time. Then, the model produces an unsound result
[x : 1], which does not cover odd integers, because the selected values explore
only partial behaviors of abs. When the number of possible states at a call site of
opaque code is infinite, the sampling strategy can lead to unsound results. A well-
designed sampling strategy is crucial for our modeling approach; it affects the
analysis performance and soundness significantly. The approach is precise thanks
to under-approximated results from sampling, but entails a tradeoff between the
analysis performance and soundness depending on the number of samples. In
the next section, we propose a strategy to generate samples for various abstract
domains and to control sample sizes effectively.

3 Combinatorial Sampling Strategy

We propose to use a combinatorial sampling strategy (inspired by combinatorial
testing) by the types of values that an abstract domain represents. The domains
represent either primitive values like number and string, or object values like
tuple, set, and map. Based on combinatorial testing, our strategy is recursively
defined on the hierarchy of abstract domains used to represent program states.
Assume that @,b € A are abstract values that we want to concretize using
Sample.
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Fig. 2. The SAFE number domain for JavaScript

3.1 Abstract Domains for Primitive Values

To explain our sampling strategy for primitive abstract domains, we use the
DefaultNumber domain from SAFE as an example. DefaultNumber represents
JavaScript numbers with subcategories as shown in Fig. 2. The subcategories are
NaN (not a number), +Inf (positive/negative infinity), UInt (unsigned integer),
and NUInt (not an unsigned integer, which is a negative integer or a floating
point number).

Case |y(a)| = constant:
Sample(a) = y(a)

When @ represents a finite number of concrete values, Sample simply takes all the
values. For example, +Inf has two possible values, +Inf and -Inf. Therefore,
Sample(+Inf) = {+Inf,-Inf}.

Case |y(a)| = oo and |{b cA|vica. b Z}| = constant:
Sample(a) = Sample(b)

When @ represents an infinite number of concrete values, but it covers (that is,
is immediately preceded by) a finite number of abstract values in the lattice,
Sample applies to each predecessor recursively and merges the concrete results
by set union. Note that, “y covers z” holds whenever x C y and there is no
z such that = C z C y. The number of samples increases linearly in this step.
Number falls into this case. It represents infinitely many numbers, but it covers
four abstract values in the lattice: NaN, +Inf, UInt, and NUInt.

Case |y(a )|—ooand|{b€A|Vm[a bix}\
Sample(@) = H(+(@)

When @ represents infinitely many concrete values and also covers infinitely many
abstract values, we make the number of samples finite by applying a heuristic
injection H of seed samples. For seed samples, we propose the following guidelines
to manually select them:

— Use a small number of commonly used values. Our conjecture is that common
values will trigger the same behavior in opaque code repeatedly.

— Choose values that have special properties for known operators. For exam-
ple, for each operator, select the minimum, maximum, identity, and inverse
elements, if any.
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In the DefaultNumber domain example, UInt and NUInt fall into this case. For
the evaluation of our modeling approach in Sect. 5, we selected seed samples
based on the guidelines as follows:

Sample(UInt) = {0,1,3,10,9999}

Sample(NUInt) = {-10,—-3,—-1,—-0.5,—-0,0.5,3.14}
We experimentally show that this simple heuristic works well for automatic
modeling of JavaScript builtin functions.

3.2 Abstract Domains for Object Values

Our sampling strategy for object abstract domains consists of four steps. To
sample from a given abstract object a € A, we assume the following:

— A concrete object a € y(a) is a map from fields to their values: Map [F,V].

— Abstract domains for fields and values are F and V respectively.

— The abstract domain A provides two helper functions: mustF : A — p(F) and
mayF : A — F. The mustF (@) function returns a set of fields that Va € v(a)
must have, and mayF (@) returns an abstract value fe F representing a set
of fields that Ja € v(@) may have.

Then, the sampling strategy follows the next four steps:

1. Sampling fields

In order to construct sampled objects, it first samples a finite number of fields.
JavaScript provides open objects, where fields can be added and removed
dynamically, and fields can be referenced not only by string literals but also
by arbitrary expressions of string values. Thus, this step collects fields from a
finite set of fields that all possible objects should contain (Fy.st) and samples
from a possibly infinite set of fields that some possible objects may (but not
must) contain (Fiuay):

Frust = mustF (a)
Fmay = Sample(mayF(Zi)) \ Frust

2. Abstracting values for the sampled fields
For the fields in F,ys and Fly,q, sampled from the given abstract object a, it
constructs two maps from fields to their abstract values, Myust and Mopqy,

respectively, of type Map[F, ‘A/}

Mmust - )\f S qust- a({a(f) | ac V(a)})
Mmay = )\f € Fma’y . a({a(f) ‘ ac ’Y(a)})

3. Sampling values
From M,,yus and Mpqy, it constructs another map M, : F — p(V4), where
V4 = V U{A} denotes a set of values and the absence of a field 3, by applying
Sample to the value of each field in F,,,s and Fiqy. The value of each field
in Fl,qy contains 7 to denote that the field may not exist in M,:
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Sample(Mpust (f)) if f € Frust
Sample(Mpay(f)) U P iffe Fray

4. Choosing samples by combinatorial testing
Finally, since a number of all combinations from M, [ e pomain(ar,) 1Ms()];
grows exponentially, the last step limits the number selections. We solve this
selection problem by reducing it to a traditional testing problem with combi-
natorial testing [3]. Combinatorial testing is a well-studied problem and effi-
cient algorithms for generating test cases exist. It addresses a similar problem
to ours, increasing dynamic coverage of code under test, but in the context
of finding bugs:
“The most common bugs in a program are generally triggered by
either a single input parameter or an interaction between pairs of
parameters.”
Thus, we apply each-used or pair-wise testing (1 or 2-wise) as the last step.

Mq = >\f S qust U Fmay' {

Now, we demonstrate each step using an abstract array object @, whose length
is greater than or equal to 2 and the elements of which are true or false. We
write Tp to denote an abstract value such that v(T;,) = {true, false}.

— Assumptions

e A concrete array object a is a map from indices to boolean values:
Map[UInt,Boolean].

e For given abstract object @, mustF(a) = {0,1} and mayF (a) = UInt.

e From Sect. 3.1, we sample {0, 1, 3,10,9999} for UInt.

o k-wise(M) generates a set of minimum number of test cases satisfying
all the requirements of k-wise testing for a map M. It constructs a test
case by choosing one element from a set on each field.

— Step 1: Sampling fields

qust = {0, ]-}
Fray = Sample(UInt) \ {0,1} = {3,10,9999}

— Step 2: Abstracting values for the sampled fields

M st = [O — Ty, 1 Tb]
Mmay = [3 — 14,10 — T3,9999 — Tb]

— Step 3: Sampling values

Ms=[ 0+ {true,false}, 1+ {true, false},
3 — {true, false, 7}, 10 — {true, false, #i},
9999 s {true,false, #i} ]

— Step 4: Choosing samples by combinatorial testing
The number of all combinations [[ ¢ pymain(ar,) [Ms(f)| is 108 even after sam-
pling fields and values in an under-approximate manner. We can avoid such
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explosion of samples and manage well-distributed samples by using combi-
natorial testing. With each-used testing, three combinations can cover every
element in a set on each field at least once:

1-wise(M;) =
{ [0~ true, 1+ false, 3 true, 10~ 3, 9999 — 7],
[0 — false, 1 — true, 3 — false, 10 +— false, 9999 — true],
[0~ false, 1+ true, 3+ 3, 10 — true, 9999 — false| }

With pair-wise testing, 12 samples can cover every pair of elements from
different sets at least once.

4 Implementation

We implemented our automatic modeling approach for JavaScript because of its
large number of builtin APIs and complex libraries, which are all opaque code
for static analysis. They include the functions in the ECMAScript language stan-
dard [1] and web standards such as DOM and browser APIs. We implemented
the modeling as an extension of SAFE [13,17], a JavaScript static analyzer.
When the analyzer encounters calls of opaque code during analysis, it uses the
SRA model of the code.

Sample. We applied the combinatorial sampling strategy for the SAFE abstract
domains. Of the abstract domains for primitive JavaScript values, UInt, NUInt,
and OtherStr represent an infinite number of concrete values (c.f. third case in
Sect. 3.1) and thus require the use of heuristics. We describe the details of our
heuristics and sample sets in Sect. 5.1.

We implemented the Sample step to use “each-used sample generation” for
object abstract domains by default. In order to generate more samples, we added
three options to apply pair-wise generation:

— ThisPair generates pairs between the values of this and heap,
— HeapPair among objects in the heap, and
— ArgPair among property values in an arguments object.

As an exception, we use the all-combination strategy for the DefaultDataProp
domain representing a JavaScript property, consisting of a value and three
booleans: writable, enumerable, and configurable. Note that field is used
for language-independent objects and property is for JavaScript objects. The
number of their combinations is limited to 23. We consider a linear increase of
samples as acceptable. The Sample step returns a finite set of concrete states,
and each element in the set, which in turn contains concrete values only, is passed
to the Run step.
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Run. For each concrete input state, the Run step obtains a result state by
executing the corresponding opaque code in four steps:

1. Generation of executable code
First, Run populates object values from the concrete state. We currently omit
the JavaScript scope-chain information, because the library functions that we
analyze as opaque code are independent from the scope of user code. It derives
executable code to invoke the opaque code and adds argument values from
the static analysis context.

2. Execution of the code using a JavaScript engine
Run executes the generated code using the JavaScript eval function on
Node.js. Populating objects and their properties from sample values before
invoking the opaque function may throws an exception. In such cases, Run
executes the code once again with a different sample value. If the second sam-
ple value also throws an exception during population of the objects and their
properties, it dismisses the code.

3. Serialization of the result state
After execution, the result state contains the objects from the input state, the
return value of the opaque code, and all the values that it might refer to. Also,
any mutation of objects of the input state as well as newly created objects
are captured in this way. We use a snapshot module of SAFE to serialize the
result state into a JSON-like format.

4. Transfer of the state to the analyzer
The serialized snapshot is then passed to SAFE, where it is parsed, loaded,
and combined with other results as a set of concrete result states.

Abstract. To abstract result states, we mostly used existing operations in SAFE,
like lattice-join, and also implemented an over-approximation heuristic function,
Broaden, comparable to widening. We use Broaden for property name sets in
JavaScript objects, because mayF of a JavaScript abstract object can produce
an abstract value that denotes an infinite set of concrete strings, and because
Jsra cannot produce such an abstract value from simple sampling and join.
Thus, we regard all possibly absent properties as sampled properties. Then, we
implemented the Broaden function merging all possibly absent properties into
one abstract property representing any property, when the number of absent
properties is greater than a certain threshold proportional to a number of sam-
pled properties.

5 Evaluation

We evaluated the |lsgra model in two regards, (1) the feasibility of replacing
existing manual models (RQ1 and RQ2) and (2) the effects of our heuristic H
on the analysis soundness (RQ3). The research questions are as follow:

— RQ1: Analysis performance of | gza
Can | gra replace existing manual models for program analysis with decent
performance in terms of soundness, precision, and runtime overhead?
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— RQ2: Applicability of |sra

Is Jsra broadly applicable to various builtin functions of JavaScript?
— RQ3: Dependence on heuristic H

How much is the performance of ||spa affected by the heuristics?

After describing the experimental setup for evaluation, we present our answers
to the research questions with quantitative results, and discuss the limitations
of our evaluation.

5.1 Experimental Setup

In order to evaluate the |l gz 4 model, we compared the analysis performance and
applicability of |sra with those of the existing manual models in SAFE. We
used two kinds of subjects: browser benchmark programs and builtin functions.
From 34 browser benchmarks included in the test suite of SAFE, a subset of
V8 Octane!, we collected 13 of them that invoke opaque code. Since browser
benchmark programs use a small number of opaque functions, we also generated
test cases for 134 functions in the ECMAScript 5.1 specification.

Each test case contains abstract values that represent two or more possible
values. Because SAFE uses a finite number of abstract domains for primitive
values, we used all of them in the test cases. We also generated 10 abstract
objects. Five of them are manually created to represent arbitrary objects:

0BJ1 has an arbitrary property whose value is an arbitrary primitive.

0BJ2 is a property descriptor whose "value" is an arbitrary primitive, and
the others are arbitrary booleans.

0BJ3 has an arbitrary property whose value is 0BJ2.

0BJ4 is an empty array whose "length" is arbitrary.

0BJ5 is an arbitrary-length array with an arbitrary property

The other five objects were collected from SunSpider benchmark programs
by using Jalangi2 [20] to represent frequently used abstract objects. We counted
the number of function calls with object arguments and joined the most used
object arguments in each program. Out of 10 programs that have function
calls with object arguments, we discarded four programs that use the same
objects for every function call, and one program that uses an argument with
2500 properties, which makes manual inspection impossible. We joined the first
10 concrete objects for each argument of the following benchmark to obtain
abstract objects: 3d-cube.js, 3d-raytrace.js, access-binary-trees.js, regexp-dna.js,
and string-fasta.js. For 134 test functions, when a test function consumes two
or more arguments, we restricted each argument to have only an expected type
to manage the number of test cases. Also, we used one or minimum number of
arguments for functions with variable number of arguments.

In summary, we used 13 programs for RQ1, and 134 functions with 1565 test
cases for RQ2 and RQ3. All experiments were on a 2.9 GHz quad-core Intel Core
i7 with 16 GB memory machine.

! https://github.com /chromium/octane.


https://github.com/chromium/octane

54 J. Park et al.

5.2 Answers to Research Questions

Answer to RQ1. We compared the precision, soundness, and analysis time of
the SAFE manual models and the |l sg4 model. Table 1 shows the precision and
soundness for each opaque function call, and Table 2 presents the analysis time
and number of samples for each program.

As for the precision, Table 1 shows that {lsga produced more precise results
than manual models for 9 (19.6%) cases. We manually checked whether each
result of a model is sound or not by using the partial order function (C) imple-
mented in SAFE. We found that all the results of the SAFE manual models for
the benchmarks were sound. The |l sg4 model produced an unsound result for
only one function: Math.random. While it returns a floating-point value in the
range [0,1), Jsra modeled it as NUInt, instead of the expected Number, because
it missed 0.

As shown in Table2, on average {lsra took 1.35 times more analysis time
than the SAFE models. The table also shows the number of context-sensitive
opaque function calls during analysis (#Call), the maximum number of samples
(#Max), and the total number of samples (#Total). To understand the runtime
overhead better, we measured the proportion of elapsed time for each step. On
average, Sample took 59%, Run 7%, Abstract 17%, and the rest 17%. The exper-
imental results show that {lgra provides high precision while slightly sacrificing
soundness with modest runtime overhead.

Answer to RQ2. Because the benchmark programs use only 15 opaque functions
as shown in Table 1, we generated abstracted arguments for 134 functions out
of 169 functions in the ECMAScript 5.1 builtin library, for which SAFE has
manual models. We semi-automatically checked the soundness and precision of
the |l sra model by comparing the analysis results with their expected results.
Table 3 shows the results in terms of test cases (left half) and functions (right
half). The Equal column shows the number of test cases or functions, for which
both models provide equal results that are sound. The SRA Pre. column shows
the number of such cases where the |} g4 model provides sound and more precise
results than the manual model. The Man. Uns. column presents the number
of such cases where |l gsg4 provides sound results but the manual one provides
unsound results, and SRA Uns. shows the opposite case of Man. Uns. Finally,
Not Comp. shows the number of cases where the results of |lsg4 and the
manual model are incomparable.

The | sra model produced sound results for 99.4% of test cases and 94.0%
of functions. Moreover, ||sga produced more precise results than the manual
models for 33.7% of test cases and 50.0% of functions. Although |lsga pro-
duced unsound results for 0.6% of test cases and 6.0% of functions, we found
soundness bugs in the manual models using 1.3% of test cases and 7.5% of func-
tions. Our experiments showed that the automatic {sgpa model produced less
unsound results than the manual models. We reported the manual models pro-
ducing unsound results to SAFE developers with the concrete examples that
were generated in the Run step, which revealed the bugs.
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Table 1. Precision and soundness by functions in the benchmarks

Function Precision and Soundness
Equal Precise More Precise| Unsound
Array, Array.prototype.join, Array.prototype.push 15 5 0
Date, Date.prototype.getTime 4 0
Error 0 0
Math.cos, Math.max, Math.pow, Math.sin, Math.sqrt 11 0 0
Math.random 0 0 1
Number.prototype.toString 0 0
String, String.prototype.substring 4 0 0
Total 36 9 1
Proportion 78.3% 19.6% 2.2%
Table 2. Analysis time overhead by programs in the benchmarks
Program Manual Usra Increased
Time(ms) #Call| Time(ms) #Call #Max #Total | Time Ratio
3d-morph.js 1,423 50 2,641 50 16 408 1.86
access-binary-trees.js | 1,926,132 10| 1,784,866 10 16 95 0.93
access-fannkuch.js 1,615 31 2,627 31 15 413 1.63
access-nbody.js 10,125 132 25,564 324 16 4,274 2.52
access-nsieve.js 1,019 6 1,126 6 16 54 1.10
bitops-nsieve-bits.js 282 1 343 1 2 2 1.22
math-cordic.js 574 2 662 2 2 4 1.15
math-partial-sums.js 1,613 99 4,703 99 16 916 2.92
math-spectral-norm.js 10,702 6 10,986 6 16 96 1.03
string-fasta.js 22,170 78 6,147 30 226 2,555 0.28
navier-stokes.js 4,662 20 5,104 20 2 40 1.09
richards.js 86,013 85 88,902 85 54 4,018 1.03
splay.js 259,073  423| 217,863 422 56 11,492 0.84
Total 2,325,404 943] 2,151,533 1,086 453 24,367 1.35

Answer to RQS3. The sampling strategy plays an important role in the per-
formance of | sra especially for soundness. Our sampling strategy depends on
two factors: (1) manually sampled sets via the heuristic H and (2) each-used or
pair-wise selection for object samples. We used manually sampled sets for three
abstract values: UInt, NUInt, and OtherStr. To sample concrete values from
them, we used three methods: Base simply follows the guidelines described in
Sect. 3.1, Random generates samples randomly, and Final denotes the heuristics
determined by our trials and errors to reach the highest ratio of sound results.
For object samples, we used three pair-wise options: HeapPair, ThisPair, and Arg-
Pair. For various sampling configurations, Table 4 summarizes the ratio of sound
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Table 3. Precision and soundness for the builtin functions

#Test Case #Function
Object SRA Man. Man. SRA Not SRA Man. Man. SRA Not |Total
Equal Total || Equal
Pre. Uns. Pre. Uns. Comp. Pre. Uns. Pre. Uns. Comp.
Array 59 144 1 0 0 0 174 8 7 1 0 0 0 16
Boolean 37 2 3 0 0 0 42 1 0 3 0 0 0 4
Date 74 241 0 2 1 1 319 8 35 0 2 1 1 47
Global 7 1 0 0 0 0 8 1 1 0 0 0 0 2
Math 106 5 0 0 6 0 117 11 2 0 0 5 1 18
Number 41 71 0 3 0 1| 116 1 6 0 0 0 0 8
Object 370 24 7 1 3 5| 410 12 2 5 0 2 0 21
String 300 70 9 0 0 0| 379 3 14 1 0 0 0 18
Total 994 528 20 6 10 7| 1565 45 67 10 2 8 2 134
Proportion ||63.5% 33.7% 1.3% 0.4% 0.6% 0.4% |100% ||33.6% 50.0% 7.5% 1.5% 6.0% 1.5% 100%

Table 4. Soundness and sampling cost for the builtin functions

Sampling Configuration Builtin Function

Set Heuristic .Pair (.)pti.on —H+ Sound Result Ratio|#Ave. #Max
UInt ‘ NUInt ‘ Other HeapPalr‘ThlsPalr‘ArgPalr

Base Base Base F F F 85.0% 174 41

Random | Random | Random F F F 84.9% 17.4 41

F F F 92.1% 32.6 98

F F T 93.5% 38.1 226

F T F 95.0% 181.9 4312

Final Final Final F T T 95.5% 276.8 11752

T F F 96.2% 323.0 7220

T F T 97.4% 397.5 16498

T T F 99.2% 513.7 11988

T T T 99.4% 677.6 16498

results, the average and maximum numbers of samples for the test cases used in
RQ2.

The table shows that Base and Random produced sound results for 85.0%
and 84.9% (the worst case among 10 repetitions) of the test cases, respectively.
Even without any sophisticated heuristics or pair-wise options, {sga achieved
a decent amount of sound results. Using more samples collected by trials and
errors with Final and all three pair-wise options, {sgra generated sound results
for 99.4% of the test cases by observing more behaviors of opaque code.

5.3 Limitations

A fundamental limitation of our approach is that the || sp4 model may produce
unsound results when the behavior of opaque code depends on values that |l sz
does not support via sampling. For example, if a sampling strategy calls the Date
function without enough time intervals, it may not be able to sample different
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results. Similarly, if a sampling strategy does not use 4-wise combinations for
property descriptor objects that have four components, it cannot produce all the
possible combinations. However, at the same time, simply applying more complex
strategies like 4-wise combinations may lead to an explosion of samples, which
is not scalable.

Our experimental evaluation is inherently limited to a specific use case, which
poses a threat to validity. While our approach itself is not dependent on a particu-
lar programming language or static analysis, the implementation of our approach
depends on the abstract domains of SAFE. Although the experiments used well-
known benchmark programs as analysis subjects, they may not be representative
of all common uses of opaque functions in JavaScript applications.

6 Related Work

When a textual specification or documentation is available for opaque code,
one can generate semantic models by mining them. Zhai et al. [26] showed that
natural language processing can successfully generate models for Java library
functions and used them in the context of taint analysis for Android applications.
Researchers also created models automatically from types written in WebIDL or
TypeScript declarations to detect Web APT misuses [2,16].

Given an executable (e.g. binary) version of opaque code, researchers also
synthesized code by sampling the inputs and outputs of the code [7,10,12,19].
Heule et al. [8] collected partial execution traces, which capture the effects of
opaque code on user objects, followed by code synthesis to generate models from
these traces. This approach works in the absence of any specification and has
been demonstrated on array-manipulating builtins.

While all of these techniques are a-priori attempts to generate general-
purpose models of opaque code, to be usable for other analyses, researchers
also proposed to construct models during analysis. Madsen et al.’s approach [14]
infers models of opaque functions by combining pointer analysis and use anal-
ysis, which collects expected properties and their types from given application
code. Hirzel et al. [9] proposed an online pointer analysis for Java, which handles
native code and reflection via dynamic execution that ours also utilizes. While
both approaches use only a finite set of pointers as their abstract values, ignoring
primitive values, our technique generalizes such online approaches to be usable
for all kinds of values in a given language.

Opaque code does matter in other program analyses as well such as model
checking and symbolic execution. Shafiei and Breugel [22] proposed jpf-nhandler,
an extension of Java PathFinder (JPF), which transfers execution between JPF
and the host JVM by on-the-fly code generation. It does not need concretization
and abstraction since a JPF object represents a concrete value. In the context
of symbolic execution, concolic testing [21] and other hybrid techniques that
combine path solving with random testing [18] have been used to overcome the
problems posed by opaque code, albeit sacrificing completeness [4].

Even when source code of external libraries is available, substituting exter-
nal code with models rather than analyzing themselves is useful to reduce time
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and memory that an analysis takes. Palepu et al. [15] generated summaries by
abstracting concrete data dependencies of library functions observed on a train-
ing execution to avoid heavy execution of instrumented code. In model check-
ing, Tkachuk et al. [24,25] generated over-approximated summaries of environ-
ments by points-to and side-effect analyses and presented a static analysis tool
OCSEGen [23]. Another tool Modgen [5] applies a program slicing technique to
reduce complexities of library classes.

7 Conclusion

Creating semantic models for static analysis by hand is complex, time-consuming
and error-prone. We present a Sample-Run-Abstract approach ({sga) as a
promising way to perform static analysis in the presence of opaque code using
automated on-demand modeling. We show how |lsp4 can be applied to the
abstract domains of an existing JavaScript static analyzer, SAFE. For bench-
mark programs and 134 builtin functions with 1565 abstracted inputs, a tuned
U sra produced more sound results than the manual models and concrete exam-
ples revealing bugs in the manual models. Although not all opaque code may be
suitable for modeling with |}gr 4, it reduces the amount of hand-written models
a static analyzer should provide. Future work on |} sg could focus on orthogonal
testing techniques that can be used for sampling complex objects, and practical
optimizations, such as caching of computed model results.
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or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.
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