
KUPC: A Formal Tool for Modeling
and Verifying Dynamic Updating

of C Programs

Jiaqi Qian1, Min Zhang1(B), Yi Wang2, and Kazuhiro Ogata3

1 Shanghai Key Lab of Trustworthy Computing,
ECNU, Shanghai, China

zhangmin@sei.ecnu.edu.cn
2 GCCIS, Rochester Institute of Technology,

Rochester, NY, USA
3 Japan Advanced Institute of Science and Technology, Nomi, Japan

Abstract. Dynamic Software Updating (DSU) is a useful technique for
updating running software without incurring any downtime. Its correct-
ness must be guaranteed because updating a running software is a com-
plicated and safety-critical process. In this paper, we present a formal
tool called KupC for modeling and verifying dynamic updating of C pro-
grams. The tool is built on K–a formal semantic framework for program-
ming languages. We formalize a patch-based dynamic updating mecha-
nism in K based on the formal executable operational semantics of C.
The formalization automatically yields an interpreter and several veri-
fication tools, which can be used to formally analyze the correctness of
dynamic updating for C programs. To our knowledge, KupC is the first
formal tool for code-level verification of dynamic software updating.

1 Introduction

Software systems require frequent updating to fixate defects, improve perfor-
mance, and add new features. For those systems providing 24 × 7 service com-
mitment, Dynamic Software Updating (DSU) is a useful technique as it does not
incur system downtime while updating [5]. Such systems are becoming preva-
lent with the diffusion of Internet of Things (IoT) and Cyber-Physical Systems
(CPS), where additions, modifications, and removal of behaviors could be done
in a quick and localized fashion. There is a comprehensive survey on DSU [10].

The difficulty of guaranteeing the correctness of dynamic updating is a fun-
damental barrier when we adopt this technique widely as expected. Correctness
is crucial to those systems that need dynamic updating because they are usu-
ally safety-critical and highly-dependable. Meanwhile, dynamically updating a
running software system is a complicated process, and it is difficult to predict

This work was supported by NSFC Project grants 61502171 and 61872146, and China
HGJ Project under Grant 2017ZX01038102-002.

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 299–305, 2019.
https://doi.org/10.1007/978-3-030-16722-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_17&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_17

300 J. Qian et al.

all possible updating results. In order to update a program successfully while
it is running in practice one has to know everything about that program [6].
However, it still lacks effective methodologies and tools to help understand all
possible behaviors of running programs caused by updating.

Formal methods are rigorous approaches to program verification. Some
attempts have been made on applying formal methods to DSU [3,4]. The exist-
ing approaches suffer one or more difficulties as follows. In some approaches
formalizing a dynamic update may require abstraction of target programs. Such
abstraction is usually done manually. It requires both formal methods expertise
and human intellection to interpret target programs. Some approaches [1,11]
lack tool support while developing such tools needs substantial efforts.

To mitigate the above difficulties, we present a formal tool called KupC for
modeling and verifying dynamic updating of C programs in this paper. KupC
is built upon the formalization of a DSU tool called Ginseng [8] for C programs.
We formalize the updating strategy of Ginseng atop the operational semantics
of C in the formal semantic framework called K [9]. From the formalization,
K automatically generates several tools that can be used for formal analysis of
dynamic updating of C programs. According to our knowledge, KupC is the
first tool for the code-level formal verification of dynamic software updating.

KupC has the following three features. (1) KupC is focused on the code-
level verification of dynamic updating. It does not require any abstraction or
transformation of target C programs that are subject to dynamic updating. (2)
The verification functionalities of KupC are automatically generated from the
formalization of dynamic updating mechanisms. No extra effort is needed on the
implementation. (3) The formalization is built upon the operational semantics
of the C language. One can easily develop similar tools for the formal analy-
sis of dynamic updating of other languages such as Java and Python, whose
operational semantics have already been formally defined in K.

2 KUPC Design

Patch-based DSU. Many DSU tools achieve dynamic updating by injecting
patches into running programs [10]. A patch contains all updating contents,
e.g., new functions and data. Figure 1 (left) is an overview of the patch-based
updating process. An old-version program is first made updatable by attaching
additional version information, wrapping user-defined types, and inserting possi-
ble updating points. They are achieved by the two operations called Dependants
Updating and Restriction Generating. Next, a patch file p1.c is generated and
complied by comparing the differences between old and new programs. After an
update request is invoked, a DSU tool checks whether it is safe to inject the
compiled patch whenever the running program reaches a pre-specified updating
point. Safety means that the behavior of the updated program is consistent with
the expectation. It is guaranteed by the adopted updating policies in DSU tools.

KupC: A Formal Tool for Modeling and Verifying Dynamic Updating of C 301

The operational semantics of target programming language
(E.g. C, Java, Python)

v0.c v1.c

Patch
Generator

Patch
p1.c

Start to execute v0

Dependants
Upgrading

Restriction
Generating

Safety
Checking

Patch
Injecting

State Tra-
nsforming

Finish updating and
resume to execute

An overview of patch-based dynamic software updating process

Formalization of Dependants
Upgrading

Formalization of Restriction
Generating

Formalization of Safety
Checking

Formalization of Patch
Injecting

Formalization of State
Transforming

Verification tools for dynamic software updating

State Space
Explorer Interpreter LTL Model

Checker ...Updating

Automatic generation by K

Fig. 1. Patch-based dynamic updating and its formalization using K

If it is safe, the patch is injected and the running program state is transformed
into the new version by a transformation function that is predefined in the patch.
The patched program continues to execute from the new state. If updating at
this point is not safe, the program continues to execute the old version.

It is worth mentioning that the entire updating process is atomically per-
formed, that is, the execution keeps being suspended until the completion of the
updating. Updating in an atomic manner is the most consistent approach that
simplifies the updating process and reduces unexpected errors.

The K Framework. K [9] is a state-of-art semantic framework for program-
ming languages. Many mainstream languages such as C and Java have been
completely defined in K. One only needs to focus on the formalization of an
updating mechanism using the pre-defined operational semantics of the targeted
language. After formalizing the updating mechanism, K automatically gener-
ates several analysis tools such as program interpreter, state space explorer, and
model checker.

Formalization of dynamic updating strategy in K. The basic idea of for-
malizing a dynamic updating mechanism using K is to formalize the function-
alities of the mechanism on the basis of the operational semantics of the target
programming language that the mechanism supports. The right part of Fig. 1
shows the formalization of the patch-based dynamic updating mechanism, con-
sisting of the formalization of the five functionalities, respectively.

The functionalities of an updating mechanism are formalized by a set of
rewrite rules. For instance, below is a rewrite rule that formalizes the function
of checking the safety of updating a set of functions at an updating point Loc.

302 J. Qian et al.

Fig. 2. The snippets of old-version and new-version programs of a GPS application

In the rule, a pair of brackets is a labeled cell, representing a piece of program
execution information. F

· means F is deleted from the set if the conduction that
follows the keyword when is true. The condition says that either F is updatable
(represented by F �∈ Re) or it is un-updatable at the point Loc but its types
T and T ′ (before and after updating, respectively) are the same. Here, Re is
the set of un-updatable contents at Loc. If the second argument of TypeSafety
becomes an empty set, it means all the functions in the set are safe to update.

We totally defined 371 rewrite rules to formalize the updating mechanism
of Ginseng. We tested the correctness of the rules using the example dynamic
updating programs provided in Ginseng. These rules are seamlessly compiled
by K together with the rules defined for the operational semantics of C [2].
The compilation yields the formal tool KupC which supports formal analysis
of dynamic updating of C programs in various ways such as simulation, state
exploration, and LTL model checking.

3 KUPC Usage

KupC is equipped with an interpreter to execute updatable C programs, a state
space explorer to search for all possible updating results, and an LTL model
checker to verify temporal properties of dynamic updating. We demonstrate
the usage of KupC using a dynamic updating to a GPS application. The tool,
examples and a demo video are available https://github.com/dexter-qjq/KupC.

The program in Fig. 2 (left) is the old version of a GPS system. It calculates
the shortest path. In the new version in Fig. 2 (right), the new program not only
shows the shortest path, but also finds the most economic path. Three update
points are inserted in function Query from Line 24 to Line 30.

https://github.com/dexter-qjq/KupC

KupC: A Formal Tool for Modeling and Verifying Dynamic Updating of C 303

Fig. 3. The shortest path before and after updating (Color figure online)

Simulating a dynamic updating scenario. Given an original C program
annotated with update points, KupC can compile it with a patch file and gener-
ate binary code that is executable on K. During execution, updating is applied
once reaching a safe updating point. It simulates the behavior of a dynamic
updating to a program that is running on a real-world operating system.

Figure 3 shows the results of the simulation. Figures 3(a) and (b) show the
original graph and the updated graph, respectively. When the update takes place
at point1, the output of first call is the red path in Fig. 3(a). While the second
call produces two paths as shown in Fig. 3(b). The red one is the shortest path
and the green one is the most economic path.

Fig. 4. All possible updating results searched by the state space explorer of KupC

Exploring all dynamic updating results. In addition to simulating one
possible updating scenario, KupC can search for all possible updating results by
exploring each possible updating point using the state space explorer.

We compile and execute the program map with the option UPSEARCH=1 to
invoke the state exploration function. Figure 4 shows all five different updating
results. The outputs are divided into two parts by semicolon, representing the
results of the two function calls of Query, respectively. Case 1 and Case 2 show
the results when updating occurs at point1. Case 3 and Case 4 are for point3.
Case 4 shows the result when updating is not performed.

While the dynamic updating occurs during the first call of the function Query
at point3 in Case 3, the output of the first call is not affected by updating. The
reason is that the updated content will not take effect until the next access after

304 J. Qian et al.

updating. Therefore, the outputs in Case 4 are exactly the same as the ones in
Case 5. Updating at point2 violates the safety policies. Therefore, there is no
case corresponding to point2. All the updating results searched are valid.

Model checking temporal properties. Dynamic updating is a temporal
behavior in that the properties before and after updating may be different. Such
differences can be formalized as temporal properties. Another attractive function
of KupC is to verify these temporal properties using LTL model checking.

As an example, we verify whether or not updating in the GPS exam-
ple can be finally deployed. First, we introduce an atomic proposition called
__update, which is false before updating and becomes true after the program
is updated. Given the command UPLTLMC = "TrueLtl ULtl __update" ./map,
KupC returns true, indicating that updating can be eventually performed.

Another property of interest is that the shortest path must become 7 after the
system is updated. It can be defined as an LTL formula __update->(<>(x==7)),
where variable x stores the value of the shortest path. Given the com-
mand UPLTLMC="’(’~Ltl__update’\’/Ltl’(’TrueLtlULtl’(’x==7’)’’)’’)’"./map,
KupC returns true, indicating that updating result is correct as expected.

4 Concluding Remarks and Ongoing Work

We have presented the design and implementation of an operational semantics-
based verification tool called KupC for dynamic software updating. Three case
studies showed the effectiveness of KupC for the formal analysis of the dynamic
software updating of C programs by simulation, state exploration, and LTL
model checking. Semantics-based formalization is promising in providing effec-
tive and practical solutions for guaranteeing the correctness of dynamic software
updating. For instance, Lounas et al. achieved formal verification of dynamic
updating of Java programs based on Java’s semantics [7]. Compared with their
approach, our approach is more general and extendable as K provides an ele-
gant semantic framework for the definition of programming languages and an
easy-to-use automated verification tool generation service.

KupC is at a good position for practical code-level verification of DSU. It is
directly applicable to the code and shows the feasibility of formalizing a dynamic
updating mechanism on the basis of the operational semantics of target program-
ming languages. To verify the dynamic updating of more complex and practical
programs, a complete semantics of C including those of standard libraries is
needed. The efficiency of KupC also needs to examine although the efficiency of
K has been validated [9]. There is ongoing work on these directions.

KupC has some limitations because of theoretical and practical challenges
in the formal verification of DSU. Theoretically, Gutpa et al. have shown the
undecidability of the reachability of updating points [3]. Another issue is that
there is no uniform definition of correctness of dynamic updating. The logical
correctness of dynamic updating depends on target programs and its formal-
ization relies on programmers’ interpretation. Although KupC does not require

KupC: A Formal Tool for Modeling and Verifying Dynamic Updating of C 305

any abstraction of target programs, we suspect that certain abstraction is nec-
essary for optimizing efficiency and scalability of the verification. For instance,
a function that is not modified in a new version can be considered atomic for
verification purpose. It is still an ongoing quest for an appropriate abstraction of
target programs for the scalability while maintaining the validity of verification.

References

1. Duggan, D.: Type-based hot swapping of running modules. In: ICFP 2001, vol. 36,
pp. 62–73. ACM (2001)

2. Ellison, C., Rosu, G.: An executable formal semantics of C with applications. In:
POPL 2012. pp. 533–544. ACM (2012)

3. Gupta, D., Jalote, P., Barua, G.: A formal framework for on-line software version
change. IEEE Trans. Soft. Eng. 22(2), 120–131 (1996)

4. Hayden, C.M., Magill, S., Hicks, M., Foster, N., Foster, J.S.: Specifying and verify-
ing the correctness of dynamic software updates. In: Joshi, R., Müller, P., Podelski,
A. (eds.) VSTTE 2012. LNCS, vol. 7152, pp. 278–293. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27705-4 22

5. Hicks, M., Nettles, S.: Dynamic software updating. ACM Trans. Prog. Lang. Syst.
27(6), 1049–1096 (2005)

6. Hoare, C.A.R.: Record of a workshop on programming languages for distributed
computing. In: Whitby-Strevens, C. (ed.) University of Warwick, p. 54 (1979)

7. Lounas, R., Mezghiche, M., Lanet, J.L.: A formal verification of dynamic updating
in a Java-based embedded system. IJCCBS 7(4), 303–340 (2017)

8. Neamtiu, I., Hicks, M., et al.: Practical dynamic software updating for C. In: PLDI
2006, pp. 72–83. ACM (2006)

9. Rosu, G.: K: a semantic framework for programming languages and formal analysis
tools. In: Dependable Software Systems Engineering, pp. 186–206. IOS Press (2017)

10. Seifzadeh, H., Abolhassani, H., Moshkenani, M.S.: A survey of dynamic software
updating. J. Softw. Evol. Process 25(5), 535–568 (2013)

11. Zhang, M., Ogata, K., Futatsugi, K.: An algebraic approach to formal analysis
of dynamic software updating mechanisms. In: APSEC 2012, pp. 664–673. IEEE
(2012)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-27705-4_22
http://creativecommons.org/licenses/by/4.0/

	KUPC: A Formal Tool for Modeling and Verifying Dynamic Updating of C Programs
	1 Introduction
	2 KUPC Design
	3 KUPC Usage
	4 Concluding Remarks and Ongoing Work
	References

