
Chapter 5
Teacher Quality and Mean Student
Outcomes: A Multi-model Approach

Abstract IEA’s Trends in International Mathematics and Science Study (TIMSS)
can potentially be used to address important questions about the role of teachers
in influencing student outcomes. To establish the potential relationships between
student achievement and different types of teacher quality and instructional metrics
and how stable these relationshipsmay be across time, a variety of different statistical
approaches were implemented and compared. The results from a single-level
(unclustered) model, a multilevel model, and a classroom-mean regression model
were compared, as was the stability of within-country estimates across time. The
potential utility of country-level fixed-effects analysis was also explored. The
complex sampling design of TIMSS enables robust standard errors to be generated.
The analyses suggested only a weak relationship between teacher quality measures
and student outcomes across countries and grade levels, and considerable instability
in within-country estimates across time, especially at grade eight.

Keywords International large-scale assessment (ILSA) · Opportunity to learn ·
Statistical methodology · Teacher education · Teacher experience · Teacher
quality · Trends in International Mathematics and Science Study (TIMSS)

5.1 Introduction

To date, research into relationships between teacher characteristics and student
outcomes has relied on data from only a few countries, or been restricted to analysis
of data collected at single point in time, or both. Such limitations have made it
difficult to draw general conclusions about whether particular measures of teacher
quality (such as, instructional alignment) are systematically associated with higher
learning gains, or whether any such gains are due to other factors or the unique
circumstances of a given educational system. In this chapter, we take advantage of
the measures of teacher quality within the TIMSS framework, and the extensive
international data collected by TIMSS over 20 years, to investigate this problem
more thoroughly, using a variety of statistical methods. Our aim was twofold: first,
to identify whether given teacher-related metrics were generally related to student
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mean outcomes within and across countries; and second, whether these relationships
were sensitive to the statistical method employed or a particular sample (namely, data
collected fromone cycle of TIMSS). This chapter can be considered to be an extended
robustness check on the association between teacher quality and studentmathematics
performance, comparing particular results to different educational contexts (namely
differing national education systems), different years, and different methodological
choices.

A secondary consideration was the challenge of balancing rigorous quantitative
methods with the practical problems of dealing with large-scale datasets.
Sophisticated multilevel models with very large sample sizes, such as would be
necessary if incorporating all of the TIMSS countries in every cycle into one model,
can be computationally quite demanding, even with modern computing power. More
sophisticated methods would likely identify more precise and less biased estimates.
This chapter presents an exploratory study, aiming to assess whether there were
obvious patterns across time and space, preliminary to more detailed research.

We begin by assessing how frequently the relationship between measures of
teacher effectiveness and student outcomes were statistically significant across
countries. As noted in Chap. 2, the existing research literature has failed to identify
any consistent relationships between teacher characteristics (experience, education,
teacher content knowledge) and student outcomes, but has indicated that student
outcomes may be more strongly associated with teacher behaviors (content coverage
and time on teaching mathematics). Thus, we aimed to determine whether this was
a consistent finding across different educational systems, and how sensitive these
findings were to the statistical method used. To do this, we compared the results of
a “full” model, incorporating teacher- and student-level effects, with those from a
model that ignored student clustering within classrooms and classroom-level means.

Having considered the effect of the different statistical methods on our findings,
we next investigated the stability of these associations across time. Although the
country-level averages of teacher quality measures may vary over time, the direction
and strength of relationship between teacher and student factors should be more
consistent, assuming low measurement error, sufficiently sensitive and reliable
instrumentation, and rough institutional stability in a particular educational system.
We analyzed the stability of statistical estimates across time, first by comparing
multilevel regression coefficients for a given country across multiple years of the
TIMSS, and next by conducting a fixed-effect analysis using country-level means.
Finally, we assessed the robustness of multilevel model results by comparing a
simplified means of calculating standard errors with the more elaborate jackknifing
procedure recommended by the various TIMSS user guides.

All of the analyses in this chapter use a basic additive model in which student
mean achievement in mathematics is predicted by six teacher variables (experience,
preparedness, education, alignment, time spent on mathematics, and teacher gender)
and three student control variables (books in the home, language spoken in the
home, and student gender). The operationalization of these variables has already been
discussed in Chap. 3. We applied this model to each education system participating
in TIMSS for every cycle of participation, using standard jackknifed standard errors
and five plausible values. Education systems that did not include one of the five main
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teacher variables (experience, education, preparedness, alignment, and time spent on
mathematics) were excluded from the analysis. Each education system was analyzed
separately by year and grade level.

The analysis presented in the main text is summary data combining the results for
multiple educational systems. (For detailed country-level results for each statistical
model, please consult Appendix B.)

5.2 Consistency Across Pooled, Multilevel,
and Classroom-Means Models

We tested the basic linear model using three different statistical models. The first is a
simple pooled within-country model using ordinary least squares (OLS) regression.
The second is a multilevel model that clusters students within classrooms, with
student variables at level one and teacher variables at level two. The third model
aggregates student-level variables at the classroom level to create classroom means
(in other words, classrooms rather than students are the unit of analysis). These
classroom-mean results are analyzed using a single-level model.

We focused on five teacher-level variables: teacher experience (Exp), teacher
education to teach mathematics (Mathprep), time spent on teaching mathematics
(Mathtime), instructional alignment with national standards (Alignment), and
self-reported preparedness to teach mathematics (Prepared). Our analyses included
participating TIMSS education systems where all these variables were available and
excluded systems where some variables were unavailable. Consequently, we applied
our three types of model (pooled, multilevel, and classroom means) to 307 cases at
both grades four and eight for the 2003, 2007, 2011, and 2015 cycles of TIMSS.
Each of the 307 cases represents an educational system in a single cycle of TIMSS.
With three statistical models per case, this comprises 921 separate regressions, with
1535 teacher effectiveness variables compared across models (307× 5= 1535) (see
Table 5.1).

In terms of the consistency of statistical inference across all three models, our
results showed that, among the 1535 comparisons, 1151 (75.0%) produced similar
estimates, either significant or non-significant, across the pooled, multilevel, and
classroom-means models. Among those comparisons with consistent estimates of
significance, 78 (5.1%) comparisons were significant with same direction, and 1073
(69.9%) cases were statistically non-significant (p > 0.05). That is, although the
estimates of regression coefficients and the standard errors were slightly different
across the three models, two-thirds of them were substantively identical. In over
two-thirds of comparisons, none of the models identified a statistically significant
effect of teacher effectiveness measures on student outcomes.

There was one exceptional case where all three model estimates were statistically
significant, but in opposite directions. This unusual case considered alignment
of the grade eight curriculum in Malta in the 2007 cycle of TIMSS; coefficient
estimates for the single-level and classroom-means models were 160.3 and 103.5,
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Table 5.1 Number of model
regressions by grade and
cycle of TIMSS

Grade Cycle of
TIMSS

Number of
education
systems with
required data

Number of
modela

regressions

Grade four 2003 12 36

Grade four 2007 35 105

Grade four 2011 48 144

Grade four 2015 45 135

Grade eight 2003 31 93

Grade eight 2007 50 150

Grade eight 2011 45 135

Grade eight 2015 41 123

Total 307 921

Notes aModels may be pooled single-level models, multilevel
models, or classroom-means models

respectively (positive and statistically significant), however, the coefficient estimate
for the multilevel model was −33.0 (negative and statistically significant).

We also compared the threemodels in pairs to assess the statistical significance and
directional discrepancy of the regression coefficient estimates. This approach looked
at partial consistency among two statistical models, rather than across all three.
Sixty-one (4.0%) comparisons were statistically significant with same direction for
both the single-level and multilevel model, but not for classroom-means model. For
instance, the estimates of grade four teacher experience in Iran for 2003 using the
single-level and multilevel models were 1.2 and 1.5, respectively, but the estimate
of the same predictor using the classroom-means model was −0.6, which was not
statistically significant.

In some cases, even though both the single-level and multilevel models produced
statistically significant estimates, the directions opposed each other. For example,
when analyzing grade eight data for Jordan in 2007, while the estimate of
preparedness in single-level model was 32.1, it was −9.9 using the multilevel
model. Similarly, grade eight teacher preparedness for Tunisia in 2007 was 8.7 with
single-level model, but −5.5 with the multilevel model.

When making comparisons between the multilevel and classroom-means models,
there were 23 (1.5%) comparisons where the estimates of both models were
statistically significant with same direction, where this was not true for single-level
model. For instance, the estimate of grade four teacher experience for Chinese Taipei
in 2003was identical (0.3) across the threemodels, but this was not significant for the
single-level model (the magnitude of the estimate was small, however). There was
also one exceptional case where estimates of time spent on teaching mathematics
were significant for both models but in opposite directions. For Iran in 2015 at grade
eight, the time spent on teaching mathematics had a positive coefficient of 0.1 in the
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multilevel model, but a coefficient of –0.1 for the classroom-means model. However,
given the very small effect size, this inconsistency should not be overstated.

There were more consistent results between the single- and classroom-means
models. We found that there were 52 (3.4%) comparisons that were statistically
significant and in the same direction, where this was not the case for multilevel
model. Interestingly, there were no comparisons between the single-level and
classroom-mean models that showed opposing directions. However, there were 125
(8.1%) comparisons where the estimates were significant only for the multilevel
model.

Focusing on our five teacher-level variables, coefficients differed across the three
models with regard to statistical significance for each variable. On examination of the
307 cases (countries per year) for each teacher effectiveness variable, wewere able to
classify the results into eight categories: (1) significant for only the multilevel model,
(2) non-significant for only the multilevel model, (3) significant for both
the single-level and multilevel models, (4) significant for both the multilevel
and classroom-means models, (5) non-significant for both multilevel and
classroom-means models, (6) non-significant for both single-level and multilevel
models, (7) significant for all three models, and (8) non-significant for all three
models (Fig. 5.1).

Our analysis strongly suggests that, overall,measures of teacher effectiveness have
a weak and inconsistent association with student outcomes. The vast majority of the
time (66–75% of the time), the three statistical models were in agreement that there
was no statistically significant relationship with mean mathematics performance for
any measure of teacher effectiveness.
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Fig. 5.1 The number of significant (SIG) and non-significant (INSIG) associations between teacher
variables and student outcomes by educational system using single-level (SLM), multilevel (MLM),
and classroom-means (CLM) models, based on data from TIMSS 2003–2015
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When we considered specific teacher-level variables, for teacher experience there
were 25 of the 307 cases (8.1%) where the estimates were statistically significant
for only the multilevel model. In contrast, five (1.6%) cases of the estimates were
statistically non-significant for only the multilevel model. Regarding significance in
pairs, there were 19 (6.2%) cases where the estimates were statistically significant for
both the single-level andmultilevelmodels.We also foundout that seven (2.3%) cases
were statistically significant for only the multilevel and classroom-means models.
Conversely, in terms of non-significance in pairs, in 13 (4.2%) cases the estimates
were non-significant for both the multilevel and classroom-means models, and in six
(2.0%) cases the estimates were non-significant for both single-level and multilevel
models. Lastly, with respect to consistency across three models, in 19 (6.2%) cases
the estimates were statistically significant across all three models. In the remaining
213 (69.4%) cases the estimates were non-significant for all three models.

For teacher education to teach mathematics (Mathprep), the estimates were
statistically significant for only the multilevel model in 22 (7.2%) of the 307
cases. In contrast, there were 13 (4.2%) cases where the estimates were statistically
non-significant for only the multilevel model. Regarding significance in pairs, the
estimates were statistically significant for only the single-level andmultilevel models
in 13 (4.2%) cases. We also found that only three (1.0%) cases were statistically
significant for only themultilevel and classroom-meansmodels. Conversely, in terms
of non-significance in pairs, in 11 (3.6%) cases the estimates were non-significant for
both the multilevel and classroom-means models, and there were 10 (3.3%) cases
where the estimates were non-significant for both the single-level and multilevel
models. Lastly, in six (2.0%) cases the estimates were statistically significant across
all three models, while in the remaining 229 (74.6%) cases the estimates were
non-significant for all three models.

For time spent on teaching mathematics (Mathtime), the estimates were
statistically significant for only the multilevel model in 26 (8.5%) of the 307 cases.
In contrast, the estimates were statistically non-significant for only the multilevel
model in eight (2.6%) cases. Regarding significance in pairs, there were seven (2.3%)
cases where the estimates were statistically significant for both the single-level and
multilevel models. We also found that only six (2.0%) cases that were statistically
significant for both the multilevel and classroom-means models. Conversely, in
terms of non-significance in pairs, 17 (5.5%) estimates were non-significant for
both the multilevel and classroom-means models, and 10 (3.3%) estimates were
non-significant for both the single-level and multilevel models. Lastly, considering
consistency across three models, 28 (9.1%) estimates were statistically significant
across all threemodels and the remaining 205 (66.8%) estimateswere non-significant
for all three models.

For teacher alignment with national standards, estimates were statistically
significant for only the multilevel model in 20 (6.5%) of the 307 cases. In contrast,
the estimates were statistically non-significant for only the multilevel model in eight
(2.6%) cases. Regarding significance in pairs, there were 13 (4.2%) cases where
the estimates were statistically significant for both the single-level and multilevel
models. We also found that only five (1.6%) cases were statistically significant
for both the multilevel and classroom-means models. In terms of non-significance
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in pairs, eleven (3.6%) estimates were non-significant for both the multilevel and
classroom level model, and in eight (2.6%) cases the estimates were non-significant
for both the single-level and multilevel models. Lastly, 20 (6.5%) of the estimates
were statistically significant across all three models, although, among these 20 cases,
as we mentioned previously, for the grade eight curriculum in Malta in the 2007
cycle of TIMSS, the estimates for the single-level and classroom-meansmodels were
positive while the estimate for the multilevel model was negative. The remaining 222
(72.3%) estimates that were non-significant for all three models presented.

For preparedness, there were 32 (10.4%) of 307 cases where the estimates were
statistically significant only for themultilevel model. In contrast, 18 (5.9%) estimates
were statistically non-significant only for themultilevelmodel. Therewere 11 (3.6%)
cases in which the estimates were statistically significant for both single-level and
multilevel models; among these 11 cases, the directions of the multilevel model
estimates for grade eight data for Jordan and Tunisia from 2007 were −9.9 and −
5.5, respectively. We also determined that only three (1.0%) cases were statistically
significant for bothmultilevel and classroom-meansmodels.Conversely, in 27 (8.8%)
cases the estimates were non-significant for both multilevel and classroom-means
models, and in six (2.0%) instances the estimates were non-significant for both the
single-level and multilevel models. Lastly, only six (2.0%) educational systems had
estimates that were statistically significant across all three models; the remaining
204 (66.4%) systems had estimates that were non-significant for all three models.

When we focused only on the multilevel model, we found that the estimates
of 291 (19.0%) cases showed there was a significant relationship between one
of the measures of teacher quality (either a characteristic or a behavior) and
student performance in mathematics, and there were 1244 (81.0%) non-significant
relationships. Among the 291 statistically significant cases, student performance
was most commonly related to teacher experience (in 70 cases [22.8%]), followed
by teacher education (44 cases [14.3%]), time spent on teaching mathematics (67
cases [21.8%]), alignment (59 cases [18.9%]), and preparedness (52 cases [16.9%]).

Finally, assuming that the results from the multilevel model are unbiased (or
the least biased) estimates because of the substantive and empirical importance of
student clustering within classrooms, there is a possibility that using the pooled or
classroom-mean models leads to incorrect statistical inference. We found that there
were 171 (11.1%) cases in which null hypotheses that coefficients were zero in
population were incorrectly rejected (type 1 error) by either or both the single-level
and classroom-means models. Moreover, there were 125 (8.1%) cases that failed
to reject or incorrectly retained the null hypotheses (type 2 error). Although there
are circumstances where classroom-means and single-level (non-clustered) analyses
may yield substantively similar results, there were enough differences to warrant
employing the more complex and computationally burdensome multilevel model.



54 5 Teacher Quality and Mean Student Outcomes: A Multi-model Approach

5.3 Stability of Estimates Across Time

An alternative way of testing the robustness of the associations between teacher
quality measures and student outcomes is to examine the stability of estimates for
a particular country across time. Although changes in country-level means of (for
example) teacher experience could be explained by substantive policy or labormarket
conditions, the relationship between teacher experience and student outcomes should
not vary dramatically over a short span of timewithin a particular educational system.
To test whether this assumption holds, the variables’ coefficients estimated for each
year were compared to establish whether there were significant differences between
them.

We based the theoretical framework used for the comparison procedure on the
work of Clogg et al. (1995). They argued that, in large samples, the significance of the
difference between the coefficients could be assessed using the following statistics:

Z = β1

∧

− β2

∧

√

(SEβ1

∧

)2 + (SEβ2

∧

)2

where β1

∧

and β2

∧

are regression coefficients from the models that are to be compared
and SE is the associated standard error of the said estimates. The null hypothesis
for such a test would be the equality of the coefficients. When employing a specific
statistical test, the underlying assumptions of the test should be satisfied. Clogg et al.
(1995) cautioned against the independence of coefficients when using this formula.
Since these estimates were taken at different times, there is no reason to suspect
dependency of samples and as such, this statistic is valid for the purpose at hand.
However, since coefficients from multiple time points are being compared, the issue
of multiple comparisonsmust be addressed (Curran-Everett 2000), in which the error
rate increases as increasing numbers of pairs are compared. Several differentmethods
have been suggested to adjust for this problem (Benjamini and Hochberg 1995;
Hochberg 1988; Hommel 1988; Weisstein 2004). Here we adopted the correction
method suggested by Benjamini and Hochberg (1995), which emphasized control
for a false discovery rate while also minimizing the family-wise error rate.

The variables that we assessed were:

• The number of years the teacher has been teaching (Exp)
• A teacher’s formal education to teach mathematics (Mathprep)
• Time spent on teaching mathematics (Mathtime)
• Alignment of the topics taught with national standards (Alignment)
• A teacher’s self-reported preparation to teach mathematics topics (Prepared).

After sorting the data available from each country and each sample year, 46
countries were found to have participated in TIMSS at least twice across the
2003–2015 sample period at grade four, and 50 countries were found to have
participated in TIMSS at least twice across the 2003–2015 sample period at grade
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Table 5.2 Within-country variation across time in teacher quality coefficients

Grade level Variable name % Countries that show significant difference (proportion
in parenthesis)

Grade four Alignment 13.04
( 6
46

)

Mathprep 15.21
( 7
46

)

Prepared 15.21
( 7
46

)

Mathtime 15.56
( 7
45

)

Exp 23.91
( 11
46

)

Grade 8 Alignment 44.00
( 22
50

)

Mathprep 22.00
( 11
50

)

Prepared 34.00
( 17
50

)

Mathtime 32.00
( 16
50

)

Exp 30.00
(
15
50

)

Notes Significance level is α = 0.05. Alignment = proportion of mathematics topics reported as
covered by teachers compared with national expectations, Mathprep = index (1–5) of teacher
education to teach mathematics, Mathtime = mean number of minutes spent on mathematics
teaching per week, Prepared= index (1–4) of self-efficacy to teach mathematics, Exp= experience
teaching in years

eight. However, not all of these countries had longitudinal data for every variable,
so the exact number of countries differed slightly. For each variable, we determined
the percentage and proportion of countries that had significant differences between
their estimated coefficients at both grade four and grade eight (Table 5.2).

At grade four, approximately 15% of countries showed a significant difference
in estimated coefficients for most of our variables across the sampling period, with
the exception of teacher experience. The relationship between teacher experience
and student outcomes was found to be inconsistent in around 24% of the countries.
Drawing on these results, one plausible hypothesis would be that there is a subset
of countries who consistently show significant differences between the variables,
hence the similar percentage between variables. However, although some countries
did appear more than once, the countries who showed significant changes between
the coefficients were randomly distributed. In other words, the temporal instability
of relationships did not appear to be a country-specific factor.

At grade eight, the associationbetween teacher instructional alignment and student
mean mathematics performance was inconsistent in almost half the sample (22
countries), while the inconsistency for three other variables (preparedness, time
on math, and experience) was ≥30%. The percentage of countries that exhibited
significant differences was higher at grade eight than grade four. There was no clear
pattern of countries who showed statistically significant differences in coefficients in
all variables at grade eight. However, with such a high number of countries showing
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statistically significant variation, countries often demonstrated significant variation
in effect for two or more variables.

An important aspect is the existence of countrieswhonot only showed a significant
change in the coefficient but also a change in the coefficient sign. A change in the
sign of the trend, rather than just the amplitude, implies a higher level of coefficient
instability.

Both grade levels showed the existence of statistically significantly differences
in the coefficients of all measured variables, and, notably, grade eight data showed
much higher percentages of statistically significant differences. High percentages of
statistically significant differences can imply an issue with the measurement tools
or indicate a highly variant sample across time. While more research and analysis is
needed to support these initial findings, the high percentage of statistically unstable
coefficients restricts our ability to establish a clear pattern. The problem is further
compounded when we consider the existence of a few differences that changed sign.
Scale evaluation and adjustment is needed to ensure that observed variability does
not stem from the items themselves, rather than from the research population, or as
a result of other factors.

This secondary analysis of the multilevel models extracted coefficients and
compared them individually. A more holistic approach to the topic of coefficient
stability would be to include all of those time points into a single model, thus directly
addressing the issue of stability over time; this strategy should be considered in future
research.

5.4 Fixed Effect Analysis

To further explore the relationship between teacher quality and student outcomes,
we undertook a country-level fixed effects analysis. One of the limitations of the
empirical approaches that we used is that they are essentially correlative, making it
difficult to attribute causation. A more serious concern is that the models include
a limited number of predictors, and hence are subject to unobserved variable bias.
The models focus exclusively on measures of teacher characteristics and behavior,
and a few student-level indicators that are available in TIMSS. The advantage of
fixed-effects models is that analyzing changes within a given unit can provide greater
confidence in the association between dependent and independent variables provided
the unobserved variables are invariant. Although there is reason to doubt that this
assumption holds fully, a fixed-effect analysis should yield somewhat more robust
estimates than a cross-sectional regression equation. Our fixed-effect country-level
model is restricted to only those countries that participated in the 2007, 2011, and
2015 cycles of TIMSS for a particular grade level, and for educational systems that
had country-level estimates available for all variables in the model. It should be
noted that education systems are the unit of analysis here; this is not a student-
or teacher-level fixed-effect analysis. The “effects” are therefore on the aggregate
country level, and may not necessarily apply to particular teachers or students.
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Table 5.3 Country-level grade four fixed-effects analysis of the relationship of teacher quality to
student outcomes, 2007–2015

Parameter Estimate SE p-value

Alignment −36.89 24.04 0.13

Mathtime 0.14 0.05 0.01

Mathprep 18.55 9.61 0.06

Books 55.50 20.49 0.01

Lang 30.56 7.81 0.00

Prepared −7.73 10.14 0.45

Exp −2.01 1.04 0.06

Tmale −134.89 38.29 0.00

Notes Alignment = proportion of mathematics topics reported as covered by teachers compared
with national expectations, Books = index (1–5) of number of books in the home, Lang = index
(1–4) of testing language spoken in the home, Mathprep = index (1–5) of teacher education to
teach mathematics, Mathtime=mean number of minutes spent on mathematics teaching per week,
Prepared = index (1–4) of self-efficacy to teach mathematics, Exp = experience teaching in years,
Tmale= index of teacher gender (female= 0,male= 1), Performance=mean student TIMSS score
in mathematics, SE = standard error. A p-value of 0.05 or lower indicates statistical significance

At grade four, the fixed-effects regression model did uncover a statistically
significant association between changes in country-level means of teacher factors
and changes in aggregate student mathematics achievement (Table 5.3). Specifically,
countries that saw an increase in average time spent on mathematics in grade four
saw higher mean student outcomes. Systems whose teachers had increasing levels
of education was positive and approached statistical significance (p = 0.06), as did a
negative relationship between changes in teacher experience and mean mathematics
scores. Curricular alignment and teacher self-efficacy had no relationship to student
outcomes. Interestingly, teacher gender had a strongly negative association with
mathematics outcomes, suggesting that an increasing proportion of male teachers at
grade four was associated with weaker mathematics scores. This is a rather curious
result and merits more detailed investigation.

At grade eight, time spent on mathematics was again significantly and positively
associated with TIMSS mathematics scores, and countries whose teachers reported
growing levels of preparedness to teach mathematics also saw higher student
outcomes (Table 5.4). None of the other variables approached statistical significance.
While these results should not be overstated, they do suggest that, in general, time
spent on mathematics may have a positive relationship with student learning and that
the failure to uncover a consistent association in other models could be due in part
to the exclusion of relevant but unobserved variables.

Two caveats should be kept in mind when interpreting the results of this analysis.
As mentioned previously, the virtue of fixed-effects models is that they allow
unobserved variables in a given unit (in this case a given educational system) to
act as its own control, by identifying change over time. The governing assumption of



58 5 Teacher Quality and Mean Student Outcomes: A Multi-model Approach

Table 5.4 Country-level grade eight fixed effects analysis of the relationship of teacher quality to
student outcomes, 2007–2015

Parameter Estimate SE p-value

Alignment 5.82 25.02 0.82

Mathtime 0.37 0.12 0.00

Mathprep 16.88 6.35 0.01

Books 23.55 17.21 0.18

Lang 21.96 25.43 0.39

Prepared −1.50 9.73 0.88

Exp 1.60 1.58 0.32

Tmale −15.79 54.29 0.77

Notes Alignment = proportion of mathematics topics reported as covered by teachers compared
with national expectations, Books = index (1–5) of number of books in the home, Lang = index
(1–4) of testing language spoken in the home, Mathprep = index (1–5) of teacher education to
teach mathematics, Mathtime=mean number of minutes spent on mathematics teaching per week,
Prepared = index (1–4) of self-efficacy to teach mathematics, Exp = experience teaching in years,
Tmale= index of teacher gender (female= 0,male= 1), Performance=mean student TIMSS score
in mathematics, SE = standard error. A p-value = 0.05 or lower indicates statistical significance

suchmodels is that any variables that are excluded are fixed, while all the factors with
temporal variation and likely to have a relationship with the outcome of interest are
included. This is, of course, an optimistic assumption; there are a number of social,
educational, economic, and policy factors that influence student achievement that
are likely to have altered during the course of TIMSS (and perhaps even in response
to TIMSS testing). Secondly, this analysis aggregates at the education system level,
which reduces the number of degrees of freedom (i.e., limits sample size), and is
something of a departure for fixed-effects studies, which more typically consider
individuals or smaller aggregates (like school districts) rather than entire educational
systems. The results of the analysis should therefore be treated with considerable
caution.

5.5 An Examination of Standard Errors

One of the distinctive features of large-scale studies like TIMSS is the estimation
of standard errors. As described in detail in the TIMSS user guide (Foy 2015),
TIMSS uses a complex sampling design; in stage one a random sample of schools
is selected, and, in stage two, a randomly-selected intact classroom is selected. If
the study were based on a straightforward random sample of all students of a given
age or grade level, then the estimation of standard errors could be calculated using
conventional means. Instead, TIMSS uses a jackknifing procedure, in which schools
are paired and then any calculations (e.g., means and regression coefficients) are
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run separately with one of each pair weighted at zero and the weight of the other
member of the pair doubled. Standard errors are then estimated by aggregating all
of those separate estimates. The IEA has supported calculating means or simple
linear regression models through the provision of macros (generated as part of the
IEA Database Analyzer, a free specialist analysis package that can be downloaded
from www.iea.nl/data). However, when running more complicated models (most
especially multilevel models where students are clustered within classrooms), the
jackknifing procedure can be computationally quite demanding, taking many hours
of computing time to generate models for multiple countries over multiple TIMSS.

The PISA study uses a related, but different approach in the estimation of standard
errors. Unlike TIMSS, PISA selects a random population of 15-year-olds and then
uses a balanced replicate weight system to calculate standard errors. However, a
shortcut that is often used with success when analyzing PISA data is to use adjusted
weights, such that the sum of weights equals the number of respondents in the study.
An adjustment of this kind is necessary (if for no other reason) to prevent major
downward bias in standard errors, since the weights in both TIMSS and PISA are
meant to reflect the entire population of students in a country rather than the number
of respondents (larger numbers resulting in smaller standard errors). This method
has been used to produce results for unpublished studies that are quite similar to
the full balanced replicate weight method, and can be convenient when conducting
preliminary analysis (given the computational burdens of more formal procedures).
However, it should emphasized that this strategy is not technically sound, and any
analysis intended for publication or presentation should use the full-scalemethod. As
discussed by Jerrim et al. (2017), there are published studies in reputable journals that
have failed to use appropriate statistical procedures, and, although the substantive
results have been quite similar, they are not considered reliable.

We conducted a secondary analysis to determine whether the adjusted weight
procedure yielded similar standard errors to the jackknifing procedure. All of the
multilevel statistical models run using the jackknifing procedure were re-run with
student weights reweighted to equal the total number of respondents. We then
compared the standard errors of the coefficients between the adjusted weight and
jackknifingprocedures. The purpose of this analysiswas to determinewhether the full
jackknifing procedure was necessary to avoid downwardly-biased standard errors.

Although there was certainly variation in the magnitude of the differences, on
average, we found that standard errors calculated with jackknifing procedure were
about twice as large as those calculated using an adjusted base weight (Table 5.5).
The difference for grade eight (×2.25) was larger than for grade four (×1.90), and
was reasonably consistent across years. In nearly every case, the standard errors to
account for the complex sampling design were larger with the jackknifing procedure
than those using an adjusted base weight; in some cases, four or five times as
large. The proportional difference was also greater for teacher-related standard errors
(×2.37) than for student controls (×1.45). This confirms that it is critical to account
for the complex sampling design in TIMSS to avoid the risk of type I errors (false
positives).

http://www.iea.nl/data
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5.6 Discussion

This chapter has covered a great deal of detailed technical analysis, but the
overarching implications are clear. First and most important, using basic statistical
analysis based on TIMSS data, the relationship between teacher quality measures
and student outcomes appear generally weak and inconsistent. After testing the
robustness of the relationship between student outcomes and teacher characteristics
in different education systems using alternative statistical models, methods of
aggregation, and calculations of standard errors, we found that associations between
teacher factors and student outcomes remained modest. When considered over a
number of years, the most technically appropriate measure (multilevel estimates
with jackknifed standard errors) suggested that there was a negligible relationship
between teacher characteristics or teacher behaviors and student outcomes. Although
there were education systems and years where teacher effectiveness measures were
associated with higher student mathematics performance, this relationship was not
robust across time and space.

The weak associations between teacher experience and education mirror much
of the research conducted in single-country studies. What is more surprising is that
time on mathematics and content coverage has usually uncovered much stronger
associations. Most studies that have found a relationship between instructional
content and student outcomes have used measures of the volume and intensity
of topics covered, as opposed to the alignment with national standards. This
finding raises serious questions about the utility of standards-based reform,
since there appears to be no strong relationship between teachers’ fidelity to
mathematics standards and student outcomes. Whether this indicates problems with
the measurement of teacher instructional content or the quality of the standards
themselves deserves greater attention.

However, our results have a number of limitations, and should not be treated
as definitive. The models included were restricted to a fairly limited number of
variables and student controls (most seriously, prior student performance, which is
not available in the TIMSS dataset), raising the potential for unobserved variable
bias. There are also potential problems with the measurements employed, including
possible differences in interpretability across varying cultural contexts (within and
across educational systems), the indirect measure of teacher professional knowledge
through self-reports, and changes in the mathematics topic framework used to
measure instructional content coverage.
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