
Checking Observational Purity
of Procedures

Himanshu Arora1, Raghavan Komondoor1, and G. Ramalingam2(B)

1 Indian Institute of Science, Bangalore, India
{himanshua,raghavan}@iisc.ac.in

2 Microsoft Research, Bellevue, WA, USA
grama@microsoft.com

Abstract. Verifying whether a procedure is observationally pure (that
is, it always returns the same result for the same input argument) is
challenging when the procedure uses mutable (private) global variables,
e.g., for memoization, and when the procedure is recursive.

We present a deductive verification approach for this problem. Our
approach encodes the procedure’s code as a logical formula, with recur-
sive calls being modeled using a mathematical function symbol assum-
ing that the procedure is observationally pure. Then, a theorem prover is
invoked to check whether this logical formula agrees with the function
symbol referred to above in terms of input-output behavior for all argu-
ments. We prove the soundness of this approach.

We then present a conservative approximation of the first approach
that reduces the verification problem to one of checking whether a
quantifier-free formula is satisfiable and prove the soundness of the sec-
ond approach.

We evaluate our approach on a set of realistic examples, using the
Boogie intermediate language and theorem prover. Our evaluation shows
that the invariants are easy to construct manually, and that our approach
is effective at verifying observationally pure procedures.

1 Introduction

A procedure in an imperative programming language is said to be observationally
pure (OP) if for each specific argument value it has a specific return value, across
all possible sequences of calls to the procedure, irrespective of what other code
runs between these calls. In other words, the input-output behavior of an OP
procedure mimics a mathematical function.

A deterministic procedure that does not read any pre-existing state other
than its arguments is trivially OP. However, it is common for procedures to
update and read global variables, typically for performance optimization, while
still being OP. In this paper, we focus on the problem of checking observational
purity of procedures that read and write global variables, especially in the pres-
ence of recursion, which makes the problem harder.

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 228–243, 2019.
https://doi.org/10.1007/978-3-030-16722-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_13

Checking Observational Purity of Procedures 229

1

2 int g := −1;
3 int lastN := 0 ;
4 int factCache (int n) {
5 i f (n <= 1) {
6 r e s u l t := 1 ;
7 } else i f (g != −1 && n == lastN) {
8 r e s u l t := g ;
9 } else {

10 g = n ∗ factCache (n − 1) ;
11 lastN = n ;
12 r e s u l t := g ;
13 }
14 return r e s u l t ;
15 }
Listing 1.1. Procedure factCache: returns n!, and memoizes most recent result.

Motivating Example. We use procedure ‘factCache’ in Listing 1.1 as our run-
ning example. It returns n! for a given argument n, and caches the return value of
the most recent call. It uses two private global variables, g and lastN, to imple-
ment the caching. g is initialized to −1. After the first call to the procedure
onwards, g stores the return value of the most recent call, and lastN stores the
argument of the most recent call. Clearly this procedure is OP, and mimics the
input-output behavior of a factorial procedure that does not cache any results.

Proposed Approach. Our approach is based on Floyd-Hoare logic, which typ-
ically requires a specification of the procedure to be provided. One candidate
specification would be a full functional specification of the procedure. If the user
specifies that factCache realizes n!, then the verifier could replace Line 10 in
the code with ‘g = n * (n− 1)!’. This, on paper, is sufficient to assert that
Line 12 always assigns n! to result. However, to establish that Line 8 also does
the same, an invariant would need to be provided that describes the possible
values of g before an invocation to the procedure. In our example, a suitable
invariant would be ‘(g = −1) ∨ (g = lastN!)’. The verifier would also need to
verify that at the procedure’s exit the invariant is re-established. Lines 10–12,
with the recursive call replaced by (n− 1)!, suffices on paper to re-establish the
invariant.

The candidate approach described above, while plausible, suffers from two
weaknesses. First, a mathematical specification of the function being computed
may be complex and non-trivial to write. (Note, for example, that factCache is
defined for negative integers while factorial is not. Thus, the previous candidate
specification is actually incorrect for this edge case.) Second, the underlying
theorem prover would need to prove complex arithmetic properties, e.g., that n
* (n− 1)! is equal to n!. Complex proofs such as this may be beyond the scope
of many existing theorem provers.

Our key insight is to sidestep the challenges mentioned by introducing a
function symbol, say factCache, and replacing the recursive call for the purposes
of verification with this function symbol. (Note that we reuse the same sym-
bol for two purposes, which may be slightly confusing here. One denotes the

230 H. Arora et al.

procedure name, while the other denotes a function symbol for use in a logi-
cal formula. The italicized name here denotes the function symbol.) Intuitively,
factCache represents the mathematical function that the given procedure mim-
ics if the procedure is OP. In our example, Line 10 would become ‘g = n *
factCache(n − 1)’. This step needs no human involvement. The approach needs
an invariant; however, in a novel manner, we allow the invariant also to refer
to factCache. In our example, a suitable invariant would be ‘(g = −1) ∨ (g =
lastN * factCache(lastN− 1))’. This sort of invariant is relatively easy to con-
struct; e.g., a human could arrive at it just by looking at Line 2 and with a
local reasoning on Lines 10 and 11. Given this invariant, (a) a theorem prover
could infer that the condition in Line 7 implies that Line 8 necessarily copies
the value of ‘n * factCache(n− 1)’ into ‘result’. Due to the transformation to
Line 10 mentioned above, (b) the theorem prover can infer that Line 12 also
does the same. Note that since these two expressions are syntactically identical,
a theorem prover can easily establish that they are equal in value. Finally, since
Line 6 is reached under a different condition than Lines 8 and 12, the verifier
has finished establishing that the procedure always returns the same expression
in n for any given value of n.

Similarly, using the modified Line 10 mentioned above and from Line 11, the
prover can re-establish that g is equal to ‘lastN * factCache(lastN − 1)’ when
control reaches Line 12. Hence, the necessary step of proving the given invariant
to be a valid invariant is also complete.

Note, the effectiveness of the approach depends on the nature of the given
invariant. For instance, if the given invariant was ‘(g = −1) ∨ (g = lastN!)’, which
is also technically correct, then the theorem prover may not be able to establish
that in Lines 8 and 12 the variable ‘g’ always stores the same expression in n.
However, it is our claim that in fact it is the invariant ‘(g =− 1) ∨ (g = lastN *
factCache(lastN− 1))’ that is easier to infer by a human or by a potential tool,
as justified by us two paragraphs above.

Salient Aspects of Our Approach. This paper makes two significant con-
tributions. First, it tackles the circularity problem that arises due to the use
of a presumed-to-be OP procedure in assertions and invariants and the use of
these invariants in proving the procedure to be OP. This requires us to prove
the soundness of an approach that simultaneously verifies observational purity
as well the validity of invariants (as they cannot be decoupled).

Secondly, we show that a direct approach to this verification problem (which
we call the existential approach) reduces it to a problem of verifying that a
logical formula is a tautology. The structure of the generated formula, however,
makes the resulting theorem prover instances hard. We show how a conservative
approximation can be used to convert this hard problem into an easier problem
of checking satisfiability of a quantifier-free formula, which is something within
the scope of state-of-the-art theorem provers.

The most closely related previous approaches are by Barnett et al. [1,2], and
by Naumann [3]. These approaches check observational purity of procedures that
maintain mutable global state. However, none of these approaches use a function

Checking Observational Purity of Procedures 231

L ∈ Lib ::= g := c P

P ∈ Proc ::= p (x) { S; return y }
S ∈ Stmt ::= x := e | x := p(y) | S ; S | if (e) then S else S

e ∈ Expr ::= c | x | e op e | unop e

op ∈ Ops ::= + | - | / | * | % | > | < | == | ∧ | ∨
unop ∈ UnOps ::= ¬

x, y ∈ LocalId ∪ GlobalId, g ∈ GlobalId, c ∈ V, p ∈ ProcId

Fig. 1. Programming language syntax and meta-variables

symbol in place of recursive calls or within invariants. Therefore, it is not clear
that these approaches can verify recursive procedures. Barnett et al., in fact,
state “there is a circularity - it would take a delicate argument, and additional
conditions, to avoid unsoundness in this case”. To the best of our knowledge
ours is the first paper to show that it is feasible to check observational purity
of procedures that maintain mutable global state for optimization purposes and
that make use of recursion.

Being able to verify that a procedure is OP has many potential applications.
The most obvious one is that OP procedures can be memoized. That is, input-
output pairs can be recorded in a table, and calls to the procedure can be
elided whenever an argument is seen more than once. This would not change the
semantics of the overall program that calls the procedure, because the procedure
always returns the same value for the same argument (and mutates only private
global variables). Another application is that if a loop contains a call to an OP
procedure, then the loop can be parallelized (provided the procedure is modified
to access and update its private global variables in a single atomic operation).

The rest of this paper is structured as follows. Section 2 introduces the core
programming language that we address. Section 3 provides formal semantics
for our language, as well as definitions of invariants and observational purity.
Section 4 describes our approach formally. Section 5 discusses an approach for
generating an invariant automatically in certain cases. Section 6 describes eval-
uation of our approach on a few realistic examples. Section 7 describes related
work. More details about the proofs and the examples can be found in [4].

2 Language Syntax

In this paper, we assume that the input to the purity checker is a library con-
sisting of one or more procedures, with shared state consisting of one or more
variables that are private to the library. We refer to these variables as “global”
variables to indicate that they retain their values across multiple invocations of
the library procedures, but they cannot be accessed or modified by procedures
outside the library (that is, the clients of the library).

In Fig. 1, we present the syntax of a simple programming language that we
address in this paper. Given the foundational focus of this work, we keep the

232 H. Arora et al.

programming language very simple, but the ideas we present can be generalized.
A return statement is required in each procedure, and is permitted only as
the last statement of the procedure. The language does not contain any looping
construct. Loops can be modelled as recursive procedures. The formal parameters
of a procedure are readonly and cannot be modified within the procedure. We
omit types from the language. We permit only variables of primitive types. In
particular, the language does not allow pointers or dynamic memory allocation.
Note that expressions are pure (that is, they have no side effects) in this language,
and a procedure call is not allowed in an expression. Each procedure call is
modelled as a separate statement.

For simplicity of presentation, without loss of conceptual generality, we
assume that the library consists of a single (possibly recursive) procedure, with
a single formal parameter. In the sequel, we will use the symbol p (as a metavari-
able) to represent this library procedure, p (as a metavariable) to represent the
name of this procedure, and will assume that the name of the formal parameter
is n. If the procedure is of the form “p (n) { S; return r }”, we refer to r
as the return variable, and refer to “S; return r” as the procedure body and
denote it as body(p). The library also contains, outside of the procedure’s code,
a sequence of initializing declarations of the global variables used in the proce-
dure, of the form “g1 := c1; . . .; gN := cN”. These initializations are assumed
to be performed once during any execution of the client application, just before
the first call to the procedure p is placed by the client application.

Throughout this paper we use the word ‘procedure’ to refer to the library
procedure p, and use the word ‘function’ to refer to a mathematical function.

3 A Semantic Definition of Purity

In this section, we formalize the input-output semantics of the procedure p as a
relation �p, where n �p r indicates that an invocation of p with input n may
return a result of r. The procedure is defined to be observationally pure if the
relation �p is a (partial) function: that is, if n �p r1 and n �p r2, then r1 = r2.

The object of our analysis is a single-procedure library, not the entire
(client) application. (Our approach can be generalized to handle multi-procedure
libraries.) The result of our analysis is valid for any client program that uses the
procedure/library. The only assumptions we make are: (a) The shared state
used by the library (the global variables) are private to the library and cannot
be modified by the rest of the program, and (b) The client invokes the library
procedures sequentially: no concurrent or overlapping invocations of the library
procedures by a concurrent client are permitted.

The following semantic formalism is motivated by the above observations. It
can be seen as the semantics of the so-called “most general sequential client”
of procedure p, which is the program: while (*) x = p (random());. The
executions (of p) produced by this program include all possible executions (of
p) produced by all sequential clients.

Let G denote the set of global variables. Let L denote the set of local variables.
Let V denote the set of numeric values (that the variables can take). An element

Checking Observational Purity of Procedures 233

Fig. 2. A small-step operational semantics for our language, represented as a relation
σ1 →p σ2. A state σi is a configuration of the form ((S, ρ�)γ, ρg) where S captures
statements to be executed in current procedure, ρ� assigns values to local variables, γ
is the call-stack (excluding current procedure), and ρg assigns values to global variables.

ρg ∈ ΣG = G ↪→ V maps global variables to their values. An element ρ� ∈
ΣL = L ↪→ V maps local variables to their values. We define a local continuation
to be a statement sequence ending with a return statement. We use a local
continuation to represent the part of the procedure body that still remains to
be executed. Let ΣC represent the set of local continuations. The set of runtime
states (or simply, states) is defined to be (ΣC × ΣL)∗ × ΣG, where the first
component represents a runtime stack, and the second component the values of
global variables. We denote individual states using symbols σ, σ1, σi, etc. The
runtime stack is a sequence, each element of which is a pair (S, ρ�) consisting
of the remaining procedure fragment S to be executed and the values of local
variables ρ�. We write (S, ρ�)γ to indicate a stack where the topmost entry is
(S, ρ�) and γ represents the remaining part of the stack.

We say that a state ((S, ρ�)γ, ρg) is an entry-state if its location is at the
procedure entry point (i.e., if S is the entire body of the procedure), and we
say that it is an exit-state if its location is at the procedure exit point (i.e., if S
consists of just a return statement).

234 H. Arora et al.

A procedure p determines a single-step execution relation →p, where σ1 →p

σ2 indicates that execution proceeds from state σ1 to state σ2 in a single step.
Figure 2 defines this semantics. The semantics of evaluation of a side-effect-free
expression is captured by a relation (ρ, e) ⇓ v, indicating that the expression e
evaluates to value v in an environment ρ (by environment, we mean an element of
(G ∪ L) ↪→ V). We omit the definition of this relation, which is straightforward.
We use the notation ρ1 � ρ2 to denote the union of two disjoint maps ρ1 and ρ2.

Note that most rules captures the usual semantics of the language constructs.
The last two rules, however, capture the semantics of the most-general sequential
client explained previously: when the call stack is empty, a new invocation of
the procedure may be initiated (with an arbitrary parameter value).

Note that all the following definitions are parametric over a given procedure
p. E.g., we will use the word “execution” as shorthand for “execution of p”.

We define an execution (of p) to be a sequence of states σ0σ1 · · · σn such that
σi →p σi+1 for all 0 ≤ i < n. Let σinit denote the initial state of the library;
i.e., this is the element of ΣG that is induced by the sequence of initializing
declarations of the library, namely, “g1 := c1; . . .; gN := cN”. We say that an
execution σ0σ1 · · · σn is a feasible execution if σ0 = σinit. Note, intuitively, a fea-
sible execution corresponds to the sequence of states visited within the library
across all invocations of the library procedure over the course of a single exe-
cution of the most-general client mentioned above; also, since the most-general
client supplies a random parameter value to each invocation of p, in general
multiple feasible executions of the library may exist.

We define a trace (of p) to be a substring π = σ0 · · · σn of a feasible execution
such that: (a) σ0 is entry-state (b) σn is an exit-state, and (c) σn corresponds
to the return from the invocation represented by σ0. In other words, a trace is a
state sequence corresponding to a single invocation of the procedure. A trace may
contain within it nested sub-traces due to recursive calls, which are themselves
traces. Given a trace π = σ0 · · · σn, we define initial(π) to be σ0, final(π) to be
σn, input(π) to be value of the input parameter in initial(π), and output(π) to
be the value of the return variable in final(π).

We define the relation �p to be {(input(π), output(π)) | π is a trace of p}.

Definition 1 (Observational Purity). A procedure p is said to be observa-
tionally pure if the relation �p is a (partial) function: that is, if for all n, r1,
r2, if n �p r1 and n �p r2, then r1 = r2.

Logical Formula and Invariants. Our methodology makes use of logical for-
mulae for different purposes, including to express a given invariant. Our logical
formulae use the local and global variables in the library procedure as free vari-
ables, use the same operators as allowed in our language, and make use of uni-
versal as well as existential quantification. Given a formula ϕ, we write ρ |= ϕ to
denote that ϕ evaluates to true when its free variables are assigned values from
the environment ρ.

Checking Observational Purity of Procedures 235

As discussed in Sect. 1, one of our central ideas is to allow the names of the
library procedures to be referred to in the invariant; e.g., our running example
becomes amenable to our analysis using an invariant such as ‘(g =−1) ∨ (g =
lastN * factCache(lastN − 1))’. We therefore allow the use of library procedure
names (in our simplified presentation, the name p) as free variables in logical
formulae. Correspondingly, we let each environment ρ map each procedure name
to a mathematical function in addition to mapping variables to numeric values,
and extend the semantics of ρ |= ϕ by substituting the values of both variables
and procedure names in ϕ from the environment ρ.

Given an environment ρ, a procedure name p, and a mathematical function
f , we will write ρ[p 	→ f] to indicate the updated environment that maps p to
the value f and maps every other variable x to its original value ρ[x]. We will
write (ρ, f) |= ϕ to denote that ρ[p 	→ f] |= ϕ.

Given a state σ = ((S, ρ�)γ, ρg), we define env(σ) to be ρ� � ρg, and given a
state σ = ([], ρg), we define env(σ) to be just ρg. We write (σ, f) |= ϕ to denote
that (env(σ), f) |= ϕ. For any execution or trace π, we write (π, f) |= ϕ if for
every entry-state and exit-state σ in π, (σ, f) |= ϕ. We now introduce another
definition of observational purity.

Definition 2 (Observational Purity wrt an Invariant). Given an invari-
ant ϕinv, a library procedure p is said to satisfy pure(ϕinv) if there exists a
function f such that for every trace π of p, output(π) = f(input(π)) and
(π, f) |= ϕinv.

It is easy to see that if procedure p satisfies pure(ϕinv) wrt any given candidate
invariant ϕinv, then p is observationally pure as per Definition 1.

4 Checking Purity Using a Theorem Prover

In this section we provide two different approaches that, given a procedure p
and a candidate invariant ϕinv, use a theorem prover to check conservatively
whether procedure p satisfies pure(ϕinv).

4.1 Verification Condition Generation

We first describe an adaptation of standard verification-condition generation
techniques (e.g., see [5]) that we use as a common first step in both our
approaches. Given a procedure p, a candidate invariant ϕinv, our goal is to
compute a pair (ϕpost, ϕvc) where ϕpost is a postcondition describing the state
that exists after an execution of body(p) starting from a state that satisfies
ϕinv, and ϕvc is a verification-condition that must hold true for the execution
to satisfy its invariants and assertions.

We first transform the procedure body as below to create an internal repre-
sentation that is input to the postcondition and verification condition generator.
In the internal representation, we allow the following extra forms of statements
(with their usual meaning): havoc(x), assume e, and assert e.

236 H. Arora et al.

1. For any assignment statement “x := e” where e contains x, we introduce a
new temporary variable t and replace the assignment statement with “t :=
e; x := t”.

2. For every procedure invocation “x := p(y)”, we first ensure that y is a local
variable (by introducing a temporary if needed). We then replace the state-
ment by the code fragment “assert ϕinv; havoc(g1); ... havoc(gN);
assume ϕinv∧ x = p(y)”, where g1 to gN are the global variables.
Note that the procedure call has been eliminated, and replaced with an
“assume” expression that refers to the function symbol p. In other words,
there are no procedure calls in the transformed procedure.

3. We replace the “return x” statement by “assert ϕinv”. Note that we inten-
tionally do not assert that the return value equals p(n).

Let TB(p, ϕinv) denote the transformed body of procedure p obtained as above.

post(ϕpre, x := e) = (∃x.ϕpre) ∧ (x = e) (if x �∈ vars(e))
post(ϕpre, havoc(x)) = ∃x.ϕpre

post(ϕpre, assume e) = ϕpre ∧ e

post(ϕpre, assert e) = ϕpre

post(ϕpre, S1; S2) = post(post(ϕpre, S1), S2)
post(ϕpre, if e then S1 else S2) = post(ϕpre ∧ e, S1) ∨ post(ϕpre ∧ ¬e, S2)

vc(ϕpre, assert e) = (ϕpre ⇒ e)
vc(ϕpre, S1; S2) = vc(ϕpre, S1) ∧ vc(post(ϕpre, S1), S2)
vc(ϕpre, if e then S1 else S2) = vc(ϕpre ∧ e, S1) ∧ vc(ϕpre ∧ ¬e, S2)
vc(ϕpre, S) = true(for all other S)

postvc(p, ϕinv) = (post(ϕinv,TB(p, ϕinv)),vc(ϕinv,TB(p, ϕinv)) ∧ (init(p) ⇒ ϕinv))

Fig. 3. Generation of verification-condition and postcondition.

We then compute postconditions as formally described in Fig. 3. This lets us
compute for each program point 	 in the procedure, a condition ϕ� that describes
what we expect to hold true when execution reaches 	 if we start executing the
procedure in a state satisfying ϕinv and if every recursive invocation of the
procedure also terminates in a state satisfying ϕinv. We compute this using the
standard rules for the postcondition of a statement. For an assignment statement
“x := e”, we use existential quantification over x to represent the value of x prior
to the execution of the statement. If we rename these existentially quantified
variables with unique new names, we can lift all the existential quantifiers to
the outermost level. When transformed thus, the condition ϕ� takes the form
∃x1 · · · xn.ϕ, where ϕ is quantifier-free and x1, · · · , xn denote intermediate values
of variables along the execution path from procedure-entry to program point 	.

We compute a verification condition ϕvc that represents the conditions we
must check to ensure that an execution through the procedure satisfies its obli-
gations: namely, that the invariant holds true at every call-site and at procedure-
exit. Let 	 denote a call-site or the procedure-exit. We need to check that

Checking Observational Purity of Procedures 237

1 g := −1;
2 lastN := 0 ;
3 factCache (n) {
4 i f (n <= 1) {
5 r e s u l t := 1 ;
6 } else i f (g != −1 && n == lastN) {
7 r e s u l t := g ;
8 } else {
9 t1 := n−1;

10 // t2 := factCache (t1) ;

11 a s s e r t ϕinv ;
12 havoc (g) ; havoc (lastN) ;

13 assume ϕinv∧ (t2 = factCache (t1)) ;
14 g := n ∗ t2 ;
15 lastN := n ;
16 r e s u l t := g ;
17 }
18 // return r e s u l t ;

19 a s s e r t ϕinv ;
20 }

Listing 1.2. Procedure factCache from Listing 1.1 transformed to incorporate a
supplied candidate invariant ϕinv.

ϕ� ⇒ ϕinv holds. Thus, the generated verification condition essentially consists
of the conjunction of this check over all call-sites and procedure-exit.

Finally, the function postvc computes the postcondition and verification
condition for the entire procedure as shown in Fig. 3. (Thus, it returns a pair of
formulae.) Note that this function also adds the check that the initial state must
satisfy ϕinv to the verification condition (as the basis condition for induction).
init(p) is basically the formula “g1 = c1 ∧ . . . gN = cN” (see Sect. 2).

Example. We now illustrate the postcondition and verification condition gener-
ated from our factorial example presented in Listing 1.1. Listing 1.2 shows the
example expressed in our language and transformed as described earlier (using
function TB), using a supplied candidate invariant ϕinv.

Figure 4 illustrates the computation of postcondition and verification condi-
tion from this transformed example. In this figure, we use ϕpre

cs to denote the
precondition computed to hold just before the recursive callsite, and ϕpost

cs to
denote the postcondition computed to hold just after the recursive callsite. The
postcondition ϕpost (at the end of the procedure body) is itself a disjunction of
three path-conditions representing execution through the three different paths
in the program. In this illustration, we have simplified the logical conditions
by omitting useless existential quantifications (that is, any quantification of the
form ∃x.ψ where x does not occur in ψ). Note that the existentially quantified
g and lastN in ϕpost

cs denote the values of these globals before the recursive call.
Similarly, the existentially quantified g and lastN in ϕpath

3 denote the values of
these globals when the recursive call terminates, while the free variables g and
lastN denote the final values of these globals.

238 H. Arora et al.

init(p) = (g = -1) ∧ (lastN = 0)

ϕpath
1 = ϕinv ∧ (n <= 1) ∧ (result = 1)

ϕpath
2 = ϕinv ∧ ¬(n <= 1) ∧ (g != 1) ∧ (n = lastN) ∧ (result = g)

ϕpre
cs = ϕinv ∧ ¬(n <= 1) ∧ ¬((g != 1) ∧ (n = lastN)) ∧ (t1 = n-1)

ϕpost
cs = (∃g∃lastN ϕpre

cs) ∧ ϕinv ∧ (t2 = factCache (t1))

ϕpath
3 = (∃g∃lastN ϕpost

cs) ∧ (g = n * t2) ∧ (last N = n) ∧ (result = g)

ϕpost = ϕpath
1 ∨ ϕpath

2 ∨ ϕpath
3

ϕvc = (ϕpre
cs ⇒ ϕinv) ∧ (ϕpost ⇒ ϕinv) ∧ (init(p) ⇒ ϕinv)

Fig. 4. The different formulae computed from the procedure in Listing 1.2 by our post-
condition and verification-condition computation.

4.2 Approach 1: Existential Approach

Let p be a procedure with input parameter n and return variable r. Let
postvc(p, ϕinv) = (ϕpost, ϕvc). Let ψe denote the formula ϕvc ∧ (ϕpost ⇒ (r =
p(n))). Let x denote the sequence of all free variables in ψe except for p. We
define ea(p, ϕinv) to be the formula ∀x.ψe.

In this approach, we use a theorem prover to check whether ea(p, ϕinv)
is satisfiable. As shown by the following theorem, satisfiability of ea(p, ϕinv)
establishes that p satisfies pure(ϕinv).

Theorem 1. A procedure p satisfies pure(ϕinv) if ∃p.ea(p, ϕinv) is a tautology
(which holds iff ea(p, ϕinv) is satisfiable).

Proof. Note that p is the only free variable in ea(p, ϕinv). Assume that [p 	→ f]
is a satisfying assignment for ∀x.ψe. We show that for every feasible execu-
tion π: (P1) (π, f) � ϕinv, and (P2) for every trace π′ inside π, output(π′) =
f(input(π′)). This implies that p satisfies pure(ϕinv).

In particular, for any feasible execution π, we prove by induction over the
execution steps in π that

1. For any entry state σ in π, (σ, f) � ϕinv.
2. For any exit state σ in π, (σ, f) � ϕinv.
3. For any exit state σ in π, if it is the exit state of a trace π′, then output(π′) =

f(input(π′)).

If the above properties fail to hold, we can identify a trace π′ corresponding
to the first such failure. It can be shown that the sequence of states visited by
this trace, when substituted for x, are a witness that [p 	→ f] is not a satisfying
assignment for ∀x.ψe. This is a contradiction of our original assumption.

Please see [4] for more details of the proof. ��

Checking Observational Purity of Procedures 239

4.3 Approach 2: Impurity Witness Approach

The existential approach presented in the previous section has a drawback.
Checking satisfiability of ea(p, ϕinv) is hard because it contains universal quan-
tifiers and existing theorem provers do not work well enough for this approach.
We now present an approximation of the existential approach that is easier to use
with existing theorem provers. This new approach, which we will refer to as the
impurity witness approach, reduces the problem to that of checking whether a
quantifier-free formula is unsatisfiable, which is better suited to the capabilities
of state-of-the-art theorem provers. This approach focuses on finding a coun-
terexample to show that the procedure is impure or it violates the candidate
invariant.

Let p be a procedure with input parameter n and return variable r. Let
postvc(p, ϕinv) = (ϕpost, ϕvc). Let ϕpost

α denote the formula obtained by replac-
ing every free variable x other than p in ϕpost by a new free variable xα. Define
ϕpost

β similarly. Define iw(p, ϕinv) to be the formula (¬ϕvc) ∨ (ϕpost
α ∧ ϕpost

β ∧
(nα = nβ) ∧ (rα �= rβ)).

The impurity witness approach checks whether iw(p, ϕinv) is satisfiable. This
can be done by separately checking whether ¬ϕvc is satisfiable and whether
(ϕpost

α ∧ ϕpost
β ∧ (nα = nβ) ∧ (rα �= rβ)) is satisfiable. As formally defined, ϕvc

and ϕpost contain embedded existential quantifications. As explained earlier,
these existential quantifiers can be moved to the outside after variable renaming
and can be omitted for a satisfiability check. (A formula of the form ∃x.ψ is
satisfiable iff ψ is satisfiable.) As usual, these existential quantifiers refer to
intermediate values of variables along an execution path. Finding a satisfying
assignment to these variables essentially identifies a possible execution path (that
satisfies some other property).

Theorem 2. A procedure p satisfies pure(ϕinv) if iw(p, ϕinv) is unsatisfiable.

Proof. We say that two traces disagree if they receive the same argument value
but return different values. We say that a pair of feasible executions (π1, π2) is
an impurity witness if there is a trace πa in π1 and a trace πb in π2 such that πa

and πb disagree.
A trace is said to be compatible with a function f (and vice versa) if the

trace’s input-output behavior matches that of the function. An execution is said
to be compatible with a function (and vice versa) if every trace in the execution
is compatible with the function. We say that a feasible execution π strongly
satisfies ϕinv if for every function f that is compatible with π, (π, f) |= ϕinv.

We prove the theorem using the following lemmas: if iw(p, ϕinv) is unsatis-
fiable, then Lemmas 2 and 3 imply that the preconditions of Lemma 1 hold and,
hence, p satisfies pure(ϕinv).

1. If there exists no impurity witness, and every feasible execution strongly sat-
isfies ϕinv, then p satisfies pure(ϕinv).

2. If a feasible execution π that does not strongly satisfy ϕinv exists, iw(p, ϕinv)
is satisfiable.

240 H. Arora et al.

3. If an impurity witness exists, then iw(p, ϕinv) is satisfiable.

1 is straightforward.
For 2, we use a “minimal” feasible execution π that does not strongly satisfy

ϕinv to construct a satisfying assignment to ¬ϕvc.
For 3, we use a “minimal” impurity witness to construct a satisfying assign-

ment to (ϕpost
α ∧ ϕpost

β ∧ (nα = nβ) ∧ (rα �= rβ)).
Please see [4] for more details of the proof. ��

5 Generating the Invariant

We now describe a simple but reasonably effective semi-algorithm for generating
a candidate invariant automatically from the given procedure. Our approach of
Sect. 4 can be used with a manually provided invariant or the candidate invariant
generated by this semi-algorithm (whenever it terminates).

The invariant-generation approach is iterative and computes a sequence of
progressively weaker candidate invariants I0, I1, · · · and terminates if and when
Im ≡ Im+1, at which point Im is returned as the candidate invariant. The
initial candidate invariant I0 captures the initial values of the global variable.
In iteration k, we apply a procedure similar to the one described in Sect. 4 and
compute the strongest conditions that hold true at every program point if the
execution of the procedure starts in a state satisfying Ik−1 and if every recursive
invocation terminates in a state satisfying Ik−1. We then take the disjunction
of the conditions computed at the points before the recursive call-sites and at
the end of the procedure, and existentially quantify all local variables. We refer
to the resulting formula as Next(Ik−1,TB(p, Ik−1)). We take the disjunction of
this formula with Ik−1 and simplify it to get Ik.

Figure 5 formalizes this semi-algorithm. Here, we exploit the fact that the
assert statements are added precisely at every recursive callsite and end of
procedure and these are the places where we take the conditions to be disjuncted.

In our running example, I0 is ‘g = −1∧ lastN = 0’. Applying Next to I0
yields I0 itself as the pre-condition at the point just before the recursive call-site,
and ‘(g = −1∧ lastN = 0) ∨ g = lastN * p(lastN − 1)’ (after certain simplifi-
cations) as the pre-condition at the end of the procedure. Therefore, I1 is ‘(g
= −1∧ lastN = 0) ∨ g = lastN * p(lastN − 1)’. When we apply Next to I1,

I0 = init(p)
Ik = Simplify(Ik−1 ∨ Next(Ik−1,TB(p, Ik−1)))

Next(ϕpre, assert e) = ∃�1 · · · �mϕpre(where �1, · · · , �m are local variables in ϕpre)
Next(ϕpre, S1; S2) = Next(ϕpre, S1) ∨ Next(post(ϕpre, S1), S2)
Next(ϕpre, if e then S1 else S2) = Next(ϕpre ∧ e, S1) ∨ Next(ϕpre ∧ ¬e, S2)
Next(ϕpre, S) = false(for all other S)

Fig. 5. Iterative computation of invariant.

Checking Observational Purity of Procedures 241

the computed pre-conditions are I1 itself at both the program points mentioned
above. Therefore, the approach terminates with I1 as the candidate invariant.

6 Evaluation

We have implemented our OP checking approach as a prototype using the Boogie
framework [6], and have evaluated the approach using this implementation on
several examples. The objective of this evaluation was primarily a sanity check,
to test how our approach does on a set of OP as well as non-OP procedures.

We tried several simple non-OP programs, and our implementation termi-
nated with a “no” answer on all of them. We also tried the approach on several
OP procedures: (1) the ‘factCache’ running example, (2) a version of a factorial
procedure that caches all arguments seen so far and their corresponding return
values in an array, (3) a version of factorial that caches only the return value for
argument value 19 in a scalar variable, (4) a recursive procedure that returns
the nth Fibonacci number and caches all its arguments and corresponding return
values seen so far in an array, and (5) a “matrix chain multiplication” (MCM)
procedure. The last example is based on dynamic programming, and hence nat-
urally uses a table to memoize results for sub-problems. Here, observational
purity implies that the procedure always returns the same solution for a given
sub-problem, whether a hit was found in the table or not. The appendix of a
technical report associated with this paper depicts all the procedures mentioned
above as created by us directly in Boogie’s language, as well as the invariants
that we supplied manually (in SMT2 format).

It is notable that the theorem prover was not able to handle the instances
generated by the“existential approach” even for simple examples. The “impurity
witness” approach, however, terminated on all the examples mentioned above
with the correct answer, with the theorem prover taking less than 1 s on each
example. Please see [4] for more information about the examples used in our
evaluation.

7 Related Work

The previous work that is most closely related to our work is by Barnett
et al. [1,2]. Their approach is based on the same notion of observational purity as
our approach. Their approach is structurally similar to ours, in terms of needing
an invariant, and using an inductive check for both the validity of the invariant
as well as the uniqueness of return values for a given argument. However, their
approach is based on a more complex notion of invariant than our approach,
which relates pairs of global states, and does not use a function symbol to repre-
sent recursive calls within the procedure. Hence, their approach does not extend
readily to recursive procedures; they in fact state that “there is a circularity -
it would take a delicate argument, and additional conditions, to avoid unsound-
ness in this case”. Our idea of allowing the function symbol in the invariant to

242 H. Arora et al.

represent the recursive call allows recursive procedures to be checked, and also
simplifies the specification of the invariant in many cases.

Cok et al. [7] generalize the work of Barnett et al.’s work, and suggest classi-
fying procedures into categories “pure”, “secret”, and “query”. The “query” pro-
cedures are observationally pure. Again, recursive procedures are not addressed.

Naumann [3] proposes a notion of observational purity that is also the same
as ours. Their paper gives a rigorous but manual methodology for proving the
observational purity of a given procedure. Their methodology is not similar to
ours; rather, it is based finding a weakly pure procedure that simulates the given
procedure as far as externally visible state changes and the return value are
concerned. They have no notion of an invariant that uses a function symbol
that represents the procedure, and they don’t explicitly address the checking of
recursive procedures.

There exists a significant body of work on identifying differences between two
similar procedures. For instance, differential assertion checking [8] is a represen-
tative from this body, and is for checking if two procedures can ever start from
the same state but end in different states such that exactly one of the ending
states fails a given assertion. Their approach is based on logical reasoning, and
accommodates recursive procedures. Our impurity witness approach has some
similarity with their approach, because it is based on comparing the given pro-
cedure with itself. However, our comparison is stricter, because in our setting,
starting with a common argument value but from different global states that
are both within the invariant should not cause a difference in the return value.
Furthermore, technically our approach is different because we use an invariant
that refers to a function symbol that represents the procedure being checked,
which is not a feature of their invariants. Partush et al. [9] solve a similar prob-
lem as differential assertion checking, but using abstract interpretation instead
of logical reasoning.

There is a substantial body of work on checking if a procedure is pure, in the
sense that it does not modify any objects that existed before the procedure was
invoked, and does not modify any global variables. Sălcianu et al. [10] describe
a static analysis to check purity and Madhavan et al. [11] present an abstract-
interpretation based generalization of this analysis. Various tools exist, such as
JML [12] and Spec# [13], that use logical techniques based on annotations to
prove procedures as pure. Purity is a more restrictive notion than observational
purity; procedures such as our ‘factCache’ example are observationally pure, but
not pure because they use as well as update state that persists between calls to
the procedure.

References

1. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: 99.44% pure: useful abstrac-
tions in specifications. In: ECOOP Workshop on Formal Techniques for Java-like
Programs (FTfJP) (2004)

2. Barnett, M., Naumann, D.A., Schulte, W., Sun, Q.: Allowing state changes in
specifications. In: Müller, G. (ed.) ETRICS 2006. LNCS, vol. 3995, pp. 321–336.
Springer, Heidelberg (2006). https://doi.org/10.1007/11766155 23

https://doi.org/10.1007/11766155_23

Checking Observational Purity of Procedures 243

3. Naumann, D.A.: Observational purity and encapsulation. Theor. Comput. Sci.
376(3), 205–224 (2007)

4. Arora, H., Komondoor, R., Ramalingam, G.: Checking observational purity of pro-
cedures. CoRR https://arxiv.org/abs/1902.05436 (2019)

5. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact
verification conditions. In: Conference Record of POPL 2001: The 28th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Lon-
don, UK, 17–19 January 2001, pp. 193–205 (2001)

6. Leino, K.R.M.: This is Boogie 2. Manuscript KRML 178(131) (2008)
7. Cok, D.R., Leavens, G.T.: Extensions of the theory of observational purity and a

practical design for JML. In: Seventh International Workshop on Specification and
Verification of Component-Based Systems (SAVCBS 2008). Number CS-TR-08-07
in Technical report, School of EECS, UCF, vol. 4000 (2008)

8. Lahiri, S.K., McMillan, K.L., Sharma, R., Hawblitzel, C.: Differential assertion
checking. In: Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, pp. 345–355. ACM (2013)

9. Partush, N., Yahav, E.: Abstract semantic differencing for numerical programs.
In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 238–258.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38856-9 14

10. Sălcianu, A., Rinard, M.: Purity and side effect analysis for Java programs. In:
Cousot, R. (ed.) VMCAI 2005. LNCS, vol. 3385, pp. 199–215. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30579-8 14

11. Madhavan, R., Ramalingam, G., Vaswani, K.: Purity analysis: an abstract inter-
pretation formulation. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 7–24.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23702-7 6

12. Leavens, G.T., et al.: JML reference manual (2008)
13. Barnett, M., Leino, K.R.M., Schulte, W.: The Spec# programming system: an

overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://arxiv.org/abs/1902.05436
https://doi.org/10.1007/978-3-642-38856-9_14
https://doi.org/10.1007/978-3-540-30579-8_14
https://doi.org/10.1007/978-3-642-23702-7_6
https://doi.org/10.1007/978-3-540-30569-9_3
https://doi.org/10.1007/978-3-540-30569-9_3
http://creativecommons.org/licenses/by/4.0/

	Checking Observational Purity of Procedures
	1 Introduction
	2 Language Syntax
	3 A Semantic Definition of Purity
	4 Checking Purity Using a Theorem Prover
	4.1 Verification Condition Generation
	4.2 Approach 1: Existential Approach
	4.3 Approach 2: Impurity Witness Approach

	5 Generating the Invariant
	6 Evaluation
	7 Related Work
	References

