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Abstract. In this paper we address the challenge of cross-language clone
detection. Due to the rise of cross-language libraries and applications
(e.g., apps written for both Android and iPhone), it has become com-
mon for code fragments in one language to be ported over into another
language in an extension of the usual “copy and paste” coding methodol-
ogy. As with single-language clones, it is important to be able to detect
these cross-language clones. However there are many real-world cross-
language clones that existing techniques cannot detect.

We describe the first general, cross-language algorithm that combines
both structural and nominal similarity to find syntactic clones, thereby
enabling more complete clone detection than any existing technique. This
algorithm also performs comparably to the state of the art in single-
language clone detection when applied to single-language source code;
thus it generalizes the state of the art in clone detection to detect both
single- and cross-language clones using one technique.

1 Introduction

The clone detection problem has long been recognized by the community, with
many existing papers exploring different techniques for finding clones amongst
code written in a single language [5,13,14,21,22]. However, in recent years
an interesting twist has arisen due to the rising popularity of cross-language
libraries and applications: cross-language clones. Consider the parser genera-
tor ANTLR [3], which has runtimes that are written in C#, C++, Go, Java,
JavaScript, Python (2 and 3), and Swift. Also consider multi-platform mobile
applications, which are often ported between Java and Objective-C or Swift,
the languages used by Android and iPhone applications. In these kinds of set-
tings, clones can actually cross language boundaries: a fragment of code in one
language can be copied and massaged to conform to the syntax and seman-
tics of another language. Existing single-language clone detection techniques are
unable to effectively detect these sorts of cross-language clones. In this paper we
propose a method to detect cross-language clones and demonstrate that it (1)
finds cross-language clones that no existing method can detect; and (2) performs
comparably to existing single-language clone detectors for finding clones within
a corpus of single-language code sources. Therefore, our technique generalizes
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Trees._findAllNodes = function(t, index, findTokens, nodes) {
// check this node (the root) first
if(findTokens && (t instanceof TerminalNode)) {

if(t.symbol.type===index) {
nodes.push(t);

}
} else if(!findTokens && (t instanceof ParserRuleContext)) {

if(t.ruleIndex===index) {
nodes.push(t);

}
}
// check children
for(var i=0;i<t.getChildCount();i++) {

Trees._findAllNodes(t.getChild(i), index, findTokens, nodes);
}

};

template<typename T>
static void _findAllNodes(ParseTree *t, size_t index, bool findTokens, std::vector<T> &nodes) {

// check this node (the root) first
if (findTokens && is<TerminalNode *>(t)) {

TerminalNode *tnode = dynamic_cast<TerminalNode *>(t);
if (tnode->getSymbol()->getType() == index) {

nodes.push_back(t);
}

} else if (!findTokens && is<ParserRuleContext *>(t)) {
ParserRuleContext *ctx = dynamic_cast<ParserRuleContext *>(t);
if (ctx->getRuleIndex() == index) {

nodes.push_back(t);
}

}
// check children
for (size_t i = 0; i < t->children.size(); i++) {

_findAllNodes(t->children[i], index, findTokens, nodes);
}

}

Fig. 1. A JavaScript (top) and C++ (bottom) clone pair doing a pre-order search.

VerletParticle2D.prototype.setWeight = function(w){
this.weight = w;
this.invWeight =
(w !== 0) ? 1 / w : 0; //avoid divide by zero

};

public void setWeight(float w) {
weight = w;
invWeight = 1f / w;

}

Fig. 2. A JavaScript (left) and Java (right) clone pair setting the weight and inverse
weight of a particle in a graphics application. A bug-fix has been applied to the
JavaScript clone but not the Java clone.

the current state of the art in clone detection by extending it to allow for both
single-language and cross-language clone detection using a single technique.

To make this problem more concrete, consider Fig. 1, which shows a real-life
case (found during our evaluation described in Sect. 6) of code clones involving
C++ and JavaScript source code from the ANTLR parser generator [3]. To
demonstrate the importance of finding cross-language clones, consider Fig. 2,
which shows another real-life case (also found during our evaluation) of code
clones involving JavaScript and Java in which a bug-fix has been applied to
one of the clones but not the other. In addition, a quick search of the CVE
(Common Vulnerabilities and Exposures) database yields a vulnerability due
to incorrect message authentication checking that exists in multiple different
language implementations of the relevant code [9].

There are only four existing papers that we are aware of that introduce
new techniques for cross-language clone detection (discussed in more detail in
Sect. 2). That initial work has either focused on clones across languages that
share a common intermediate representation such as .NET [1,15] or has deviated
from classical clone detection and taken a more restricted, natural language-
based approach, sometimes relying on assumptions that may not be met in real
code [7,8]. None of that existing work would detect the clone examples given in
Figs. 1 and 2 without extensive modification.
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The main reason for these restrictions in previous work is that the syntac-
tic structure (i.e., parse trees) of different languages can be extremely different
even for code that, at the source level, seems similar. We demonstrate this phe-
nomenon later in this paper. In order to overcome this problem, previous work
has either restricted itself to languages with a common intermediate representa-
tion (thus enforcing that the syntactic structure is similar for similar code) or
abandoned structural matching entirely and looked only at the names of variables
and other user-defined abstractions (what we call nominal clone detection). We
observe that using purely structural or purely nominal matching is sub-optimal
in a cross-language setting, in that each can yield both false positives and false
negatives.

Our technique consists of (1) a method for enabling structural matching for
cross-language clones even in those cases where syntactic structure is different
(Sect. 4); and (2) a method for composing both structural and nominal matching
into a singular matcher, maintaining the strengths of each while mitigating their
individual weaknesses (Sect. 5). We have implemented our technique in a tool
called Fett1 that works at the granularity of function pairs; we use Fett to
empirically compare our proposed technique against existing techniques (Sect. 6).
We begin by describing related work and background information in Sect. 2 and
giving a high-level overview of our technique in Sect. 3.

2 Background and Related Work

The concept of clone detection is not new, and the different techniques involved
have been surveyed extensively [5,21]. Most existing non-semantics-based tech-
niques can be categorized into the classes of “structural,” “nominal,” or “hybrid,”
which we define below.

Before we begin, there is a bit of misleading terminology in the literature:
there exist many clone detection tools that are considered language-generic or
language-agnostic (e.g., [22]), but can only be configured to work for programs
written in a single language at a time. CCFinder [14], for example, can detect
clones for six different programming languages; however, the user cannot (outside
of naive text-only modes) truly cross language boundaries during a “language-
generic” clone detection phase.

2.1 What Exactly Is a Cross-Language Clone?

Intuitively, we consider a cross-language clone to be the same as any same-
language clone—two pieces of code that implement similar functionality—the
only difference is the setting. We highlight here what kinds of clones our tool
is able to find, and what kinds of clones we include in our evaluation based on
their classification (i.e., Type I, II, III or IV [24]).

1 Our implementation is located at http://www.cs.ucsb.edu/∼pllab under the
“Downloads” link.

http://www.cs.ucsb.edu/~pllab
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The usual code clone hierarchy does not translate well to a cross-language
setting: type I and type II clones [24] may not exist across languages because
of syntactic differences between languages (e.g., switch statements exist in C
but not in Python). In this paper, we present methods that discover syntactic
clones modulo the differences in language syntax, and we do this by creating
a correspondence between related but different constructs. We do not consider
semantic (type IV) clones that implement the same functionality in a different
way (e.g., quicksort vs. selection sort). Readers familiar with the standard clone
hierarchy can think of the clones that we find as type III clones generalized
across languages.

2.2 Structural Program Similarity

Intuitively, two programs (or subprograms) can be considered similar if they look
the same, disregarding identifier names—i.e., if their syntax trees have roughly
the same shape. We refer to structural clone detection as the process of taking
advantage of this similarity.

Same-language clone detection tools usually also consider identifier data,
and we are not aware of any purely structural cross-language clone detector. A
notable same-language tool that operates via structural similarity is Deckard,
which converts syntax trees into vectors for fast comparison [13].

Structural similarity is useful in all settings, but it is a hard problem in a
multi-language setting—all the hybrid structural/nominal methods we describe
below make some restriction on the languages involved. A major part of the
novelty of our technique is a method for purely structural matching across lan-
guages (though the final algorithm then combines structural with nominal (i.e.,
identifier-based) techniques for greater accuracy).

2.3 Nominal Program Similarity

Whereas structural similarity disregards identifiers and instead looks at code
shape, nominal similarity does the exact opposite. Nominal similarity relies on
the insight that similar code, especially copied and pasted snippets, will have
the same identifier names throughout, regardless of code structure.

Notable same-language clone detection tools that operate via nominal simi-
larity are CCFinder and SourcererCC, which compare program tokens [14,25].

Across Languages. Cheng et al. describe CLCMiner [8], the first cross-
language clone detection tool that does not require the languages involved to
translate to the same intermediate form. It compares revision histories (diffs)
in repository logs for cross-platform C# and Java programs; the tokens inside
commits are used to compute similarity scores. CLCMiner is the basis for the
Nominal algorithm defined in Sect. 5.1.

Cheng et al. study a different notion of nominal similarity in [7], where they
measure the effectiveness of token distributions in finding clones among cross-
platform mobile applications; they obtain a negative result for identifier names
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alone. Flores et al. [10] use natural language processing techniques to discover
cross language clones at the function level.

2.4 Hybrid Program Similarity

It is logical to combine structural and nominal similarity methods, as the results
they provide are complementary. A notable same-language, hybrid clone detec-
tion tool is NiCad, which performs its comparisons at the parse tree level [23].
Syntax tree-based comparison is quite common [4,27].

Tree similarity is computationally expensive [6], and it is more efficient to
linearize programs in some way; sequence similarity algorithms can then do
the comparison. Existing same-language work compares the tokens in the order
in which they appear in the parse tree [11], and we also take advantage of
linearization of full parse trees in this work.

Across Languages. Kraft et al. present C2D2 [15], the first cross-language
clone detection tool, for C# and Visual Basic programs. This work requires that
the languages involved be compiled to the same intermediate representation
(IR)—.NET IR in this case. From a graph derived from that IR, they create
sequences of tokens for subgraphs and use a Levenshtein distance-based token
similarity algorithm to compare them.

Al-Omari et al. build on Kraft et al.’s work and find clones by comparing
CIL intermediate code text [1]. Again, they are restricted to .NET languages.

This work. Our method is a hybrid method, works on any language with a
grammar definition, and relies on just the source code (in contrast to, e.g.,
CLCMiner which requires the existence of revision history). We linearize pre-
processed parse trees at the function level and compare the linearized sequences
in a novel way that generalizes Kraft et al.’s work and incorporates features of
Cheng et al.’s work.

2.5 CLCMiner

Our main comparison is with the only tool designed for cross-language clone
detection and capable of handling arbitrary languages: CLCMiner [8]. We pro-
vide further background on it here. CLCMiner is based on having the source
code in a version control system, and requires a revision history by design.
Section 5.1 gives a detailed explanation of our adaptation of CLCMiner. The
original CLCMiner algorithm works on diffs and lexes them, whereas our ver-
sion works on function parse trees.

We were not able to obtain access to the original CLCMiner source code
from the authors. In order to compare against this method, we implement our
own version which adapts CLCMiner to work with the entire text of a function
and have it calculate the distance metric above when given a function pair. Our
new implementation may perform better or worse than the original (which uses
revision history rather than function pairs) in certain cases.
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We incorporate CLCMiner’s distance metric in a novel way in Fett, and
show that our combination of structural and nominal information produces bet-
ter results. As we have adapted CLCMiner’s algorithm to work on functions
instead of diffs, it relies on having a parser to extract the functions and does
not rely on a version control system. We refer to our nominal-only adaptation
of CLCMiner’s algorithm as “Nominal” for the rest of the paper.

3 Overview

In this section we provide a high-level overview of Fett and provide justification
for some of our steps. We give an end-to-end example of our clone detection
process in our tech report [18]. Fett’s pipeline is:

1. Take as input a corpus of source code (which may exist in multiple languages);
2. Using existing ANTLR grammars, parse and create a separate parse tree for

each function (we currently handle C++, Java, and JavaScript);
3. Simplify parse trees that have an unnecessarily large depth;
4. Abstract the multilingual parse trees into a common representation to facili-

tate comparison;
5. Linearize the resulting trees using a preorder traversal;
6. Compare all linearized function pairs using a Smith-Waterman local sequence

alignment algorithm; and finally
7. Present the pairwise similarity scores to the user.

The following sections fill in the details of the structural and nominal aspects
of Fett’s cross-language clone detection process.

4 Structural Clone Detection

One key insight of our structural algorithm is that abstract syntax trees (ASTs),
which eliminate details in the concrete parse trees about how exactly the input
was parsed or what language it came from, tend to look more similar for similar
code even across languages. Unfortunately, ASTs are not part of a language’s
specification, and AST grammars and formats are implementation dependent.
We are not aware of any single compiler that has frontends for the variety of
languages that we compare. Our structural clone detection algorithm processes
reduced parse trees (Sect. 4.1) to eliminate nonessential details about parsing and
obtain a structure similar to ASTs.

Another source of disparity between trees generated by two grammars is that
the nonterminals are different. The other key insight of our structural algorithm
is that abstracting reduced parse trees by putting nonterminals in equivalence
classes (Sect. 4.2) strikes a balance between preserving necessary information
and smoothing out differences across languages.

Our structural algorithm proceeds by extracting functions from an abstracted
parse tree and then computes similarity scores between functions using the
Smith-Waterman local sequence alignment algorithm.
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Flattening a tree using a preorder traversal helps smooth out most remaining
inconsistencies between inter-language reduced parse trees. To demonstrate the
dissimilarities due to grammatical differences that preorder traversal removes,
see Fig. 3: a grammar that uses nested if statements will have a parse tree like
Fig. 3b, while a grammar that uses unnested if statements will look more like
Fig. 3c. As the else if cases become more numerous in the first grammar the
nesting becomes more severe, emphasizing the differences in the resulting parse
trees.

if ( exp ) block [else block] (G1)
if exp : block [elif exp : block]* [else block] (G2)

(a) Two different kinds of grammars for if statements.

G1 B1

G2 B2 E

if

if

(b) An example parse tree using the
nested if grammar (G1).

G1 B1 G2 B2 E

if

(c) An example parse tree using the
unnested if grammar (G2).

Fig. 3. Grammars and parse trees for nested vs. unnested if statements.

4.1 Precedence Woes

Some grammar definitions encode operator precedence into the grammar2,
whereas others use facilities provided by the parser generators to encode the
precedence. Direct encoding of precedence causes spurious chains of nontermi-
nals in the resulting parse tree, which would be removed when the parse tree is
converted to an AST. We collapse the chains of nonterminals encountered in a
parse tree for the direct encoding case to remove the chains and mitigate this
disparity between different styles of grammars. Figure 4 demonstrates the kinds
of issues that are apparent when a grammar hard-codes precedence—because
precedence in this case appears in the form of nested productions, we always
see “AdditiveExpression” even when there is only a multiplication expression
present; this will throw off any clone detector that is working directly on plain
parse trees.

If precedence is handled indirectly through the parser generator, then the
resulting parse tree is much closer to an AST. This is an example of an issue
that only arises in a cross-language setting, and which makes cross-language
clone detection strictly more difficult than same-language clone detection. We
condense any chains of nonterminals, and we refer to the parse trees after this
stage as reduced parse trees.

2 We encountered this only in the C++ grammar during our evaluation.
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· · ·

MultiplicativeExpression

MultiplicativeExpression
‘*’

PMExpression

CastExpression

UnaryExpression

PostfixExpression

PrimaryExpression

Literal

‘5’

AdditiveExpression

ConditionalExpression

Expression

PMExpression

CastExpression

UnaryExpression

PostfixExpression

PrimaryExpression

Literal

‘7’

AssignmentExpression

Fig. 4. A subtree of the original C++ parse tree for the text “5*7”.

4.2 Abstracting Parse Tree Nonterminals

Consider the two reduced parse trees for the expression binarySearch(array,
mid+1, high, x) in Figs. 5a and b. Although they look similar to the naked eye,
because the node names are different, even a tree edit distance algorithm would
say that the trees are not similar at all. We thus need to abstract the nonterminal
names while preserving essential information about the tree structure. After
performing this abstraction, we call the resulting parse trees abstracted parse
trees.

Primary

Primary

Primary

PrimaryPrimary

Literal

AdditiveExpression

ExpressionList

FunctionCall

(a) Reduced parse tree
from a Java parser .

IdentifierExpression

IdentifierExpression AdditiveExpression

ArgumentList

IdentifierExpression

IdentifierExpressionIdentifierExpression

NumericLiteral

ArgumentsExpression

(b) Reduced parse tree from a
JavaScript parser .

c2

c2

c2 c4

c2 c2

c3

c5

c1

(c) Abstraction of the trees in
Figures 5a and 5b .

Fig. 5. Reduced parse trees for expression binarySearch(array, mid+1, high, x) in
Java and JavaScript, and their abstraction. The terminals are omitted for simplicity.

Our method instead groups node types with similar meanings across lan-
guages, so that node types that “mean” similar things are in the same group.
To do this, we manually categorize node types into equivalence classes once
per pair of languages. For example, consider the equivalence classes c1 =
{FunctionCall, ArgumentsExpression}, c2 = {Primary, IdentifierExpression},
c3 = {ArgumentList, ExpressionList}, c4 = {NumericLiteral, Literal}, c5 =
{AdditiveExpression} and the set C = {c1, c2, c3, c4, c5}. After replacing each
node in Figs. 5a and b with its equivalence class in C, we end up with trees that
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are exactly the same (Fig. 5c). In this specific example the abstracted trees are
the same, though this is not always the case in practice.

We define the abstraction algorithm in two parts: EqClassMapOf(C) pro-
duces a map from each node to a symbol corresponding to its equivalence class.
Abstract(tree,map) does the abstraction by traversing the given tree bottom up
and applying the map. It removes the nonterminals which do not belong to any
equivalence class. When the abstraction algorithm removes a node, it connects
any children of the removed node to the removed node’s parent.

4.3 Sequence Alignment for Clone Detection

Linearizing the trees via a preorder traversal of the nodes will remove most
traces of the structural differences demonstrated in Fig. 3. Moreover, the state
of the art tree edit distance algorithms are not as scalable as sequence alignment
algorithms3. These observations led us to explore sequence alignment algorithms
as an alternative to tree-edit distance. Levenshtein distance is a popular choice
in this category. Smith-Waterman is strictly more general than Levenshtein dis-
tance, and it supports assigning weights to different elements in the sequence.
Hence, we use the Smith-Waterman algorithm on preordered trees to compute
similarity scores. We evaluate the precision and recall of both Smith-Waterman
and tree edit distance in Sect. 6 and observe that sequence alignment performs
better in terms of precision and scalability.

We convert function subtrees to sequences by computing the preorder traver-
sal. Finally, we execute Smith-Waterman using custom weights on each sequence
pair and normalize the resulting score using the normalization factor Z described
below. We chose the weights based on the hypothesis that certain nodes like con-
ditionals indicate important program structure, and should generally appear in
the same order in a cloned pair of functions; therefore, we assign higher weights
to penalize the function pairs in which this alignment does not occur. In the
algorithm, the function SmithWaterman(a, b,M, g) computes a similarity score
between two sequences a and b using the Smith-Waterman algorithm with sub-
stitution matrix M and linear gap penalty coefficient g; a detailed explanation
of these parameters can be found in [2].

Normalizing Smith-Waterman results. The result of the Smith-Waterman
algorithm depends on the size of the input, and longer sequence pairs have
higher scores. In order to find both short and long clones, we normalize the
resulting similarity score from the Smith-Waterman algorithm to neutralize the
bias towards longer clones.

We define the self-similarity score of a sequence a as the score assigned
to the pair (a, a) by the unnormalized Smith-Waterman algorithm; denote
this score S(a). We normalize score assigned to a pair (a, b) by 1

Z where
Z = max {S(a), S(b)}. Note that Z is an upper bound for the score obtained
by Smith-Waterman, and the score is equal to Z if and only if a = b. Thus,
3 APTED, the state of the art tree edit distance algorithm has a time complexity of

O(n3) [20] whereas the variant of Smith-Waterman algorithm we use is O(n2) [2].
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using the normalization factor 1
Z is useful if one is looking for similar whole

functions rather than looking for a small snippet in a larger piece of code.

5 Hybrid Algorithm

Combining nominal and structural clone detection in a cross-language setting
provides the best of both worlds, and mitigates any issues that running just one
detection method might have.

Identifier names carry some meaning about the programmer intent and give a
code snippet context. On the other hand, structure of code (conditionals, loops,
function calls etc.) also carry information about programmer intent. Without
this structural information, we might misidentify two pieces of code as clones.
Our hybrid algorithm is guided by structural information while consulting the
Nominal algorithm to use local context within structurally similar pieces of code.

5.1 Our Nominal Algorithm

We have adapted CLCMiner’s algorithm to work on functions as our purely
Nominal algorithm. For a given pair of functions (f1, f2), our nominal matching
algorithm consists of two parts.

The first part takes a function f , removes the comments and splits the tokens
on each non-letter character (such as underscores or dashes). It then splits the
camel case tokens into words and converts them to lowercase—each function
becomes a bag of words that is represented by a characteristic vector, which holds
the number of occurrences of each word. We denote the resulting characteristic
vector as v(f).

The second part of the algorithm computes a normalized distance between the
two characteristic vectors v1, v2 according to the formula d(v1, v2) = ‖v1−v2‖1

‖v1‖1+‖v2‖1

where ‖·‖1 is the �1 norm (i.e., the sum of the absolute values of every entry in
the vector). This algorithm computes a distance between two given functions; to
make it comparable to the other algorithms, we use 1 − d(v1, v2) as a similarity
score.

5.2 Full Algorithm

Our full algorithm is provided in our tech report [18]. It is a combination of the
structural and nominal algorithms: we linearize the parse trees, and consecutive
terminal nodes become bags of words. Nonterminals are compared using our
structural method, and bags of words are compared using our nominal method.

6 Evaluation

In this section we compare our work against existing work on both cross-language
and same-language clone detection.
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6.1 Implementation and Environment

We have implemented our tool Fett in Scala and used the ANTLR parser
framework as its front end, so that any language with an ANTLR grammar can
be easily connected.

To test whether Fett can handle same-language clone detection with similar
accuracy as specialized, language-specific tools, we configured NiCad 4.0 [23] to
work at the function-level granularity and experimented with configurations until
we found the best-performing one for our tests4.

Because we are comparing parse trees, we also want to determine how
well we compete against the state-of-the-art tree edit distance algorithms, thus
we compare one data set with APTED [19,20]. We normalize the similarities
using the method described in [17], and, as this normalization method requires
a metric distance, we could not introduce weights for matches. We can still
weight mismatches, though. We found that the parameters mismatch = 1, dele-
tion = insertion = 5, match = 0 gave us the best results overall.

We chose the threshold for ignored functions (defined in Sect. 4.3) to be
θ = 35 for every experiment, and the exact tolerance parameters are given below
for each case. We used the same set of equivalence classes with the same weights
for all cases: conditional, loop, return, and function call were all weighted 5;
assignments were weighted 2; and all other considered nodes were weighted 1.

Our experiments were run on a computer with an Intel i7 4790 3.6 GHz
processor. Fett, Structural, Tree Edit Distance, and Nominal were given 8 GB
maximum heap size and were set to use 4 threads.

6.2 Methodology

We used the standard statistical metrics of precision, recall, and F -measure to
quantitatively assess the effectiveness of our different techniques.

Due to the sheer amount of possible clone candidates in large projects, it
is difficult to manually obtain complete ground truth for clones in real-world
programs. Hence, we created two separate data sets for evaluation:

Manual programs set (handwritten set). We implemented a set of small
programs in different languages to create a setting in which we have complete
knowledge of whether a pair of functions are clones. Statistics about the code
are in Table 1.

Randomly sampled program set (large set). We chose four libraries that
have implementations in different languages and set the tolerance parameters5

defined in our algorithm (see [18]) to give the best results on a per-language
4 NiCad: threshold = 0.5, minsize = 4, maxsize = 2500, rename = blind, filter = none,

abstract= none, normalize = none.
5 For Fett: μ = 6 (match coefficient) and g = −4 (gap penalty) for the case of compar-

ing Java and JavaScript, and (μ, g) = (9,−1) for Java/C++ and JavaScript/C++,
and (8,−3) for Java/Java. The nominal multiplier was set to 2 for all but the
Java/C++ and JavaScript/C++ cases, where it was set to 3. For the Structural algo-
rithm: (7,−1) for JavaScript/Java, (8,−4) for Java/C++, (0.5,−2) for Java/Java,
and (9,−4) for JavaScript/C++.
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Table 1. Statistics of handwritten clones.

Language Pair LoC #Functions #Pairs #Clones

Java 201 12
132 11

JavaScript 177 11

Java 201 12
144 12

C++ 195 12

JavaScript 177 11
132 11

C++ 195 12

pair basis. We randomly sampled functions from the files with the same names
(ignoring extensions) and manually checked the pairs to create a sample with
ground truth—this is essentially the sampling strategy used by Cheng et al. [8]
applied to functions instead of diffs. We chose to reuse this sampling strategy
due to the manual nature of our evaluation, and because we only possess finite
human resources; it does not reflect the true distribution of clones, as function
clone pairs are unlikely to be chosen in a standard uniform random sample—
had we gone that route, our precision and recall scores would not have been
meaningful. We are not aware of a better solution to this problem.

The first three libraries considered for this set are: the ANTLR parser frame-
work, version 4 [3]; the toxiclibs computational design library [26]; and the ZXing
barcode image processing library [28]. We also considered two ports of the LAME
MP3 encoding library in different languages that were ported by different devel-
opers to assess the efficacy of clone detection tools in such a scenario: lamejs, a
JavaScript port [16]; and java-lame, a Java port [12]. Statistics about the libraries
are in Table 2.

Table 2. Statistics of libraries considered for evaluation. LoC: non-blank non-comment
lines of code, Fun’s: # of functions found in each project, Nont’l (Nontrivial) Fun’s:
# of functions whose reduced parse trees are > θ (the chosen threshold), Pairs: the #
of possible fun. pairs, Same-File Pairs: # of pairs of functions coming from files with
the same name (ignoring extensions), Sel’d: # of selected pairs, Runtime: total time
(H:M:S) to run our method.

Data set Library Lang. Pair LoC Fun’s Nont’l Fun’s Pairs Same-File Pairs Sel’d Runtime Clones

antlrj ANTLR Java 13,770 1,393 694 240,471 4,942 505 0:56:18 14
Java 13,770 1,393 694

antlrjsj ANTLR Java 13,770 1,393 694 281,070 6,240 663 0:25:01 45
JavaScript 7,323 728 405

antlrcppjs ANTLR C++ 15,766 1,222 480 194,400 3,762 752 0:17:11 17
JavaScript 7,323 728 405

toxic toxiclibs Java 36,178 3,734 2,156 5,004,076 11,637 1,060 3:01:12 63
JavaScript 36,976 4,108 2,321

zxing ZXing Java 38,968 2,659 1,689 684,045 1,388 254 2:10:51 45
C++ 22,784 866 405

lame java-lame Java 20,950 575 436 101,152 4,645 873 0:27:37 34
lamejs JavaScript 11,112 285 232
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6.3 Results

For our main set of tests, we compare Fett against (1) our purely Structural
algorithm (i.e., no token similarity), and (2) our Nominal algorithm. We also
apply the APTED tree edit distance algorithm combined with our abstraction
method on our handwritten data set; tree edit distance takes at least an order
of magnitude longer than the other tools, and we did not evaluate the large data
set using tree edit distance because of this and due to its poor performance on
the handwritten tests. We use NiCad on the Java-Java same-language case of
our large data set.

Cumulative clone ratios. We look at the graphs of cumulative clone distri-
butions to choose a good cut-off point for each of the three techniques. These
graphs were originally used in [8], and they are meant to give an intuition about
where a clone detector separates clones from non-clones.

Similarity vs. cumulative clone ratio graphs track the ratio of clones to non-
clones as the similarity score varies from 1.0 to 0. For example, at point 0.4
on the similarity axis, we plot the ratio of clones to non-clones of all samples
with similarity scores > 0.4. A successful clone detector would have a similarity
value at which there is a significant drop in this ratio, and that would create
the optimal cutoff point. A clone detector may not assign very high scores to
any pairs based on its similarity metric; in such cases, we start the plot from
the first nonempty bin. Figure 7 shows the cumulative clone ratios for antlrj and
toxic; graphs of other test cases are omitted because of space constraints, but
they are of similar overall shape. We chose a cutoff point for each clone detector
based on the drops from these graphs (e.g. we chose the cutoff point of 0.4 for
Fett’s Java/Java case). The relative shape of the graph is more important than
absolute scores—squishing or stretching the similarity scores only affects the
choice of the optimal cutoff point.

Handwritten test set. When evaluating the manually created (handwritten)
data set, we used the same parameters μ = 7, g = −2 overall for all pairs of func-
tions in the data set and considered the combined results for both Fett and the
Structural algorithm. Fett had its nominal multiplier set to 2. Figure 6 shows
the clone distributions of different clone detection methods for the handwritten
program set; and precision, recall, and F -measure (harmonic mean of precision
and recall) for this set are given in Table 3. Fett and the Structural algorithm
had a cutoff of 0.5, and the Nominal algorithm’s cutoff was 0.6.

Handwritten test set discussion. The table and the figures paint a similar
picture. Both Fett and the Structural algorithm seem to perform the best
on this data set—the graphs for the higher similarity scores have a high clone
ratio, and there is a sharp decline visible in both graphs as the similarity score
is allowed to lower. The Nominal algorithm has a less sharp drop, and this
indicates that it is assigning mid-range similarity scores with low precision. It is
also notable that tree edit distance does so poorly; we believe that this is because
we are not allowed to give weights to matches, as described above.
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Fig. 6. Cumulative clone ratio
distribution for handwritten pro-
grams. Results of Fett and struc-
tural coincide.

Table 3. Precision, recall, and F -measure for
handwritten program set.

Data set Method Precision Recall F -measure

Handwritten

Fett 1.000 0.970 0.985

Structural 1.000 0.970 0.985

Nominal 0.886 0.939 0.912

Tree Edit Dist. 0.821 0.697 0.754

Large test set. We now present and discuss all the cross-language results for
our large test set. The same-language case is different from the cross-language
cases, so the reader is asked to consult Fig. 7b, which is indicative of all the
cross-language cases, and not Fig. 7a.

Cutoffs were chosen on a per-language pair basis that maximized a given
tool’s score. For Fett, for the three JavaScript/Java test cases and the
Java/C++ test case, we used a cutoff of 0.4, and the rest used a cutoff of 0.5.
For the Structural algorithm, we used a cutoff of 0.6 for JavaScript/Java, 0.5
for Java/C++ and JavaScript/C++, and 0.4 for Java/Java. For the Nominal
algorithm, we used a cutoff of 0.5 for JavaScript/C++, and 0.6 for the rest.

Figure 8 shows precision, recall and F -measure of all the tools we compared
for each data set and provides a visual and quantitative assessment of efficacy
of all the techniques.

Large test set discussion. Clone ratios relate most closely to the precision
scores for each data set, and from the results it appears that the Structural
algorithm generally has the upper hand in this area—applying the intuition
described above, we see that the Structural algorithm seems to cut off at the
sharpest angle in most cases. It makes sense why this is the case, as pieces of
code that look similar across languages are generally prime candidates for clones.

Precision is of course not the whole story. It is clear that Fett is able to take
the best of both the nominal and structural worlds, and the F -measure is always
the highest. When it comes to Structural’s results, the toxiclibs case is an outlier,
where we found that there were more cases of the structural differences; Fett’s
hybrid structural/nominal algorithm was able to make up for this, though.

Same-language test case. To assess performance on same-language clones,
we compared our tool with NiCad on the Java version of ANTLR. Returning to
the same figures, the antlrj case is quite similar to the other language pairs in
terms of precision, recall, and F -measure, which demonstrates that our tool is
capable of holding its ground in a same-language setting.

Fett performs slightly worse (by one percentage point in terms of F -
measure) than NiCad. This result is not surprising because NiCad uses more
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Fig. 7. Similarity vs. cumulative clone ratio for the samples from the large open-source
program set.

Fig. 8. Precision, recall and F -measure of clone detection tools on the large program
set.

information about the code whereas we deliberately discard some information
by abstracting parse trees to work in a cross-language setting. Even with our fil-
tering of parse trees, Fett’s F -measure score is very close, and this shows that
our tool is capable of producing similar results to a dedicated same-language
tool.

Overall results. We observe that the Fett’s hybrid algorithm, in terms of F -
measure, outperforms both the Nominal algorithm and the Structural algorithm
consistently in our large test set experiments.

Limitations. Fett may have difficulty scaling to repositories with large num-
bers of large functions—a run of Fett on the entire toxiclibs library (comparing
every function pair, not just same file pairs) takes 5.13 h—and so further improve-
ments will be required to enable such a target. One possible future direction for
improvements could be to develop semi-automated solutions where we have the
user use her domain knowledge and pick out the files or functions to compare
beforehand, or the user can prune the search space by telling the tool which
modules are unrelated.

7 Conclusion

We have presented Fett, a hybrid structural/nominal clone detection method
that is capable of operating across programming languages and that is generic in
the sense that it does not require any languages involved to belong to the same
language family. It is syntax-based, uses ready-made grammar specifications, and
requires minimal manual effort—the keys to the process are syntax abstraction
and sequence alignment. We have provided a two-part evaluation of Fett, and
we empirically demonstrate on multiple test sets that Fett is accurate in terms
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of the standard metrics of precision and recall. We also confirm that our method
is on a par with previous work when it comes to same-language clone detection,
thus proving that it is strictly more general than single-language methods.
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