
Software Assurance in an Uncertain
World

Marsha Chechik(B) , Rick Salay, Torin Viger,
Sahar Kokaly, and Mona Rahimi

University of Toronto, Toronto, Canada
chechik@cs.toronto.edu

Abstract. From financial services platforms to social networks to vehi-
cle control, software has come to mediate many activities of daily life.
Governing bodies and standards organizations have responded to this
trend by creating regulations and standards to address issues such as
safety, security and privacy. In this environment, the compliance of soft-
ware development to standards and regulations has emerged as a key
requirement. Compliance claims and arguments are often captured in
assurance cases, with linked evidence of compliance. Evidence can come
from testcases, verification proofs, human judgment, or a combination
of these. That is, experts try to build (safety-critical) systems carefully
according to well justified methods and articulate these justifications in
an assurance case that is ultimately judged by a human. Yet software
is deeply rooted in uncertainty; most complex open-world functional-
ity (e.g., perception of the state of the world by a self-driving vehicle),
is either not completely specifiable or it is not cost-effective to do so;
software systems are often to be placed into uncertain environments,
and there can be uncertainties that need to be We argue that the role of
assurance cases is to be the grand unifier for software development, focus-
ing on capturing and managing uncertainty. We discuss three approaches
for arguing about safety and security of software under uncertainty, in
the absence of fully sound and complete methods: assurance argument
rigor, semantic evidence composition and applicability to new kinds of
systems, specifically those relying on ML.

1 Introduction

From financial services platforms to social networks to vehicle control, software
has come to mediate many activities of daily life. Governing bodies and standards
organizations have responded to this trend by creating regulations and standards
to address issues such as safety, security and privacy. In this environment, the
compliance of software development to standards and regulations has emerged
as a key requirement.

Development of safety-critical systems begins with hazard analysis, aimed to
identify possible causes of harm. It uses severity, probability and controllability
of a hazard’s occurrence to assign the Safety Integrity Levels (in the automo-
tive industry, these are referred to as ASILs [35]) – the higher the ASIL level,
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-16722-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_1&domain=pdf
http://orcid.org/0000-0002-6301-3517
https://doi.org/10.1007/978-3-030-16722-6_1


4 M. Chechik et al.

the more rigor is expected to be put into identifying and mitigating the hazard.
Mitigating hazards therefore becomes the main requirement of the system, with
system safety requirements being directly linked to the hazards. These require-
ments are then refined along the LHS of the V until individual modules and their
implementation can be built. The RHS includes appropriate testing and valida-
tion, used as supporting evidence in developing an argument that the system
adequately handles its hazards, with the expectation that the higher the ASIL
level, the stronger the required justification of safety is.

Assurance claims and arguments are often captured by assurance cases, with
linked evidence supporting it. Evidence can come from testcases, verification
proofs, human judgment, or a combination of these. Assurance cases organize
information allowing argument unfolding in a comprehensive way and ultimately
allowing safety engineers to determine whether they trust that the system was
adequately designed to avoid systematic faults (before delivery) and adequately
detect and react to failures at runtime [35].

Yet software is deeply rooted in uncertainty; most complex open-world func-
tionality (e.g., perception of the state of the world by a self-driving vehicle),
is either not completely specifiableor it is not cost-effective to do so [12]. Soft-
ware systems are often to be placed into uncertain environments [48], and there
can be uncertainties that need to be considered at the design phase [20]. Thus,
we believe that the role of assurance cases is to explicitly capture and manage
uncertainty coming from different sources, assess it and ultimately reduce it to an
acceptable level, either with respect to a standard, company processes, or asses-
sor judgment. The various software development steps are currently not well
integrated, and uncertainty is not expressed or managed explicitly in a uniform
manner. Our claim in this paper is that an assurance case is the unifier among
the different software development steps, and can be used to make uncertainties
explicit, which also makes them manageable. This provides a well-founded basis
for modeling confidence about satisfaction of a critical system quality (security,
safety, etc.) in an assurance case, making assurance cases play a crucial role
in software development. Specifically, we enumerate sources of uncertainty in
software development. We also argue that organizing software development and
analysis activities around the assurance case as a living document allows all parts
of the software development to explicitly articulate uncertainty, steps taken to
manage it, and the degree of confidence that artifacts acting as evidence have
been performed correctly. This information can then help potential assessors in
checking that the development outcome adequately satisfies the software desired
quality (e.g., safety).

The area of system dependability has produced a significant body of work
describing how to model assurance cases (e.g., [4,5,14,38]), and how to assess
reviewer’s confidence in the argument being made (e.g., [16,31,45,59,60]). There
is also early work on assessing the impact of change on the assurance argument
when the system undergoes change [39]. A recent survey [43] provides a com-
prehensive list of assurance case tools developed over the past 20 years and
an analysis of their functionalities including support for assurance case creation,



Software Assurance in an Uncertain World 5

assessment and maintenance. We believe that the road to truly making assurance
cases the grand unifier for software development for complex high-assurance sys-
tems has many challenges. One is to be able to successfully argue about safety
and security of software under uncertainty, without fully sound and complete
methods. For that, we believe that assurance arguments must be rigorous and
that we need to properly understand how to perform evidence composition for
traditional systems, but also for new kinds of systems, specifically those relying
on ML. We discuss these issues below.

Rigor. To be validated or reused, assurance case structures must be as rigorous
as possible [51]. Of course, assurance arguments ultimately depend on human
judgment (with some facts treated as “obvious” and “generally acceptable”),
but the structure of the argument should be fully formal so as to allow to assess
its completeness. Bandur and McDermid called this approach “formal modulo
engineering expertise” [1].

Evidence Composition. We need to effectively combine the top-down process
of uncertainty reduction with the bottom-up process of composing evidence,
specifically, evidence obtained from applying testing and verification techniques.

Applicability to “new” kinds of systems. We believe that our view – rig-
orous, uncertainty-reduction focused and evidence composing – is directly appli-
cable to systems developed using machine learning, e.g., self-driving cars.

This paper is organized as follows: In Sect. 2, we briefly describe syntax of
assurance cases. In Sect. 3, we outline possible sources of uncertainty encountered
as part of system development. In Sect. 4, we describe the benefits of a rigorous
language for assurance cases by way of example. In Sect. 5, we describe, again by
way of example, a possible method of composing evidence. In Sect. 6, we develop
a high-level assurance case for a pedestrian detection subsystem. We conclude
in Sect. 7 with a discussion of possible challenges and opportunities.

2 Background on Assurance Case Modeling Notation

The most commonly used representation for safety cases is the graphical Goal
Structuring Notation (GSN) [30], which is intended to support the assurance of
critical properties of systems (including safety). GSN is comprised of six core
elements – see Fig. 1. Arguments in GSN are typically organized into a tree
of the core elements shown in Fig. 11. The root is the overall goal to be sat-
isfied by the system, and it is gradually decomposed (possibly via strategies)
into sub-goals and finally into solutions, which are the leaves of the safety case.
Connections between goals, strategies and solutions represent supported-by rela-
tions, which indicate inferential or evidential relationships between elements.
Goals and strategies may be optionally associated with some contexts, assump-
tions and/or justifications by means of in-context-of relations, which declare a
contextual relationship between the connected elements.
1 In this paper, we use both diamond and triangle shapes interchangeably to depict

an “undeveloped” element.



6 M. Chechik et al.

Fig. 1. Core GSN elements from [30].

Fig. 2. Example safety case in GSN (from [30]).

For example, consider the safety case in Fig. 2. The overall goal G1 is that
the “Control System is acceptably safe to operate” given its role, context and
definition, and it is decomposed into two sub-goals: G2, for eliminating and mit-
igating all identified hazards, and G3, for ensuring that the system software is
developed to an appropriate ASIL. Assuming that all hazards have been iden-
tified, G2 can in turn be decomposed into three sub-goals by considering each
hazard separately (S1), and each separate hazard is shown to be satisfied using
evidence from formal verification (Sn1) or fault tree analysis (Sn2). Similarly,
under some specific context and justification, G3 can be decomposed into two
sub-goals, each of which is shown to be satisfied by the associated evidence.

3 Sources of Uncertainty in Software Development

In this section, we briefly survey uncertainty in software development, broadly
split into the categories of uncertainties about the specifications, about the envi-
ronment, about the system itself, and about the argument of its safety. For each



Software Assurance in an Uncertain World 7

part, we aim to address how building an assurance case is related to understand-
ing and mitigating such uncertainties.

Uncertainty in Specifications. Software specifications tend to suffer from
incompleteness, inconsistency and ambiguity [42,46]. Specification uncertainty
stems from a misunderstanding or an incomplete understanding of how the sys-
tem is supposed to function in early phases of development; e.g., miscommuni-
cation and inability of stakeholders to transfer knowledge due to differing con-
cepts and vocabularies [2,13]; unknown values for sets of known events (a.k.a.
the known unknowns); and the unknown and unidentifiable events (a.k.a. the
unknown unknowns) [57].

Recently, machine-learning approaches for interactively learning the software
specifications have become popular; we discuss one such example, of pedestrian
detection, in Sect. 6. Other mitigations of specification uncertainties, suggested
by various standards and research, are identification of edge cases [36], hazard
and obstacle analysis [55] to help identify unknown unknowns [35], step-wise
refinement to handle partiality in specifications, ontology- [9] and information
retrieval-driven requirements engineering approaches [21], as well as generally
building arguments about addressing specification uncertainties.

Environmental Uncertainty. The system’s environment can refer to adjacent
agents interacting with the system, a human operator using the system, or phys-
ical conditions of the environment. Sources of environmental uncertainties have
been thoroughly investigated [19,48]. One source originates from unpredictable
and changing properties of the environment, e.g., assumptions about actions of
other vehicles in the autonomous vehicle domain or assuming that a plane is
on the runway if its wheels are turning. Another uncertainty source is input
errors from broken sensors, missing, noisy and inaccurate input data, imprecise
measurements, or disruptive control signals from adjacent systems. Yet another
source might be when changes in the environment affect the specification. For
example, consider a robotic arm that moves with the expected precision but the
target has moved from its estimated position.

A number of techniques have been developed to mitigate environmental
uncertainties, e.g., runtime monitoring systems such as RESIST [10], or machine-
learning approaches such as FUSION [18] which self-tune the adaptive behavior
of systems to unanticipated changes in the environment. More broadly, environ-
mental uncertainties are mitigated by a careful requirements engineering process,
by principled system design and, in assurance cases, by an argument that they
had been adequately identified and adequately handled.

System Uncertainties. One important source of uncertainty is faced by devel-
opers who do not have sufficient information to make decisions about their sys-
tem during development. For example, a developer may have insufficient infor-
mation to choose a particular implementation platform. In [19,48], this source
of uncertainty is referred to as design-time uncertainty, and some approaches to
handling it are offered in [20]. Decisions made while resolving such uncertain-
ties are crucial to put into an assurance argument, to capture the context, i.e.,



8 M. Chechik et al.

a particular platform is selected because of its performance, at the expense of
memory requirements.

Another uncertainty refers to correctness of the implementation [7]. This
uncertainty lays in the V&V procedure and is caused by whether the imple-
mentation of the tool can be trusted, whether the tool is used appropriately
(that is, its assumptions are satisfied), and in general, whether a particular ver-
ification technique is the right one for verifying the fulfillment of the system
requirements [15]. We address some of these uncertainties in Sect. 5.

Argument Uncertainty. The use of safety arguments to demonstrate safety
of software-intensive systems raises questions such as the extent to which these
arguments can be trusted. That is, how confident are we that a verified, validated
software is actually safe? How much evidence and how thorough of an argument
do we require for that?

To assess uncertainties which may affect the system’s safety, researchers have
proposed techniques to estimate confidence in structured assurance cases, either
through qualitative or quantitative approaches [27,44]. The majority of these are
based on the Dempster-Shafer Theory [31,60], Josang’s Opinion Triangle [17],
Bayesian Belief Networks (BNNs) [16,61], Evidential Reasoning (ER) [45] and
weighted averages [59]. The approaches which use BBNs treat safety goals as
nodes in the network and try to compute their conditional probability based on
given probabilities for the leaf nodes of the network. Dempster-Shafer Theory is
similar to BBNs but is based on the belief function and its plausibility which is
used to combine separate pieces of information to calculate the probability. The
ER approach [45] allows the assessors to provide individual judgments concerning
the trustworthiness and appropriateness of the evidence, building a separate
argument from the assurance case.

These approaches focus on assigning and propagating confidence measures
but do not specifically address uncertainty in the argument. They also focus on
aggregating evidence coming from multiple sources but treat it as a “black box”,
instead of how a piece of evidence from one source might compose with another.
We look at these questions in Sects. 4 and 5, respectively.

4 Formality in Assurance Cases

As discussed in Sect. 1, we believe that the ultimate goal of an assurance case
is to explicitly capture and manage uncertainty, and ultimately reduce it to an
acceptable level. Even informal arguments improve safety, e.g., by making peo-
ple decompose the top level goal case-wise, and examine the decomposed parts
critically. But the decomposed cases tend to have an ad hoc structure dictated
by experience and preference, with under-explored completeness claims, giving
both developers and regulators a false sense of confidence, no matter how con-
fidence is measured, since they feel that their reasoning is rigorous even though
it is not [58]. Moreover, as assurance cases are produced and judged by humans,
they are typically based on inductive arguments. Such arguments are susceptible
to fallacies (e.g., arguing through circular reasoning, using justification based



Software Assurance in an Uncertain World 9

Fig. 3. A fragment of the Lane Management (LMS) Safety case.

on false dichotomies), and evaluations by different reviewers may lead to the
discovery of different fallacies [28].

There have been several attempts to improve credibility of an argument
by making the argument structure more formal. [25] introduces the notion of
confidence maps as an explicit way of reasoning about sources of doubt in an
argument, and proposes justifying confidence in assurance arguments through
eliminative induction (i.e., an argument by eliminating sources of doubt). [29]
highlights the need to model both evidential and argumentation uncertainties
when evaluating assurance arguments, and considers applications of the formally
evaluatable extension of Toulmin’s argument style proposed by [56]. [11] details
VAA – a method for assessing assurance arguments based on Dempster-Shafer
theory. [51] is a proponent of completely deductive reasoning, narrowing the
scope of the argument so that it can be formalized and potentially formally
checked, using automated theorem provers, arguing that this would give a mod-
ular framework for assessing (and, we presume, reusing) assurance cases. [1]
relaxes Rushby’s position a bit, aiming instead at formal assurance argumen-
tation “modulo engineering expertise”, and proof obligations about consistency
of arguments remain valid even for not fully formal assurance arguments. To
this end, they provided a specific formalization of goal validity given valid-
ity of subgoals and contexts/context assumptions, resulting in such rules as



10 M. Chechik et al.

Fig. 4. An alternative representation of the same LMS fragment.

“assumptions on any given element must not be contradictory nor contradict
the context assumed for that goal” [1].

Our Position. We believe that a degree of formality in assurance cases can go
a long way not only towards establishing its validity, identifying and framing
implicit uncertainties and avoiding fallacies, but also supporting assurance case
modularity, refactoring and reuse. We illustrate this position on an example.

Example. Consider two partially developed assurance cases that argue that the
lane management system (LMS) of a vehicle is safe (Figs. 3 and 4). The top-level
safety goal G1 in Fig. 3 is first decomposed by the strategy Str1 into a set of
subgoals which assert the safety of the LMS subsystems. An assessor can only
trust that goals G2 and G3 imply G1 by making an implicit assumption that
the system safety is completely determined by the safety of its individual subsys-
tems. Neither the need for this assumption nor the credibility of the assumption
itself are made explicit in the assurance case, which weakens the argument and
complicates the assessment process. The argument is further weakened by the
absence of a completeness claim that all subsystems have been covered by this
decomposition.

Strategies Str2 and Str3 in Fig. 3 decompose the safety claims about each
subsystem into arguments over the relevant hazards. Yet the hazards themselves
are never explicitly stated in the assurance case, making the direct relevance of
each decomposed goal to its corresponding parent goal, and thus to the argument
as a whole, unclear. While goals G6 and G9 attempt to provide completeness



Software Assurance in an Uncertain World 11

claims for their respective decompositions, they do so by citing lack of negative
evidence without describing efforts to uncover such evidence. This justification
is fallacious and can be categorized as “an argument from ignorance” [28].

Now consider the assurance case in Fig. 4 which presents a variant of the argu-
ment in Fig. 3, refined with context nodes, justification nodes and completeness
claims. The top-level goal G1 is decomposed into a set of subgoals asserting
that particular hazards have been mitigated, as well as a completeness claim
G3C stating that hazards H1 and H2 are the only ones that may be prevalent
enough to defeat claim G1. Context nodes C1 and C2 define the hazards them-
selves, which clarifies the relevance of each hazard-mitigating goal. The node J1
provides a justification for the validity of Str1 by framing the decomposition
as a proof by (exhaustive) cases. That is, Str1 is justified by the statement
that if H1 and H2 are the only hazards that could potentially make the system
unsafe, then the system is safe if H1 and H2 have been adequately mitigated.
This rigorous argument can be represented by the logical expression G3C =⇒
((G2 ∧ G4) =⇒ G1), and if completeness holds then G2 and G4 are suf-
ficient to show G1. We now have a rigorous argument step that our confidence
in G1 is a direct consequence of confidence in its decomposed goals G2, G3C
and G4, even though there may still be uncertainty in the evidential evaluation
of G2, G3C and G4. That is, uncertainty has been made explicit and can be
reasoned about at the evidential level. By removing argumentation uncertainty
and explicating implicit assumptions, we get a more comprehensive framework
for assurance case evaluation, where the relation between all reasoning steps is
formally clear. Note that if the justification provides an inference rule, then the
argument becomes deductive. Otherwise, it is weaker (the justification node can
be used to quantify just how weaker) but still rigorous.

While the completeness claim G3C in Fig. 4 may be directly supported by
evidence, the goals G2 and G4 are further decomposed by the strategies Str2
and Str3, respectively, which represent decompositions over subsystems. These
strategies are structured similarly to Str1, and can be expressed by the logical
expressions G7C =⇒ ((G5 ∧ G6) =⇒ G2) and G10C =⇒ ((G8 ∧ G9)
=⇒ G4), respectively. In Fig. 3, a decomposition by subsystems was applied
directly to the top-level safety goal which necessitated a completeness claim
that the safety of all individual subsystems implied safety of the entire system.
Instead, the argument in Fig. 4 only needs to show that the set of subsystems in
each decomposition is complete w.r.t. a particular hazard, which may be a more
feasible claim to argue. This ability to transform an argument into a more easily
justifiable form is another benefit of arguing via rigorous reasoning steps.

5 Combining Evidence

Evidence for assurance cases can come from a variety of sources: results from
different testing and verification techniques, human judgment, or their combina-
tion. Multiple testing and verification techniques may be used to make the evi-
dence more complete. A verification technique complements another if it is able



12 M. Chechik et al.

Fig. 5. Confidence argument for code review workflow (from [6]).

to verify types of requirements which cannot be verified by the other technique.
For example, results of verification of properties via a bounded model checker
(BMC) are complemented by additional test cases [8]. A verification technique
supports another if it is used to detect faults in the other’s verification results,
thus providing backing evidence [33]. For example, a model checking technique
may support a static analysis technique by verifying the faults detected [6]. Note
that these approaches are principally different from just aggregating evidence
treating it as a blackbox!

Habli and Kelly [32] and Denney and Pai [15] present safety case patterns
for the use of formal method results for certification. Bennion et al. [3] present a
safety case for arguing the compliance of a particular model checker, namely, the
Simulink Design Verifier for DO-178C. Gallina and Andrews [23] argue about
adequacy of a model-based testing process, and Carlan et al. [7] provide a safety
pattern for choosing and composing verification techniques based on how they



Software Assurance in an Uncertain World 13

contribute to the identification or mitigation of systematic faults known to affect
system safety.

Our Position. We, as a community, need to figure out the precise conditions
under which particular testing and verification techniques “work” (e.g., model-
ing floating-point numbers as reals, making a small model hypothesis to justify
sufficiency of a particular loop unrolling, etc.), and how they are intended to
be composed in order to reduce uncertainty about whether software satisfies its
specification. We illustrate a particular composition here.

Example. In this example, taken from [6], a model checker supports static
analysis tools (that produce false negatives) by verifying the detected faults [6].
The assurance case is based on a workflow (not shown here) where an initial
review report is constructed, by running static analysis tools and possibly peer
code reviews. Then the program is annotated with the negation of each potential
erroneous behavior as a desirable property for the program, and given to a
model-checker. If the model-checker is able to verify the property, it is removed
from the initial review report and not considered as an error. If the model-
checker finds a violation, the alleged error is confirmed. In this case, a weakest-
precondition generation mechanism is applied to find out the environmental
conditions (external parameters that are not under the control of the program)
under which the program shows the erroneous behavior. These conditions and
the error trace are then added to the error description.

The paper [6] presents both the assurance case and the confidence argument
for the code review workflow. We reproduce only the latter here (see Fig. 5),
focusing on reducing uncertainty about the accuracy and consistency of the code
property (goal G2). False positives generated by static analysis are mitigated
using BMC – a method with a completely different verification rationale, thus
implementing the safety engineering principle of independence (J2). Strategy
(Str2) explains how errors can be confirmed or dismissed using BMC (goal
G6). The additional information given by BMC can be used for the mitigation
of the error (C2).

This approach takes good steps towards mitigating particular assurance
deficits using a composition of verification techniques but leaves open several
problems: how to ensure that BMC runs under the same environmental condi-
tions as the static analysis tools? how deeply should the loops be unrolled? what
to do with cases when the model-checker runs out of resources without giving
a conclusive answer? and in general, what are the conditions under which it is
safe to trust the “yes” answers of the model-checker.

6 Assurance Cases for ML Systems

Academia and industry are actively building systems using AI and machine
learning, including a rapid push for ML in safety-critical domains such as medical
devices and self-driving cars. For their successful adoption in society, we need to
ensure that they are trustworthy, including obtaining confidence in their behavior
and robustness.



14 M. Chechik et al.

Fig. 6. A partially developed GSN safety case of pedestrian detector example.

Significant strides have already been made in this space, from extend-
ing mature testing and verification techniques to reasoning about neural net-
works [24,37,47,54] for properties such as safety, robustness and adequate han-
dling of adversarial examples [26,34]. There is active work in designing systems
that balance learning under uncertainty and acting safely, e.g., [52] as well as
the broad notion of fairness and explainability in AI, e.g., [49].

Our Position. We believe that assurance cases remain a unifying view for ML-
based systems just as much as for more conventional systems, allowing us to
understand how the individual approaches fit into the overall goal of assuring
safety and reliability and where there are gaps.

Example. We illustrate this idea with an example of a simple pedestrian detec-
tor (PD) component used as part of an autonomous driving system. The func-
tions that PD supports consist of detection of objects in the environment ahead
of the vehicle, classification of an object as a pedestrian or other, and localiza-
tion of the position and extent of the pedestrian (indicated by bounding box).
We assume that PD is implemented as a convolutional deep neural network
with various stages to perform feature extraction, proposing regions containing
objects and classification of the proposed objects. This is a typical approach for
two-stage object detectors (e.g., see [50]).



Software Assurance in an Uncertain World 15

Fig. 7. A framework for factors affecting perceptual uncertainty (source: [12]).

As part of a safety critical system, PD contributes to the satisfaction of a
top-level safety goal requiring that the vehicle always maintain a safe distance
from all pedestrians. Specific safety requirements for PD can be derived from
this goal, such as (RQ1) PD misclassification rate (i.e., classifying a pedestrian
as “other”) must be less than ρmc, (RQ2) PD false positive rate (i.e., classifying
any non-pedestrian object or non-object as “pedestrian”) must be less than ρfp,
and (RQ3) PD missed detection rate (i.e., missing the presence of pedestrian)
must be less than ρmd. Here, the parameters ρmc, ρfp and ρmd must be derived
in conjunction with the control system that uses the output from PD to plan
the vehicle trajectory.

The partially developed safety case for PD is shown in Fig. 6. The three safety
requirements are addressed via the strategy Str1 and, as expected, testing results
are given as evidence of their satisfaction. However, since testing can only provide
limited assurance about the behaviour of PD in operation, we use an additional
strategy, Str2, to argue that a rigorous method was followed to develop PD.
Specifically, we follow the framework of [12] for identifying the factors that lead
to uncertainty in ML-based perceptual software such as PD.

The framework is defined at a high level in Fig. 7. The left “perception trian-
gle” shows how the perceptual concept (in the case of PD, the concept “pedes-
trian”) can occur in various scenarios in the world, how it is detected using
sensors such as cameras, and how this can be used to collect and label exam-
ples in order to train an ML component to learn the concept. The perception
triangle on the right is similar but shows how the trained ML component can be
used during the system operation to make inferences (e.g., perform the pedes-
trian detection). The framework identifies seven factors that could contribute to
uncertainty in the behaviour of the perceptual component. A safety case demon-
strating a rigorous development process should provide evidence that each factor
has been addressed.

In Fig. 6, strategy Str2 uses the framework to argue that the seven factors are
adequately addressed for PD. We illustrate development of two of these factors



16 M. Chechik et al.

here. Scenario coverage (Goal G-F2) deals with the fact that the training data
must represent the concept in a sufficient variety of scenarios in which it could
occur in order for the training to be effective. The argument here first decom-
poses this goal into different types of variation (Str3) and provides appropriate
evidence for each. The adequacy of age and ethnicity variation in the data set is
supported by census data (S2) about the range of these dimensions of variation
in the population. The variation in the pedestrian pose (i.e., standing, leaning,
crouching, etc.) is supplied by a standard ontology of human postures (S3).
Finally, evidence that the types are adequate to provide sufficient coverage of
variation (completeness) is provided by an expert review (S4).

Another contributing factor developed in Fig. 6 is model uncertainty (Goal
G-F6). Since there is only finite training data, there can be many possible models
that are equally consistent with the training data, and the training process could
produce any one of them, i.e., there is residual uncertainty whether the produced
model is in fact correct. The presence of model uncertainty means that while the
trained model may perform well on inputs similar to the training data, there is no
guarantee that it will produce the right output for other inputs. Some evidence of
good behaviour here can be gathered if there are known properties that partially
characterize the concept and can be checked. For example, a reasonable necessary
condition for PD is that the object being classified as a pedestrian should be
less than 9 ft tall. Another useful property type is an invariant, e.g., a rotated
pedestrian image is still a pedestrian. Tools for property checking of neural
networks (e.g., [37]) can provide this kind of evidence (S5). Another way to
deal with model uncertainty is to estimate it directly. Bayesian deep learning
approaches [22] can do this by measuring the degree of disagreement between
multiple trained models that are equally consistent with the training data. The
more the models are in agreement are about how to classify a new input, the
less model uncertainty is present and the more confident one can be in the
prediction. Using this approach on a test data set can provide evidence (S6)
about the degree of model uncertainty in the model. This approach can also
be used during the operation to generate a confidence score in each prediction
and use a fault tolerance strategy that takes a conservative action when the
confidence falls below a threshold.

7 Summary and Future Outlook

In this paper, we tried to argue that an assurance case view on establishing
system correctness provides a way to unify different components of the soft-
ware development process and to explicitly manage uncertainty. Furthermore,
although our examples came from the world of safety-critical automotive sys-
tems, the assurance case view is broadly applicable to a variety of systems, not
just those in the safety-critical domain and includes those constructed by non-
traditional means such as ML. This view is especially relevant to much of the
research activity being conducted by the ETAPS community since it allows, in
principle, to understand how each method contributes to the overall problem of
system assurance.



Software Assurance in an Uncertain World 17

Most traditional assurance methods aim to build an informal argument, ulti-
mately judged by a human. However, while these are useful for showing compli-
ance to standards and are relatively easy to construct and read, such arguments
may not be rigorous, missing essential properties such as completeness, indepen-
dence, relevance, or a clear statement of assumptions [51]. As a result, fallacies in
existing assurance cases are present in abundance [28]. To address this weakness,
we argued that building assurance cases should adhere to systematic principles
that ensure rigor. Of course, not all arguments can be fully deductive since rel-
evance and admissibility of evidence is often based on human judgment. Yet,
an explicit modeling and management of uncertainty in evidence, specifications
and, assumptions as well as the clear justification of each step can go a long way
toward making such arguments valid, reusable, and generally useful in helping
produce high quality software systems.

Challenges and Opportunities. Achieving this vision has a number of chal-
lenges and opportunities. In our work on impact assessment of model change on
assurance cases [39,40], we note that even small changes to the system may have
significant impact on the assurance case. Because creation of an assurance case
is costly, this brittleness must be addressed. One opportunity here is to recog-
nize that assurance cases can be refactored to improve their qualities without
affecting their semantics. For example, in Sect. 4, we showed that the LMS safety
claim could either be decomposed first by hazards and then by subsystems or
vice versa. Thus, we may want to choose the order of decomposition based on
other goals, e.g., to minimize the impact of change on the assurance case by
pushing the affected subgoals lower in the tree. Another issue is that complex
systems yield correspondingly complex assurance cases. Since these must ulti-
mately be judged by humans, we must manage the cognitive load the assurance
case puts on the assessor. This creates opportunities for mechanized support,
both in terms of querying, navigating and analyzing assurance cases as well as
in terms of modularization and reuse of assurance cases.

Evidence composition discussed in Sect. 5 also presents significant challenges.
While standards such as DO-178C and ISO26262 give recommendations on the
use of testing and verification, it is not clear how to compose partial evidence or
how to use results of one analysis to support another. Focusing on how each tech-
nique reduces potential faults in the program, clearly documenting their context
of applicability (e.g., the small model hypothesis justifying partial unrolling of
loops, properties not affected by approximations of complex program operations
and datatypes often done by model-checkers, connections between the modeled
and the actual environment, etc.) and ultimately connecting them to reducing
uncertainties about whether the system satisfies the essential property are keys
to making tangible progress in this area.

Finally, in Sect. 6, we showed how the assurance case view could apply to new
development approaches such as ML. Although such new approaches provide
benefits over traditional software development, they also create challenges for
assurance. One challenge is that analysis techniques used for verification may
be immature. For example, while neural networks have been studied since the



18 M. Chechik et al.

1950’s, pragmatic approaches to their verification have been investigated only
recently [53]. Another issue is that prerequisites for assurance may not be met
by the development approach. For example, although they are expressive, neural
networks suffer from uninterpretability [41] – that is, it is not feasible for a human
to examine a trained network and understand what it is doing. This is a serious
obstacle to assurance because formal and automated methods account for only
part of the verification process, augmented by reviews. As a result, increasing
the interpretability of ML models is an active area of current research.

While all these challenges are significant, the benefit of addressing them is
worth the effort. As our world moves towards increasing automation, we must
develop approaches for assuring the dependability of the complex systems we
build. Without this, we either stall progress or run the risk of endangering our-
selves – neither alternative seems desirable.

References

1. Bandur, V., McDermid, J.: Informing assurance case review through a formal inter-
pretation of GSN core logic. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP
2015. LNCS, vol. 9338, pp. 3–14. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-24249-1 1

2. Bell, T.E., Thayer, T.A.: Software requirements: are they really a problem? In:
Proceedings of the 2nd International Conference on Software Engineering, pp. 61–
68. IEEE Computer Society Press (1976)

3. Bennion, M., Habli, I.: A candid industrial evaluation of formal software verifica-
tion using model checking. In: Companion Proceedings of ICSE 2014, pp. 175–184
(2014)

4. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible
future - an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Safety-Critical
Systems: Problems, Process and Practice, pp. 51–67. Springer, London (2010).
https://doi.org/10.1007/978-1-84996-086-1 4

5. Brunel, J., Cazin, J.: Formal verification of a safety argumentation and application
to a complex UAV system. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012.
LNCS, vol. 7613, pp. 307–318. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33675-1 27

6. Carlan, C., Beyene, T.A., Ruess, H.: Integrated formal methods for constructing
assurance cases. In: Proceedings of ISSRE 2016 Workshops (2016)

7. Cârlan, C., Gallina, B., Kacianka, S., Breu, R.: Arguing on software-level verifi-
cation techniques appropriateness. In: Tonetta, S., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2017. LNCS, vol. 10488, pp. 39–54. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-66266-4 3

8. Cârlan, C., Ratiu, D., Schätz, B.: On using results of code-level bounded model
checking in assurance cases. In: Skavhaug, A., Guiochet, J., Schoitsch, E., Bitsch,
F. (eds.) SAFECOMP 2016. LNCS, vol. 9923, pp. 30–42. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45480-1 3

9. Castaameda, V., Ballejos, L., Caliusco, M.L., Galli, M.R.: The use of ontologies in
requirements engineering. Glob. J. Res. Eng. 10(6) (2010)

10. Cooray, D., Malek, S., Roshandel, R., Kilgore, D.: RESISTing reliability degrada-
tion through proactive reconfiguration. In: Proceedings of ASE 2010, pp. 83–92.
ACM (2010)

https://doi.org/10.1007/978-3-319-24249-1_1
https://doi.org/10.1007/978-3-319-24249-1_1
https://doi.org/10.1007/978-1-84996-086-1_4
https://doi.org/10.1007/978-3-642-33675-1_27
https://doi.org/10.1007/978-3-642-33675-1_27
https://doi.org/10.1007/978-3-319-66266-4_3
https://doi.org/10.1007/978-3-319-66266-4_3
https://doi.org/10.1007/978-3-319-45480-1_3


Software Assurance in an Uncertain World 19

11. Cyra, L., Gorski, J.: Support for argument structures review and assessment. J.
Reliab. Eng. Syst. Saf. 96, 26–37 (2011)

12. Czarnecki, K., Salay, R.: Towards a framework to manage perceptual uncertainty
for safe automated driving. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F.
(eds.) SAFECOMP 2018. LNCS, vol. 11094, pp. 439–445. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99229-7 37

13. Davis, A., et al.: Identifying and measuring quality in a software requirements
specification. In: 1993 Proceedings First International Software Metrics Sympo-
sium, pp. 141–152. IEEE (1993)

14. de la Vara, J.L.: Current and necessary insights into SACM: an analysis based on
past publications. In: Proceedings of RELAW 2014, pp. 10–13. IEEE (2014)

15. Denney, E., Pai, G.: Evidence arguments for using formal methods in software
vertification. In: Proceedings of ISSRE 2013 Workshops (2013)

16. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases.
In: Proceedings of ESEM 2011 (2011)

17. Duan, L., Rayadurgam, S., Heimdahl, M.P.E., Sokolsky, O., Lee, I.: Representing
confidence in assurance case evidence. In: Koornneef, F., van Gulijk, C. (eds.)
SAFECOMP 2015. LNCS, vol. 9338, pp. 15–26. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-24249-1 2

18. Elkhodary, A., Esfahani, N., Malek, S.: FUSION: a framework for engineering self-
tuning self-adaptive software systems. In: Proceedings of FSE 2010, pp. 7–16. ACM
(2010)

19. Esfahani, N., Malek, S.: Uncertainty in self-adaptive software systems. In: de
Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-
Adaptive Systems II. LNCS, vol. 7475, pp. 214–238. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-35813-5 9

20. Famelis, M., Chechik, M.: Managing design-time uncertainty. J. Softw. Syst. Model.
(2017)

21. Fanmuy, G., Fraga, A., Llorens, J.: Requirements verification in the industry. In:
Hammami, O., Krob, D., Voirin, J.L. (eds.) Complex Systems Design & Manage-
ment, pp. 145–160. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-25203-7 10

22. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: Proceedings of ICML 2016, pp. 1050–1059
(2016)

23. Gallina, B., Andrews, A.: Deriving verification-related means of compliance for a
model-based testing process. In: Proceedings of DASC 2016 (2016)

24. Gehr, T., Milman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: Proceedings of IEEE S&P 2018 (2018)

25. Goodenough, J., Weinstock, C., Klein, A.: Eliminative induction: a basis for argu-
ing system confidence. In: Proceedings of ICSE 2013 (2013)

26. Gopinath, D., Wang, K., Zhang, M., Pasareanu, C., Khunshid, S.: Symbolic exe-
cution for deep neural networks. arXiv:1807.10439v1 (2018)

27. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quan-
tifying confidence in assurance arguments. J. Saf. Sci. 92, 53–65 (2017)

28. Greenwell, W.S., Knight, J.C., Holloway, C.M., Pease, J.J.: A taxonomy of fallacies
in system safety arguments. In: Proceedings of ISSC 2006 (2006)

29. Grigorova, S., Maibaum, T.: Argument evaluation in the context of assurance case
confidence modeling. In: Proceedings of ISSRE Workshops (2014)

https://doi.org/10.1007/978-3-319-99229-7_37
https://doi.org/10.1007/978-3-319-24249-1_2
https://doi.org/10.1007/978-3-319-24249-1_2
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-25203-7_10
https://doi.org/10.1007/978-3-642-25203-7_10
http://arxiv.org/abs/1807.10439v1


20 M. Chechik et al.

30. GSN: Goal Structuring Notation Working Group, “GSN Community Standard
Version 1”, November 2011. http://www.goalstructuringnotation.info/

31. Guiochet, J., Hoang, Q.A.D., Kaaniche, M.: A model for safety case confidence
assessment. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS,
vol. 9337, pp. 313–327. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24255-2 23

32. Habli, I., Kelly, T.: A generic goal-based certification argument for the justification
of formal analysis. ENTCS 238(4), 27–39 (2009)

33. Hawkins, R., Kelly, T.: A structured approach to selecting and justifying software
safety evidence. In: Proceedings of SAFECOMP 2010 (2010)

34. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

35. International Organization for Standardization: ISO 26262: Road Vehicles – Func-
tional Safety, 1st version (2011)

36. International Organization for Standardization: ISO/AWI PAS 21448: Road Vehi-
cles – Safety of the Intended Functionality (2019)

37. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

38. Kelly, T., Weaver, R.: The goal structuring notation – a safety argument notation.
In: Proceedings of Dependable Systems and Networks Workshop on Assurance
Cases (2004)

39. Kokaly, S., Salay, R., Cassano, V., Maibaum, T., Chechik, M.: A model manage-
ment approach for assurance case reuse due to system evolution. In: Proceedings
of MODELS 2016, pp. 196–206. ACM (2016)

40. Kokaly, S., Salay, R., Chechik, M., Lawford, M., Maibaum, T.: Safety case impact
assessment in automotive software systems: an improved model-based approach. In:
Tonetta, S., Schoitsch, E., Bitsch, F. (eds.) SAFECOMP 2017. LNCS, vol. 10488,
pp. 69–85. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66266-4 5

41. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43
(2018)

42. Lutz, R.R.: Analyzing software requirements errors in safety-critical, embedded
systems. In: Proceedings of IEEE International Symposium on Requirements Engi-
neering, pp. 126–133. IEEE (1993)

43. Maksimov, M., Fung, N.L.S., Kokaly, S., Chechik, M.: Two decades of assurance
case tools: a survey. In: Gallina, B., Skavhaug, A., Schoitsch, E., Bitsch, F. (eds.)
SAFECOMP 2018. LNCS, vol. 11094, pp. 49–59. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-99229-7 6

44. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessic, D.: Evidence management
for compliance of critical systems with safety standards: a survey on the state of
practice. Inf. Softw. Technol. 60, 1–15 (2015)

45. Nair, S., Walkinshaw, N., Kelly, T., de la Vara, J.L.: An evidential reasoning app-
roach for assessing confidence in safety evidence. In: Proceedings of ISSRE 2015
(2015)

46. Nikora, A., Hayes, J., Holbrook, E.: Experiments in automated identification of
ambiguous natural-language requirements. In: Proceedings 21st IEEE International
Symposium on Software Reliability Engineering. IEEE Computer Society, San Jose
(2010, to appear)

http://www.goalstructuringnotation.info/
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-24255-2_23
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-66266-4_5
https://doi.org/10.1007/978-3-319-99229-7_6
https://doi.org/10.1007/978-3-319-99229-7_6


Software Assurance in an Uncertain World 21

47. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing of
deep learning systems. In: Proceedings of SOSP 2017 (2017)

48. Ramirez, A.J., Jensen, A.C., Cheng, B.H.: A taxonomy of uncertainty for dynam-
ically adaptive systems. In: Proceedings of SEAMS 2012 (2012)

49. Ras, G., van Gerven, M., Haselager, P.: Explanation methods in deep learning:
users, values, concerns and challenges. In: Escalante, H.J., et al. (eds.) Explainable
and Interpretable Models in Computer Vision and Machine Learning. TSSCML,
pp. 19–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98131-4 2

50. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object
detection with region proposal networks. In: Advances in Neural Information Pro-
cessing Systems, pp. 91–99 (2015)

51. Rushby, J., Xu, X., Rangarajan, M., Weaver, T.L.: Understanding and evaluating
assurance cases. Technical report CR-2015-218802, NASA (2015)

52. Sadigh, D., Kapoor, A.: Safe control under uncertainty with probabilistic signal
temporal logic. In: Proceedings of RSS 2016 (2016)

53. Seshia, S.A., Sadigh, D.: Towards verified artificial intelligence. CoRR,
abs/1606.08514 (2016)

54. Tian, Y., Pei, K., Jana, S., Ray, B.: DeepTest: automated testing of deep-neural-
network-driven autonomous cars. In: Proceedings of ICSE 2018 (2018)

55. Van Lamsweerde, A.: Goal-oriented requirements engineering: a guided tour. In:
Proceedings of RE 2001, pp. 249–262. IEEE (2001)

56. Verheij, B.: Evaluating arguments based on Toulmin’s scheme. Argumentation
19(3), 347–371 (2005)

57. Ward, S., Chapman, C.: Transforming project risk management into project uncer-
tainty management. Int. J. Proj. Manag. 21(2), 97–105 (2003)

58. Wassyng, A.: Private Communication (2019)
59. Yamamoto, S.: Assuring security through attribute GSN. In: Proceedings of

ICITCS 2015 (2015)
60. Zeng, F., Lu, M., Zhong, D.: Using DS evidence theory to evaluation of confidence

in safety case. J. Theoret. Appl. Inf. Technol. 47(1) (2013)
61. Zhao, X., Zhang, D., Lu, M., Zeng, F.: A new approach to assessment of confidence

in assurance cases. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS,
vol. 7613, pp. 79–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33675-1 7

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-98131-4_2
https://doi.org/10.1007/978-3-642-33675-1_7
https://doi.org/10.1007/978-3-642-33675-1_7
http://creativecommons.org/licenses/by/4.0/

	Software Assurance in an Uncertain World
	1 Introduction
	2 Background on Assurance Case Modeling Notation
	3 Sources of Uncertainty in Software Development
	4 Formality in Assurance Cases
	5 Combining Evidence
	6 Assurance Cases for ML Systems
	7 Summary and Future Outlook
	References




