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Abstract. This paper describes the development of a parallel simulator
of a multicore memory system from a model formalized as a structural
operational semantics (SOS). Our implementation uses the Abstract
Behavioral Specification (ABS) language, an executable, active object
modelling language with a formal semantics, targeting distributed sys-
tems. We develop general design patterns in ABS for implementing SOS,
and describe their application to the SOS model of multicore memory
systems. We show how these patterns allow a formal correctness proof
that the implementation simulates the formal operational model and dis-
cuss further parallelization and fairness of the simulator.

1 Introduction

Structural operational semantics (SOS) [1], introduced by Plotkin in 1981,
describes system behavior as transition relations in a syntax-oriented, compo-
sitional way, using inference rules for local transitions and their composition.
Process synchronization in SOS rules is expressed abstractly using, e.g., asser-
tions over system states and reachability conditions over transition relations as
premises, and label synchronization for parallel transitions. This high level of
abstraction greatly simplifies the verification of system properties, but not the
simulation of system behavior as execution quickly becomes a reachability prob-
lem with a lot of backtracking. In this paper, we study how to implement a
parallel simulator with a formal correctness proof from a SOS model, in terms
of a case study of a multicore memory system. Such a correctness proof requires
that the implementation language is also defined formally by an operational
semantics.
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A major challenge in software engineering is the exploitation of the computa-
tional power of multicore (and manycore) architectures. One important aspect of
this challenge is the memory systems of these architectures. These memory sys-
tems generally use caches to avoid bottlenecks in data access from main memory,
but caches introduce data duplication and require protocols to ensure coherence.
Although data duplication is usually not visible to the programmer, the way a
program interacts with these copies largely affects performance by moving data
around to maintain coherence. To develop, test and optimize software for multi-
core architectures, we need correct, executable models of the underlying memory
systems. A SOS model of multicore memory systems with correctness proofs for
cache coherency has been described in [2], together with a prototype imple-
mentation in the rewriting logic system Maude [3]. However, this fairly direct
implementation of the SOS model is not well suited to simulate large systems.

This paper considers an implementation of the SOS model in ABS [4], a lan-
guage tailored to the description of distributed systems based on active objects
[5]. ABS is formally defined by an operational semantics and supports parallel
execution on backends in Erlang, Haskell, and Java. The following features of
ABS allow a high-level, coarse-grained view of the execution of different method
invocations by different active objects: encapsulation of local state in active
objects, communication using asynchronous method calls and futures, and coop-
erative scheduling of the method invocations of an active object. Our case study
fully exploits these features and the resulting abstractions to correctly implement
the complex process synchronization of the original SOS model.

The main contributions of this paper are as follows:

– We provide general design patterns in ABS for implementing structural oper-
ational semantics with active objects, and apply these patterns to the imple-
mentation in ABS of a structural operational semantics of multicore memory
systems.

– We show how these patterns allow a formal correctness proof of this imple-
mentation by means of a simulation relation between the formal operational
semantics of the ABS implementation and the operational model of multicore
memory systems.

– We discuss how these ABS design patterns can be used to further parallelize
the implementation while preserving correctness.

– Finally, we show how the ABS modeling concepts of symbolic time and vir-
tual resources can be used to obtain a parallel implementation of the SOS
model which abstractly ensures fairness between the progress of different par-
allel components, independently of the number of cores that are used in the
simulation.

2 An Abstract Model of a Multicore Memory System

Design decisions for a program running on top of a multicore memory systems
can be explored using simulators based on abstract models. Bijo et al. [2,6]
developed a model which takes as input tasks (expressed as data access) to
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be executed, the corresponding data layout in main memory (indicating where
data is allocated), and a parallel architecture consisting of cores with private
multi-level caches and shared memory (see Fig. 1). Additionally, the model is
configurable in the number of cores, the number and size of caches, and the
associativity and replacement policy. Memory is organized in blocks which move
between caches and main memory. For simplicity, the model assumes that the
size of cache lines and memory blocks in main memory coincide, abstracts from
the data content of memory blocks, and transfers memory blocks from the caches
of one core to the caches of another core via main memory.

Fig. 1. Abstract model of a multicore memory system.

Tasks from the pro-
gram are scheduled for
execution from a shared
task pool. Task execution
on a core requires mem-
ory blocks to be trans-
ferred from main mem-
ory to the closest cache.
Each cache has a pool
of fetch/flush instructions
to move blocks among
caches and between caches
and main memory. Con-
sistency between multiple
copies of a memory block
is ensured using the stan-
dard cache coherence protocol MSI (e.g., [7]), with which a cache line is either
modified, shared or invalid. A modified cache line has the most recent value of
the memory block, therefore all other copies are invalid (including the one in
main memory). A shared cache line indicates that all copies of the block are con-
sistent. The protocol’s messages are broadcast to the cores. The details of the
broadcast (e.g., on a mesh or a ring) can be abstracted into an abstract commu-
nication medium. Following standard nomenclature, Rd messages request read
access and RdX messages read exclusive access to a memory block. The latter
invalidates other copies of the same block in other caches to provide write access.

To access data from a block n, a core looks for n in its local caches. If n is not
found in shared or modified state, a read request !Rd(n) is broadcast to the other
cores and to main memory. The cache can fetch the block when it is available in
main memory. Eviction is required if the cache is full. Writing to block n requires
n to be in shared or modified state in the local cache; if it is in shared state, an
invalidation request !RdX (n) is broadcast to obtain exclusive access. If a cache
with block n in modified state receives a read request ?Rd(n), it flushes the block
to main memory; if a cache with block n in shared state receives an invalidation
request ?RdX (n), the cache line will be invalidated ; the requests are discarded
otherwise. Read and invalidation requests are broadcast instantaneously in the
abstract model, reflecting that signalling on the communication medium is order
of magnitude faster than moving data to or from main memory.
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Fig. 2. Syntax of runtime configurations, where over-bar denotes sets (e.g., CR).

2.1 Formalization of the Multicore Memory System as an SOS
Model

An operational meaning for the abstract model described above has be defined
using structural operational semantics (SOS) [1] with labeled transitions to
model broadcast in the abstract communication medium. The resulting formal-
ization [2,6] is shown to guarantee standard correctness properties for data con-
sistency and cache coherence from the literature [8,9], including the preservation
of program order in each core, the absence of data races, and no access to stale
data. We briefly outline the main aspects of the formal model. The runtime syn-
tax is given in Fig. 2. A configuration cf consists of main memory M , cores CR,
caches Ca, and tasks dap to be scheduled. (We syntactically abuse set opera-
tions for multisets, including union ∪ and subtraction \.) A core cid • rst with
identifier cid executes runtime statements rst . A cache with identifier caid has a
local cache memory M and data instructions dst . We assume that caid encodes
the cid of the core to which the cache belongs and its level in the cache hierarchy.
We denote by Status ∪ {⊥} the extension of the set of status tags with the unde-
fined value ⊥. Thus, a memory M : Address → Status ∪ {⊥} maps addresses n
to either a status tags Status or to ⊥ if the memory block with address n is not
found in M .

Data access patterns dap model tasks consisting of read(r) and write(r)
operations to references r and control flow operations for sequential composition
dap1; dap2, non-deterministic choice dap1 � dap2, repetition dap∗, task creation
spawn(dap), and commit which flushes the entire cache after task execution.
The empty access pattern is denoted ε. Cores execute runtime statements rst ,
which extend dap with readBl(r) and writeBl(r) to block execution while
waiting for data. Caches execute data instructions dst to fetch and flush the
memory block with address n, here fetchBl(n) blocks execution while waiting
for data, and flush flushes the entire cache.

The abstract communication medium allows messages from one cache to be
transmitted to the other caches and to main memory in a parallel instantaneous
broadcast. Communication in the abstract communication medium is formalized
in terms of label matching on transitions. The formal syntax for this label mech-
anism is as follows:
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S ::=!Rd(n) |!RdX (n) R ::=?Rd(n) |?RdX (n)

Here, for any address n, a request of the form !Rd(n) or !RdX (n) is sent by
one node and its dual of the form dual(!Rd(n)) =?Rd(n) or dual(!RdX (n)) =
?RdX (n) is broadcast to the rest of nodes and main memory. The syntax of the
model is further detailed in [2,6].

2.2 Local and Global SOS Rules

The semantics is divided into local and global rules. Local rules capture inter-
action inside a node containing a core and the hierarchy of caches. Global rules
capture synchronization and coordination between different nodes and main
memory. In an initial configuration cf0 , all blocks in main memory M have
status sh, all cores are idle, all caches are empty, and the task pool in dap has
a single task representing the main block of a program. Let cf ∗−→ cf ′ denote an
execution starting from cf and reaching cf ′ by applying global transition rules,
which in turn apply local transition rules for each core and its cache hierarchy.
In the rules, let the auxiliary function addr(r) return the address n of the block
containing reference r, cid(caid) the identity of the core associated with cache
caid, lid(caid) the cache level of caid, and status(M,n) the status of block n
in map M . Let the predicate first(caid) hold when caid is the first level and
last(caid) when caid is the last level cache. Note that unlabelled transitions →
can be executed asynchronously, while labelled transitions S−→ require synchro-
nization between all the nodes and main memory (see Figs. 3 and 4). We discuss
some representative rules for local and global level of the SOS model. The full
SOS formalization can be found in [6].

Local semantics. The first rules of Fig. 3 involve a core and its first level
cache. In PrRd1, reading reference r succeeds if the block containing r is avail-
able. Otherwise, in PrRd2 a fetch(n) instruction is added to the data instruc-
tions dst of the first level cache and further execution of the core is blocked by
readBl(r). Writing to r only succeeds if the associated memory block has mo
status in the first level cache. If the cache line is shared, the core broadcasts a
!RdX (n) request to acquire exclusive access, where the broadcast appears as a
label on the transition in PrWr2. Otherwise, the block must be fetched from
main memory in PrWr3 and writeBl(r) blocks execution.

For the remaining rules of Fig. 3, LC-Hit1 and LC-Miss1 capture interac-
tions between adjacent levels of caches, and LCC-Miss1 local state change in
a cache line. If cache caidi needs a block n that is sh or mo in the next level
cache, the address where block n should be placed is decided by a function
select(Mi, n) which reflects the cache associativity and the replacement policy.
If eviction is needed, block n in caidj will be swapped with the selected block
in caidi in LC-Hit1. LC-Miss1 shows how fetch(n)-instructions propagate to
lower cache levels: fetch(n) is replaced by fetchBl(n) in caidi and added to
the data instructions in caidj . If the block cannot be found in any local cache,
we have a cache miss: Execution is blocked by fetchBl(n) and a read request
!Rd(n) is broadcast, represented by the label in LLC-Miss1.
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Fig. 3. Local transition rules.

Fig. 4. Global transition rules.

Global semantics. The global rules synchronize the cache hierarchies of dif-
ferent cores and main memory, and ensures coherence. Selected global rules are
given in Fig. 4. Rule Synch1 captures a global step with synchronization on a
label S, which can be either !Rd(n) or !RdX (n). The request will be broadcast to
other caches. To maintain data consistency, these caches must process the requests
at the same time. The receiving label R is the dual of S. For synchronization, the
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transition is decomposed into a premise for main memory with label R and another
premise for the caches with label S. Rule Synch2 distributes the receiving label
to caches Ca2, which do not belong to the cache hierarchy of the sender core CR1.
The predicate belongs(Ca, CR) expresses that any cache in Ca belongs to exactly
one core in CR. Rule Asynch captures parallel transitions without label. These
transitions can be local to individual nodes and caches, parallel memory accesses,
or the parallel spawning and scheduling of new tasks.

3 The ABS Model of the Multicore Memory System

In this section we outline the translation of the formal model into an exe-
cutable object-oriented model using the ABS modeling language. We first briefly
introduce the language and later explain the structural and behavioural corre-
spondence between these two models, with a focus on the main challenges.

3.1 The ABS Language

ABS is a modeling language for designing, verifying, and executing concurrent
software [4]. The language combines the syntax and object-oriented style of Java
with the Actor model of concurrency [10] into active objects which decouple
communication and synchronization using asynchronous method calls, futures
and cooperative scheduling [5]. Although only one thread of control can execute
in an active object at any time, cooperative scheduling allows different threads
to interleave at explicitly declared points in the code. Access to an object’s
fields is encapsulated, so any non-local (outside of the object) read or write to
fields must happen explicitly via asynchronous method calls so as to mitigate
race-conditions or the need for mutual exclusion (locks).

Fig. 5. Bus lock implementation in ABS using await on
Booleans.

We explain the basic
mechanism of asynchronous
method calls and coopera-
tive scheduling in ABS by
the simple code example
of a class Bus. First, the
execution of a statement
res = await o!m(args) con-
sists of storing a message m(args) corresponding to the asynchronous call to the
message pool of the callee object o. This await statement releases the control
of the caller until the return value of that method has been received. Releas-
ing the control means that the caller can execute other messages from its own
message pool in the meantime. ABS supports the shorthand o.m(args) to make
an asynchronous call f=o!m(args) followed by the operation f.get which blocks
the caller object (does not release control) until the future f has received the
return value from the call. As a special case the statement this.m(args) models a
self-call, which corresponds to a standard subroutine call and avoids this block-
ing mechanism. The code in Fig. 5 illustrates the use of the await statement
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Unit run()

IScheduler sched
ICache l1
SstList currentTask

Core

SstList getTask()
Unit putTask(SstList newTask)

List<SstList> q = Nil
RRScheduler()

1..*

1

Unit read(Reference r)
Unit write(Reference r)
Unit commit(Reference r)
Unit commitAll()
Unit fetch(Address a)

Maybe<Status> swap(Address a_out, Maybe<CacheLine> m_in)
Unit fetchFromMain(Address a, ICache sender)
Unit receiveRd(Address a, IBarrier start, IBarrier end, ICache sender)
Unit receiveRdX(Address a, IBarrier start, IBarrier end, ICache sender)

IBus bus
IMemory mainMemory 
Maybe<ICache> nextLevel
MemMap cacheMemory

Cache

1

1

1

1

Status fetchM(Address b)

Unit receiveRdXM(Address a)

MemMap mainMemory
Memory

1..*

1

Unit lock_bus()
Unit release_bus()
Unit sendRd(Address b, ICache sender)
Unit sendRdX(Address b, ICache sender)

IMemory mainMemory
Bool unlocked
List<ICache> caches

Bus

1..*

1

1

1

Unit synchronize()
Int nbrOfCaches

Barrier

1..*

1..*

Fig. 6. Class diagram of the ABS model.

on a Boolean condition to model a binary semaphore, which is used to enforce
exclusive access to a communication medium implemented as a “bus”. Thus, the
statement await bus!lock bus() will suspend the calling method invocation (and
release control in the caller object) and will be resumed when the generated
invocation of the method lock bus of the “bus” itself has been resumed when the
local condition unlocked (of the “bus”) has become true.

3.2 The Structural View

The runtime syntax of the SOS is represented by ABS classes, as outlined in
Fig. 6. We briefly overview the translation. In ABS, object identifiers guarantee
unique names and object references are used to capture how cores and caches
are related. These references are encoded in a one-to-one correspondence with
the naming scheme of the SOS.

A core cid • rst is translated into a class Core with a field currentTask repre-
senting the current task rst . Each core holds a reference to the first level cache.
A cache memory caid •M • dst is translated into a class Cache with an interface
ICache and a class parameter nextLevel. In a cache, nextLevel holds a reference
to the next level cache. If this reference is Nothing, it is last level cache (in the
SOS, a predicate last is used to identify the last level). The field cacheMemory
models the cache’s memory M in SOS. The process pool of each cache object in
ABS represents the data instruction set dst .

An ABS configuration consists of a number of cores with their corresponding
cache hierarchies, the main memory, a scheduler with tasks waiting to be sched-
uled, and the ABS classes Bus and Barrier, which model the abstract communi-
cation medium and the global synchronization with labels !Rd(n) and !RdX (n)
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s: IScheduler

c1: ICore cm: ICore

l1c1: ICache

lnc1: ICache

l1cm: ICache

lncm: ICache

b: IBus

mm: IMemory

br:IBarrierbr:IBarrierbr:IBarrierbr: IBarrier

Fig. 7. Object diagram of an initial configuration.

in the SOS. The object diagram in Fig. 7 shows an initial configuration corre-
sponding to the one depicted in Fig. 1.

3.3 The Behavioral View

We discuss in this section the design patterns in ABS that implement the syn-
chronization inherent in the SOS model. We observe here that the combination
of asynchronous method calls and cooperative scheduling is crucial because of
the multitasking inherent in the SOS model, which requires that objects need to
be able to process other requests; e.g., caches need to flush memory blocks while
waiting for a fetch to succeed.

Fig. 8. Local synchronization between
two ABS objects.

Local synchronization in the SOS model
between two structural entities (e.g., two
caches in rule LC-Hit1 of Fig. 3), is imple-
mented by the following synchronization
pattern in ABS (see Fig. 8). Given two
objects o1 and o2, let o1 execute method
m1, which checks the local conditions of o1
(highlighted as region A in Fig. 8). If these
local conditions hold, method m2 on o2 is
called asynchronously. Method m2 com-
pletes when the local conditions of o2 hold
(highlighted as region B in Fig. 8). How-
ever, when m2 has returned and object
o1 again schedules method m1, the con-
ditions on object o2 need no longer hold.
Therefore, o1 next calls the method m3

synchronously to check these conditions
again. If these condition still hold, method m3 returns successfully (in general,
having updated o2), and we can proceed to do the local changes in o1 (highlighted
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Fig. 9. Extract of ABS method fetch. When this code is reached, the requested cache
line n has status invalid or it is not in the cache. The function select chooses a cache line
to be swapped with n. If there is still free space in the cache, select returns Nothing. If n
has either shared or modified status in the next level cache, the method swap removes
the cache line with address n, inserts the selected cache line and returns the current
status of n; otherwise, swap simply returns Nothing.

as region C in Fig. 8). Otherwise, the process needs to be repeated until we
succeed. Note that method m3 should not contain release points; because this
method is called synchronously from a different object, a release point will in
general have the potential of introducing deadlocks in the caller object.

To illustrate the above protocol, consider the code snippet in Fig. 9, which
corresponds to part of several rules in the SOS (in particular, rule LC-Hit1).
Here, the current object this corresponds to caidi in the SOS, running method
fetch, and the referenced object in nextCache corresponds to caidj . When fetch
from nextCache returns, all the required conditions in nextCache are True. How-
ever, since the call is asynchronous, (some of) the conditions may no longer hold
when execution continues in this. This is addressed by checking the return value
of method swap: If swap returns an address, it means the conditions still hold and
the necessary updates are performed both locally and in nextCache; otherwise
(when swap returns Nothing) fetch will be called again.

Global synchronization in the SOS (see Fig. 10a) is modelled by matching
labelled transitions. To simulate this instantaneous communication in ABS, we
introduced the classes Bus and Barrier. The synchronization protocol is activated
by asynchronous calls to the respective methods sendRd and sendRdX of the bus.
The bus subsequently asynchronously calls the corresponding methods receiveRd
and receiveRdX of the caches. Two barriers start and end are used by the caches
to synchronize the start, as well as the completion, of the local executions of
methods receiveRd and receiveRdX.

However, observe that objects in ABS are input enabled: it is always pos-
sible to call a method on an object. In our model, this scheme may give rise
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!Rd()
caller

?Rd()implicit 
bus

(a) State machine of the global synchro-
nization using labels in the SOS model.

receiveRd()

lock bus()

unlock bus()

start 
barrier

end 
barrier

sendRd()
buscallercaller

(b) State machine of the global synchronization
using a bus and barriers in the ABS model.

Fig. 10. Synchronization in SOS vs ABS. In the SOS model (a), circles represent
nodes in the memory system and shaded arrows labelled transitions. Note that the bus
is implicit in the SOS model, as synchronization is captured by label matching. In the
ABS model (b), circles represent the same nodes as in the SOS model, shaded arrows
method invocations, solid arrows mutual access to the bus object and dotted arrows
barrier synchronizations.

to inconsistent states: the local status of a memory location which triggers an
asynchronous call of one of the methods sendRd and sendRdX of the bus may
be invalidated by other bus synchronizations. Therefore, we add a lock to the
bus (see Figs. 5 and 6), which is used to ensure exclusive access to the message
pool of the bus when one of the methods read, write, and fetch are executed. The
lock is released in case bus synchronization is not needed. The overall scheme is
depicted in Fig. 10b. The exclusive access to the message pool of the bus guar-
antees that the message pool of the bus contains at most one call to one of
the methods sendRd and sendRdX. Consequently, the triggering condition of the
call cannot be invalidated before the call has been executed. This strict locking
strategy, however, decreases concurrency in the distributed system, but reduces
the complexity of the proof of equivalence between the SOS and the distributed
implementation. We discuss how to further enhance the parallelization in Sect. 5.

4 Correctness

In this section we discuss the correctness of the ABS model by means of a
simulation relation between the transition system describing the semantics of the
ABS model of the multicore memory system and the transition system described
by the SOS model.

The semantics of an ABS model can be described by a transition relation
between global configurations. A global configuration is a (finite) set of object
configurations. An object configuration is a tuple of the form 〈oid , σ, p,Q〉, where
oid denotes the unique identity of the object, σ assigns values to the instance
variables (fields) of the object, p denotes the currently executing process, and Q
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denotes a set of (suspended) processes. A process is a closure (τ, S) consisting
of an assignment τ of values to the local variables of the statement S.

We refer to [4] for the details of the structural operational semantics for
deriving transitions G → G′ between global configurations in ABS. Since in ABS
concurrent objects only interact via asynchronous method calls and processes are
scheduled non-deterministically (which provides an abstraction from the order in
which the processes are generated by method calls), the ABS semantics satisfies
the following global confluence property that allows to commute consecutive
computations steps of independent processes which belong to different objects.
Two processes are independent if neither one is generated by the other by an
asynchronous call.

Lemma 1 (Global confluence). For any two transitions G → G1 and G →
G2 that describe execution steps of independent processes of different objects,
there exists a global configuration G′ such that G1 → G′ and G2 → G′.

An object configuration is stable if the statement S to be executed has termi-
nated or starts either with a get operation on a future or with an await statement
on a Boolean condition or a future. A global ABS configuration is stable if all its
object configurations are stable. Observe that our ABS model does not give rise
to local divergent computations without passing through stable configurations;
i.e., every local computation eventually enters a stable configuration. Together
with the global confluence property in Lemma1, this allows to restrict the seman-
tics of the ABS model in the simulation relation to stable global configurations;
i.e., transitions G ⇒ G′ between stable global configurations G and G′ which
result from a (non-empty) sequence of local execution steps of a single process
from one stable configuration to a next one.

Because of the global synchronization with the bus in ABS described above,
we may also represent without loss of generality the synchronization on the bus
by a single global transition G ⇒ G′ which involves a completed execution of
the method sendRd(...) (or sendRdX(...)) by the bus. This is justified because
the global confluence allows for a scheduling policy such that the execution of
the processes that are generated by these methods, i.e., the calls of the methods
receiveRd(...) (or receiveRd(...)) are not interleaved with any other processes.

The simulation relation. The structural correspondence between a global con-
figuration of the ABS model and a configuration of the SOS model is described
in Sect. 3.2. For each method we have constructed a table which, among oth-
ers, associates with some, so-called observable, occurrences of await statements
(appearing in the method body) a corresponding dst instruction. In general, the
execution of the remaining (occurrences of) await statements, for which there
does not exist a corresponding dst instruction, involves some asynchronous mes-
saging preparing for the corresponding synchronous exchange of information in
the SOS model. In some cases, the execution of these unobservable statements
(e.g., the read and write methods) also does not correspond to a change of the
SOS configuration. Let α map every stable global configuration G of the ABS
model to a structurally equivalent configuration α(G) of the SOS model, which
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additionally maps every observable process (either queued or active) to the asso-
ciated dst instruction (a process is observable if its corresponding statement is
observable).

We arrive at the following theorem which expresses that the ABS model is a
correct implementation of the abstract model.

Theorem 1. Let G be a stable global configuration of the ABS model. If G ⇒ G′

then α(G) →∗ α(G′), where →∗ denotes the reflexive, transitive closure of →.

Proof. The proof proceeds by a case analysis of the given transition G ⇒ G′,
which, as discussed above, involves the local execution of some basic sequential
code by a single object. For example, for the case of a completed execution of
a method sendRd(...) (or sendRdX(...) ) by the bus, a simple inspection of the
sequential code of the methods that have been executed, e.g., sendRd(...) and
receiveRd(...), suffices to establish the existence of a corresponding transition
α(G) → α(G′).

The remaining cases are captured by tables (as mentioned above) which pro-
vide for each method the following information. The statements in the Location
column of each table represent for the respective method all possible processes
generated by a call, i.e., a call to the method itself, and the processes which
correspond to the await statements appearing in its body. In each row the Next
release point statement indicates the next await statement or return state-
ment that can be reached (statically). The dst instruction in each row specifies
the instruction which corresponds to the Location statement in the simula-
tion. Finally, Enable condition in each row specifies the enabling conditions
(expressed in the abstract model) of the rule applications (of the abstract model)
specified in Rules. In general these rule applications involve the sequential appli-
cation of one or more rules. For unobservable statements, for which there is no
corresponding dst instruction, the latter two columns are left unspecified.

The case analysis then consists of checking statically for each row the local
structural correspondence between the resulting ABS process (the Next release
point) and the resulting SOS configuration described by the specified rule appli-
cations.

5 Parallelism and Fairness of the ABS Model

This section discusses how to relax the eager locking policy of the bus imple-
mentation, without generating inconsistent states. Instead of locking the bus
unconditionally when executing the read, write, and fetch methods in the ABS
model, and releasing the lock when no bus synchronization is required, we only
lock the bus when the triggering conditions of the bus synchronization may be
invalidated. For example, an optimistic write implementation (see Fig. 11) tries
to acquire the lock of the bus, and only after the acquisition checks if a race-
condition has happened and invalidated the shared status of the address n; in
this case, the write method will backtrack and retry (by calling itself); otherwise
the write operation can safely be performed.
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Fig. 11. Alternative, optimistic implementation of the write method to detect a bus
race-condition and, in that case, retry the operation.

The strict and relaxed variations of the global synchronization bear strong
resemblance respectively to conservative [11,12] and optimistic [13] algorithms in
parallel and distributed discrete-event simulation (PDES) [14]. As with PDES,
there is no clear winner between the strict (conservative) and relaxed (optimistic)
versions of our cache simulator; certain computer programs (input-models) will
be simulated faster using one version or the other, depending on the inter-
dependency of the parallel components (for us, the caches). For the contrived
experiment, we implemented a penalty system in the ABS model. A cache
penalty is the cost (delay) incurred by failing to read or write to a particular level
of cache—set here to (L1, L2, L3) =cost (1, 10, 100) [15]. We compared the two
versions for a scenario with full inter-dependency (simultaneous write instruc-
tions on the same memory block) and a scenario with minimal inter-dependency
(write instructions on separate memory blocks) between 16 simulated cores. In
these experiments the strict version was slightly faster up to 2% for the first
case and losing out by up to 12% in the second case. The experiments were
executed using the ABS-Erlang backend [16] and Erlang version 21, running
on quad-socket 8-cores 16-hyperthreads Xeon R©L7555, which yielded in total 64
hardware threads.

Fairness. A concern that often arises in parallel execution is fairness: the degree
of variability when distributing the computing resources among different parallel
components—here, the simulated cores. Fairness of parallel execution can affect
the simulation’s accuracy in approximating the intended (or idealized) many-
core hardware. To ensure fairness of the simulation, we make use of deployment
components [17] in ABS.

A Deployment Component (DC) is an ABS execution location that is created
with a number of virtual resources (e.g., execution speed, memory use, network
bandwidth), which are shared among its deployed objects. Any annotated state-
ment [Cost: x] S decrements by x the resources of its DC and then completes, or
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Table 1. Total cache penalties between strict/relaxed, with/without DC configurations.

Strict with DC Relaxed with DC Strict Relaxed
∑

penalty 43068 43290 39183 24956

it will stall its computation if there are currently not enough resources remain-
ing; the statement S may continue on the next passage of the global symbolic
time where all the resources of the DCs have been renewed, and will eventually
complete when its Cost has reached zero.

We make use of this resource modeling of ABS to assign equal (fair) resources
of virtual execution speed to the simulated cores of the system. Each Core object
is deployed onto a separate DC with fixed Speed(1) resources. The processing of
each instruction has the same cost [Cost: 1]—a generalization, since common pro-
cessor architectures execute different instructions in different speeds (cycles per
instruction); e.g., JUMP is faster than LOAD. The result is that all Cores can exe-
cute maximum one instruction in every time interval of the global symbolic clock,
and thus no Core can get too far ahead with processing its own instructions—a
problem that manifests upon the parallel simulation of N number of cores using
a physical machine of M cores, where N is vastly greater than M . To test this,
we performed a write-congested experiment with a configuration of 20 simulated
cores and 3 cache levels, comparing the strict and relaxed variations, with and
without the use of deployment components. The results (shown in Table 1) were
measured on a quad-core system running ABS-Erlang, counting the total cache
penalties of all the cores. With respect to the strict variation, the results with and
without DC have similar penalties; this can be attributed to the lock-step nature
of strict bus synchronization, where no cache (and thus core) can unfairly stride
forward. In the relaxed variation, however, where synchronization is less strict,
we see that without the fairness imposed by DC, the penalties are almost halved,
which means some cores are allowed to do multiple (successful) write operations
while other cores are still waiting on the “backlog” to be simulated. This gives
rise to less penalties, because of less runtime interleavings of the simulated cores
and thus less competition between them.

6 Related Work

There is in general a significant gap between a formal model and its implemen-
tation [18]. SOS [1] succinctly formalizes operational models and are well-suited
for proofs, but direct implementations of SOS quickly lead to very inefficient
implementations. Executable semantic frameworks such as Redex [19], rewrit-
ing logic [20,21], and K [22] reduce this gap, and have been used to develop
executable formal models of complex languages like C [23] and Java [24]. The
relationship between SOS and rewriting logic semantics has been studied [25]
without proposing a general solution for label matching. Bijo et al. implemented
their SOS multicore memory model [26] in the rewriting logic system Maude
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[3] using an orchestrator for label matching, but do not provide a correctness
proof wrt. the SOS. Different semantic styles can be modeled and related inside
one framework; for example, the correctness of distributed implementations of
KLAIM systems in terms of simulation relations have been studied in rewrit-
ing logic [27]. Compared to these works on semantics, we implemented an SOS
model in a distributed active object setting, and proved the correctness of this
implementation.

Correctness-preserving compilation is related to correctness proofs for imple-
mentations, and ensures that the low-level representation of a program preserves
the properties of the high-level model. Examples of this line of work include type-
preserving translations into typed assembly languages [28] and formally verified
compilers [29,30], which proves the semantic preservation of a compiler from C
to assembler code, but leaves shared-variable concurrency for future work. In
contrast to this work which studies compilation from one language to another,
our work focuses on a specific model and its implementation and specifically
targets parallel systems.

Simulation tools for cache coherence protocols can evaluate performance and
efficiency on different architectures (e.g., gems [31] and gem5 [32]). These tools
perform evaluations of, e.g., the cache hit/miss ratio and response time, by run-
ning benchmark programs written as low-level read and write instructions to
memory. Advanced simulators such as Graphite [33] and Sniper [34] run pro-
grams on distributed clusters to simulate executions on multicore architectures
with thousands of cores. Unlike our work, these simulators are not based on a
formal semantics and correctness proofs. Our work complements these simulators
by supporting the executable exploration of design choices from a programmer
perspective rather from hardware design. Compared to worst-case response time
analysis for concurrent programs on multicore architectures [35], our focus is on
the underlying data movement rather than the response time.

7 Conclusion

We have introduced in this paper a methodology for implementing SOS mod-
els in the active object language ABS, and applied this methodology to the
implementation of a SOS model of an abstraction of multicore memory systems,
resulting in a parallel simulator for these systems. A challenge for this implemen-
tation is to correctly implement the synchronization patterns of the SOS rules,
which may cross encapsulation barriers in the active objects, and in particular
label synchronization on parallel transitions steps. We prove the correctness of
this particular implementation, exploiting that the ABS model allows for a high-
level coarse-grained semantics. We investigated the further parallelization and
fairness of the ABS model.

The results obtained in this paper provide a promising basis for further devel-
opment of the ABS model for simulating the execution of (object-oriented) pro-
grams on multicore architectures. A first such development concerns an extension
of the abstract memory model with data. In particular, having the addresses of
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the memory locations themselves as data allows to model and simulate different
data layouts of the dynamically generated object structures.
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