
Chapter 7
Cos-theta Nb3Sn Dipole for a Very Large
Hadron Collider

Alexander V. Zlobin

Abstract A series of 1 m long Nb3Sn dipole models with a magnetic field of
10–11 T in a 43.5 mm bore was developed at FNAL as part of a research and
development effort for a Very Large Hadron Collider. This chapter describes the
magnet design in single-aperture and twin-aperture configurations, details of the
magnet short model fabrication, and summarizes the results of magnetic, mechani-
cal, and quench protection analyses, and model test results.

7.1 Introduction

In 1998 the Fermi National Accelerator Laboratory (FNAL, also known as
Fermilab), in collaboration with the Lawrence Berkeley National Laboratory
(LBNL) and the High Energy Accelerator Research Organization (KEK), Japan,
started a new high-field accelerator magnet research and development (R&D)
program with the goal of developing a cost-effective and robust magnet design
and technology for a post-LHC Very Large Hadron Collider (VLHC). VLHC studies
showed that a nominal operating field between 10 and 12 T is optimal to provide
adequate radiation beam damping without significant complication of the machine’s
cryogenic and vacuum systems (Fermilab 2001). The VLHC target operating fields
excluded using the traditional Nb-Ti magnet technology due to the low upper critical
magnetic field for this superconductor. Alternative superconductors for high-field
accelerator magnets are the A15 materials, primarily Nb3Sn. Ternary Nb3Sn com-
posite wires with an upper critical magnetic field of ~24 T at 4.2 K and a critical
temperature of ~18 K were already being produced by industry on a fairly large
scale.

Although the work on Nb3Sn accelerator magnets started in the 1960s, just a few
years after the discovery of this material, it was only in the 1990s that some Nb3Sn
short dipole magnets exceeded the 10 T magnetic field threshold (see Chap. 3). All of
those magnets were shell-type (also known as cos-theta) dipoles with a bore diameter
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of 50 mm. Two 1 m long dipole models, Model Single of the University of Twente
(MSUT), the Netherlands and D20 by LBNL, reached 11.4 T and 12.5 T, respec-
tively, at 4.5 K (den Ouden et al. 1997; McInturff et al. 1997) (see also Chaps. 5 and
6). None of those magnets, however, were of accelerator quality, focusing mostly on
reaching high fields.

Progress in raising the critical current density of commercial Nb3Sn composite
wires in the late 1990s made it possible to design cost-effective Nb3Sn accelerator
magnets with a nominal field of 10–12 T. Extensive studies of shell-type and block-
type dipole designs with small apertures, various current block arrangements and
cable parameters, etc., were carried out at FNAL with the goal of finding optimal
magnet parameters and robust, cost-effective designs and technologies for high-field
dipoles suitable for a VLHC (Ambrosio et al. 2000a; Sabbi et al. 2000). This chapter
summarizes the magnetic and mechanical design studies, describes basic magnet
design and fabrication technology, as well as specific features and parameters of the
cos-theta Nb3Sn dipole developed at FNAL for the VLHC in the framework of the
High-Field Magnet (HFM) R&D program. Tests results for the first series of Nb3Sn
accelerator magnets are presented and discussed.

7.2 Design Studies

The work started with conceptual design studies of cos-theta dipoles for VLHC.
These studies were first performed to select optimal magnet aperture, nominal
operating field and operating margins, conductor and iron yoke parameters as well
as to estimate field quality, Lorentz forces, stored energy, and magnet inductance
(Ambrosio et al. 2000a). These studies used the parameters of superconducting
composite wires developed and produced at the time by Intermagnetics General
Corporation based on the internal tin (IT) process. The wire critical current density at
12 T and 4.2 K was 1.9 kA/mm2, the Cu/non-Cu ratio was 0.85, and the copper
matrix residual resistivity ratio (RRR) was 100. Two types of Rutherford cable were
used in the analysis. Cable 1 consisted of 28 strands, 1 mm in diameter, had
14.23 mm width, 1.8 mm mid-thickness, and 1� keystone angle. Cable 2 consisted
of 38 strands, 0.808 mm in diameter, had 15.4 mm width, 1.46 mm mid-thickness,
and 0.5� keystone angle. The thickness of the cable insulation was 0.125 mm, which
corresponded to the commercially available S2-glass tape and to the ceramic insu-
lation developed at that time at Composite Technology Development, Inc. (CTD).

Several opposing requirements were considered to select the magnet aperture
size. A large magnet aperture helps to achieve good field quality, and simplify the
design of the beam screen and the coil ends. A small magnet aperture reduces the
magnet stored energy, the inductance, and the mechanical stresses. It also decreases
the coil mass size and, thus, the magnet’s cost.

To choose the preliminary coil cross-sections, the following constraints
were imposed: (a) a range of coil aperture of 30–50 mm; (b) a target design field
of 12 T; (c) no coil grading; and (d) low-order geometrical harmonics below 1 unit
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(10�4 parts of the main field). A collarless structure with a 9 mm gap between coil
and yoke was chosen, and no iron saturation effect was anticipated. To simplify coil
fabrication, coil turns were positioned radially, and the minimal width of the coil
inner-layer pole was 13 mm. The latter requirement was based on previous coil
winding experience and on special cable winding tests.

Magnet cross-sections were analyzed using the ROXIE code (Russenschuck
1995). Pre-selected designs were compared based on transfer function (TF), stored
energy, inductance, coil mechanical stress, and some other parameters. Designs I–III
used Cable 1 and had a coil aperture of 50, 45, and 40 mm respectively. Design IV
used Cable 2 and had a 40 mm aperture. For each case it was possible to achieve field
quality to the level of the field quality requirements for the Superconducting Super
Collider (SSC) dipoles (Jackson 1986). Coil cross-sections with 30 mm and 35 mm
aperture and rather good field quality were also studied, but they were rejected due to
potential coil winding problems.

Table 7.1 summarizes the main parameters of the pre-selected dipole designs. For
all four magnets the maximum bore field exceeds 12 T. While the number of turns
decreases by 20% as the bore diameter reduces from 50 to 40 mm, the magnet
current increases only by 9%, the stored energy reduces by 25%, and the inductance
decreases by 35%. A significant saving of superconductor was achieved in magnets
with the smallest coil aperture. The minimal pole width and the cable block position
for each preselected design ensured easy cable windability.

The maximum stress in each of the four coils due to Lorentz forces was less than
100 MPa at 11 T. It is much less than the threshold value of 150 MPa, at which the
critical current degradation of Nb3Sn strands becomes significant and irreversible.
Since Lorentz forces and stresses become smaller when the coil diameter decreases,
a lower coil azimuthal pre-stress at room temperature is required.

The analysis showed that there were many good reasons to reduce the magnet
aperture diameter. On the other hand, the analysis of the persistent current effect
revealed some benefits of having larger apertures. The sensitivity of field harmonics
to block displacements also decreases as the aperture increases. Iron saturation effects
did not add any strong restrictions to the cross-section choice, although a smaller iron
yoke diameter would have helped reducing the magnet’s weight and cost.

Table 7.1 Magnet design comparison

Design option

Cable 1 Cable 2

I II III IV

Bore diameter (mm) 50 45 40 40

Turns per dipole 64 60 52 64

Max. bore field Bss (T) 12.4 12.4 12.5 12.5

Max. magnet current Iss (kA) 16.8 16.8 18.5 15.4

Stored energy at 11 T (kJ/m) 289 256 221 230

Inductance (mH/m) 2.75 2.32 1.67 2.53

Coil area (cm2) 32.8 30.7 26.6 28.8

Min. pole width (mm) 17.5 16.2 15.0 14.6
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In addition to the pros and cons above, the final choice for the magnet cross-section
was made by also taking into account the availability of the magnet fabrication
infrastructure and tooling at FNAL, and specifically the availability of equipment
from the high gradient quadrupole program for the LHC interaction regions. To make
robust coils and reduce the risk of turn-to-turn shorts, the cable insulation thickness was
increased to 0.25 mm. With these additional considerations, a coil cross-section with
43.5 mm bore diameter and 400 mm outer diameter yoke was eventually selected.

7.3 Magnet Design and Parameters

The geometrical parameters of the Rutherford cable used to optimize the coil cross-
section were similar to Cable 1, described in the previous section. The cable consists
of 28 1 mm strands, has a width of 14.24 mm, a thin edge of 1.687 mm, and a thick
edge of 1.913 mm. The cable packing factor is 0.884. The cable insulation is
0.25 mm thick.

The optimized coil cross-section of the cos-theta dipole is shown in Fig. 7.1. Each
coil consists of 24 turns: 11 in the inner layer and 13 in the outer layer. The thickness
of the inter-layer insulation is 0.28 mm, and the thickness of the mid-plane insulation
spacers is 0.125 mm per quadrant for both layers. Pole blocks are integrated into the
coil inner and outer layers. The optimized width of the inner-layer pole is 15.09 mm,
which is convenient for coil winding. Each coil has four wedges per side, two for
each layer, which are used to minimize the low-order geometrical harmonics and
ensure the radial turn position. To decrease the maximum field and improve the field
quality in the magnet ends, the coil end design also has a block-wise arrangement
with the same number of blocks and turns per block as in the magnet body.

Fig. 7.1 Coil cross-section
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7.3.1 Single-Aperture Design and Parameters

The field distribution diagram and the cross-section of the single-aperture dipole
magnet are shown in Fig. 7.2. To reduce magnet cost, the traditional collars are
replaced with 8 mm thick coil–yoke spacers. The iron yoke has an inner diameter of
120 mm and an outer diameter of 400 mm. The yoke length of 600 mm is shorter
than the coil length, which allows reducing the coil end fields and maximizing the
length of uniform field in the magnet aperture. The coils are supported by a vertically
split iron yoke, locked with two aluminum clamps, and by the stainless-steel skin.

The coil–yoke spacers protect the coil during magnet assembly. The coils are
aligned relative to the spacers via two vertical extensions in the outer-layer pole
posts, whereas the spacers are centered inside the yoke via two mid-plane keys. The
interference of spacer and pole extension guarantees their contact during magnet
assembly and operation.

Calculated magnet design parameters are shown in Table 7.2. A noticeable
reduction of coil area was achieved in this design compared with earlier Nb3Sn
magnets with similar design fields. The coil cross-section area is smaller than that in
the MSUT (design field of 11.4 T) (den Ouden et al. 1997) by a factor of ~2 and than
that in D20 (design field of 13.4 T) (McInturff et al. 1997) by a factor of 3. Notice
that all those magnets have a slightly larger bore of 50 mm.

Fig. 7.2 Single-aperture dipole cross-section: (a) magnetic flux distribution and (b) mechanical
structure

Table 7.2 Magnet design
parameters

Parameter Value

Transfer function (T/kA) 0.555

Current at 11 T in the bore (kA) 19.82

Stored energy at 11 T (kJ/m) 241

Magnet inductance (mH/m) 1.50

Total cable area (mm2) 2461
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The calculated values of the coil peak field and the magnet bore field at
quench vs. the critical current density Jc(12 T, 4.2 K) of Nb3Sn cable are shown in
Fig. 7.3. To reach a bore field of 11 T the critical current density of round wires at
12 T and 4.2 K has to be 1650 A/mm2, assuming 10% of critical current degradation
during cabling.

7.3.1.1 Magnetic Analysis

The field in the magnet aperture is represented in terms of harmonic coefficients
defined by

By þ iBx ¼ B1

X1

n¼1

bn þ ianð Þ xþ iy

Rref

� �n�1

,

where Bx and By are the horizontal and vertical transverse field components, B1 is the
dipole field component, and bn and an are the 2n-pole coefficients at a reference
radius Rref ¼ 10 mm.

Due to the coil cross-section optimization the low-order geometrical harmonics
are small, less than 10�5 of the main dipole field (0.1 unit). The calculated effect of
iron saturation on field quality is shown in Fig. 7.4. For the yoke without special
correction holes the b3 variations are within 7 units, reaching a maximum at ~8 T. It
was found that adding one or two correction holes decreases this effect below 2 units
for bore fields up to 11 T (Ambrosio et al. 2000b). The iron saturation effect on
higher order harmonics is small.

Analysis shows that the coil magnetization effect at low fields in Nb3Sn magnets
is large. For the Nb3Sn wires available at the time, with an effective filament
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diameterDeff of ~0.10 mm, b3 in the magnet aperture at 1 T reaches�25 units. Some
decrease of this effect was expected by reducing the Deff in Nb3Sn wires. The eddy
current effects were expected to be suppressed by using Nb3Sn wires with a small
twist pitch and cables with a resistive inter-layer core.

7.3.1.2 Mechanical Analysis

A finite element analysis (FEA) using ANSYS software (ANSYS Inc., Canonsburg,
PA) was performed to optimize the coil stress during magnet assembly and opera-
tion, and to evaluate the maximum stresses in key elements of the magnet support
structure (Ambrosio et al. 2000c). The results are summarized in Table 7.3.

After clamping and skin welding at room temperature, the area with a highest
stress of 80 MPa is at the inner radius of the coil inner layer near the pole wedge. The
clamps provide ~40% of the total coil pre-stress during magnet assembly. The coil
bore is almost round with a difference of less than 0.004 mm along the horizontal and
vertical radii.

At liquid helium temperatures, the stress distribution on the coil inner surface
becomes non-uniform due to the coil horizontal deformation. The difference
between the aperture horizontal and vertical radii increases to approximately
0.10 mm. The coil stress ranges from 121 MPa in the inner-layer pole turn to
11 MPa in the inner-layer mid-plane turn.

At the design field of 11 T the coil is still under compression and the maximum
stress of 100 MPa is at the mid-plane of inner and outer layers. At 12 T the stress
distribution is the same, although some small fractions of the coil–pole interfaces are
under a small tension. The coil bore shape returns back to an approximate circle,
with a difference along the horizontal and vertical radii of ~0.01 mm.

The data show that the magnet coil is under compression under all conditions, and
that the maximum stress in the coil is always less than 125 MPa. The maximum
stress in key elements of the magnet support structure is less than the material’s yield
stress. The shear stress on the major interfaces does not exceed 30 MPa. All these
values are acceptable.
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7.3.1.3 Quench Protection

Coil protection in case of a quench in accelerator magnets is typically provided by
internal quench heaters (Ambrosio et al. 2000d). In a two-layer coil, quench heaters
can be placed inside the thin inter-layer spacer, to quench practically all of the turns
in both top and bottom coils, or on the coil outer layer. Analysis shows that in both
cases quench heaters provide reliable magnet protection, ensuring a low coil tem-
perature and low voltages.

7.3.2 Twin-Aperture Designs and Parameters

The Nb3Sn coil described above was used to design twin-aperture dipoles for VLHC
(Kashikhin and Zlobin 2001). The dipole cross-sections with cold and warm iron,
and with horizontal and vertical arrangements of apertures are shown in Fig. 7.5.

In the design shown in Fig. 7.5a, the two coils are placed side by side inside a cold
iron with an aperture separation of 180 mm. This distance can be varied within the
160–200 mm range for the same iron size without noticeable impact on the field
quality. The iron is split into three pieces. The coil pre-stress and support is provided
by clamped iron blocks and an external shell (also known as skin). Since the
horizontal components of the Lorentz force between coils are compensated inside
the iron, a 10 mm thick stainless-steel skin is adequate for coil support. An open
vertical gap between the iron pieces minimizes the decrease of coil pre-stress after
cool-down. To minimize the impact of gap size variations on field quality, the iron
split is partially parallel to the magnetic flux lines. The iron saturation effect is
suppressed by special holes and by optimizing the iron size.

In the design shown in Figs. 7.5c, d, the warm iron is sufficiently distanced from
the coils to provide room for the cold mass support system, the thermal shield, and
the vacuum vessel. The two coils are placed inside the iron with an aperture
separation of 180 mm as in the design in Figs. 7.5a, b. The coil pre-stress and
mechanical support is provided by thick aluminum rings, stainless-steel inserts and,
if necessary, the cold mass skin. The iron inner radius and thickness were optimized
considering field quality, fringe fields, iron cross-section, and the cryostat design
requirements. This design allows for a significant reduction of magnet cross-section
with respect to the cold iron design. The iron saturation effect in the warm iron
design is small. Magnetic coupling between the two apertures, however, produces a

Table 7.3 Peak equivalent stress in coil and support structure

Stage

Peak equivalent stress (MPa)

Coil Spacer Yoke Clamp Skin

Assembly (300 K) 80 166 110 135 200

Cool-down (4.2 K) 121 125 110 124 330

Nominal field (11 T) 100 97 133 128 350
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large quadrupole field component. It is cancelled in each aperture by the geometrical
quadrupole component produced by the small left–right asymmetry in the coil block
position. To reduce the force imbalance and the effect on the field quality, the warm
iron design requires a proper alignment of the cold mass inside the iron. Analysis
shows that these alignment requirements can be easily met.

In the design shown in Figs. 7.5e, f, the two coils are placed vertically inside the
cold iron. To reduce the negative magnetic coupling, which reduces the dipole field
in each aperture, the aperture separation should be at least 266 mm. To reduce the
size of the cold mass, the iron is divided into two parts—cold and warm. The iron
cold part is vertically split into two pieces for coil assembly and preload. To provide

Fig. 7.5 Twin-aperture dipole magnets based on the cos-theta Nb3Sn coil. (a, b, e, f) Cold; and (c,
d) warm iron. (a, b, c, d) Horizontal; and (e, f) vertical bore arrangement. (Kashikhin and Zlobin
2001)
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an adequate coil pre-stress and support in this design, a 20 mm thick stainless-steel
skin is needed. Since the horizontal components of the Lorentz force in each coil are
added, the skin in this design is a factor of two thicker than in the design in
Figs. 7.5a, b. To minimize the pre-stress decrease after cool-down, the cold iron
gap remains open. The warm part of the iron is properly distanced to accommodate
the cryostat elements as in the design in Figs. 7.5c, d. The iron saturation effect in
this design is corrected by using holes in the cold iron, and optimizing the inner and
outer radii of the cold and warm iron parts.

The mechanical analysis shows that in all the above designs the coil is under
compression and the stress is always less than 150 MPa, which is acceptable for
brittle Nb3Sn cable. The coil bore deformations are less than 0.10 mm, and all
structural elements work in elastic mode.

The main parameters of the dipole magnets described above are summarized in
Table 7.4. The calculated geometrical harmonics are small; they are shown in
Table 7.5.

The maximum bore field and quench current were calculated for Nb3Sn
wires with a Cu/non-Cu ratio of 0.85 and a critical current density Jc(12 T, 4.2 K)
of 2 kA/mm2 assuming a 10% critical current degradation due to wire plastic
deformation during cabling. These designs could provide a nominal field of

Table 7.4 Calculated magnet parameters

Bore arrangement

Horizontal Vertical

Yoke design Cold Warm Cold/warm

Magnet aperture (mm) 43.5 43.5 43.5

Aperture separation (mm) 180 180 266

Iron yoke diameter (mm) 520 580 564/710

Iron yoke area (cm2) 1722 679 1378/327

Maximum bore field (T) 12.05 11.34 11.59

Maximum quench current (kA) 21.9 24.0 22.3

Stored energy at 11 T (kJ/m) 520 588 554

Inductance at 11 T (mH/m) 2.68 2.16 2.46

Table 7.5 Geometrical harmonics bn at Rref ¼ 10 mm (10�4)

Harmonic number

Horizontal Vertical

Cold yoke Warm yoke Cold yoke

2 – 0.000 –

3 0.000 0.000 0.000

4 – 0.000 –

5 0.000 0.001 �0.000

6 – �0.012 –

7 0.000 �0.011 �0.006

8 – 0.031 –

9 �0.091 �0.130 �0.067
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10–11 T with a margin within 10–15% using Nb3Sn wires with Jc(12 T, 4.2 K) of
3 kA/mm2 and a Cu/non-Cu ratio of 1.2 to ensure quench protection. Nb3Sn
composite wires with such a high Jc became available around 2005 from Oxford
Superconductor Technologies (OST) (Parrell et al. 2005). Notice that the magnet
design with a warm yoke allows for a substantial reduction in size without noticeable
decrease in performance.

7.4 Fabrication Technology

Due to the small bending radii defined by the size of the inner-layer pole block, the
coil manufacturing technology requires using the wind-and-react (W&R) method. In
this approach the superconducting Nb3Sn phase is formed after coil winding during
its high temperature heat treatment.

The W&R technique imposes demanding requirements upon the coil compo-
nents, which must survive a long heat treatment at a high temperature of ~700 �C, in
the presence of thermo-mechanical stresses. Despite the relatively high cost, ceramic
insulation was selected for the dipole models of this series. This insulation, devel-
oped by CTD in the late 1990s, did not use organic ingredients and showed excellent
mechanical and electrical properties before and after the high-temperature heat
treatment (Rice et al. 1999; Chichili et al. 2000). Alternative, less expensive
S2-glass tape, traditionally used in Nb3Sn magnets, was initially declined, primarily
due to the presence of organic sizing, which involved additional processing. Later
S2-glass tapes without organic components were successfully used in short and long
coils of this series. To reinforce insulation after reaction, Nb3Sn coils are impreg-
nated with epoxy.

Cos-theta coils use complex 3D end parts. In the case of the W&R approach they
also must withstand the coil heat treatment without noticeable deformations, which
could cause shorts to the coils. An optimization method to design 3D metallic end
parts was developed and successfully tested at FNAL (Yadav et al. 2001). Newly
developed rapid prototyping techniques were used for the first time to reduce the
time and cost of end part design. Emerging technologies, such as water-jet cutting,
which reduced the end part fabrication cost by a factor of 2 and the processing time
by a factor of 10, were also successfully used (Zlobin et al. 2005).

New features were introduced in the magnet fabrication process to simplify coil
manufacturing and handling, and to reduce magnet production cost.

• To increase the cable mechanical stability and reduce the risk of turn-to-turn
shorts during winding, the ceramic tape was impregnated with a liquid ceramic
binder and pre-cured at 120 �C.

• To obtain a solid coil structure and the desired coil size, each coil layer was
impregnated again after winding with a ceramic binder and cured at 120 �C in a
precise mold.
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• To reduce coil fabrication time and allow easy coil handling and warm field
quality control before magnet assembly, two coils were assembled, reacted, and
epoxy impregnated to form a thick, round, solid pipe.

• To reduce assembly time and costs, expensive collars and delicate and time-
consuming collaring procedures were eliminated in this design. Later, safe
collaring procedures for brittle Nb3Sn coils were also developed and successfully
demonstrated at FNAL (Bossert et al. 2010), and used in the 11 T dipole for the
LHC upgrades (see Chap. 8).

The main steps of the developed coil fabrication technology, magnet assembly,
and coil preload were verified using mechanical and technological models (Andreev
et al. 2000; Chichili et al. 2001). This approach proved to be very useful in
complicated accelerator magnet R&D programs.

7.4.1 Mechanical Model

A 200 mm long mechanical model was assembled and tested to verify the results of
the magnet mechanical analysis and to choose the most appropriate coil shim plan.
For this purpose a special coil was wound, cured, reacted, and epoxy impregnated.
The Nb3Sn cable for this coil was made from IT composite wire developed for the
International Thermonuclear Experimental Reactor and insulated with S-2 glass. The
coil straight section was cut into two halves, covered with spacers, and assembled
inside the iron blocks. The assembly was clamped with aluminum clamps in a press
and preloaded by a welded skin (Fig. 7.6). The mechanical model was heavily
instrumented with strain gauges to monitor stress evolution during coil clamping,
skin welding, and model cooling-down with liquid nitrogen to a temperature of 77 K.

Table 7.6 presents the strain gauge data at various stages of the model assembly.
The experimental data are in good agreement with the FEA predictions shown in
parentheses. The outer diameter of the epoxy impregnated coil “pipe” was 0.25 mm

Fig. 7.6 Instrumented short
mechanical model.
(Andreev et al. 2000)
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larger than the nominal coil size, leading to high stresses in the coil during yoking in
press. After spring-back, the stress in the coil decreased to ~32 MPa. The final coil
pre-stress was provided by the skin through weld shrinkage, achieving the required
pre-stress within 10%.

7.4.2 Technological Model (HFDA01)

The main goal of the 1 m long technological model was to check the tooling,
optimize the coil fabrication and magnet assembly processes, and develop the
instrumentation and quality control procedures. In the case of successful assembly,
it was expected to proceed with cryogenic testing of this model.

7.4.2.1 Strand and Cable

The Rutherford cable used in this model had 28 strands, each of 1.0 mm diameter, a
0.025 mm thick stainless-steel core, a width of 14.23 mm, a mid-thickness of 1.82mm,
and a keystone angle of 0.927�. The cable was made at LBNL. The Nb3Sn composite
wire was produced by OST using the modified jelly roll (MJR) process. The round
wire had a filament diameter of ~0.115 mm and a Cu/non-Cu ratio of 0.92. The
measured critical current density at 12 T and 4.2 K for the round wire was ~2000
A/mm2 and the RRR was ~30. The Ic degradation due to cabling, measured using
round wires and extracted strands, was less than 10% for this cable, which had a quite
large packing factor of 89%. The quality of the cable was not completely satisfactory.
It was found that at several locations the core stuck between the strands, although it did
not protrude out of the cable surface, except for one location.

The cable was cleaned with ABZOL VG solvent and wrapped with CTD-CF100
ceramic tape with a 50% overlap. The nominal thickness of the cable insulation was
0.25 mm. Inorganic CTD-1002x ceramic binder was applied to the insulated cable
using rollers. The entire spool of wet insulated cable was cured at 80 �C for about
20 min to achieve a strong cable insulation system.

Table 7.6 Data from the mechanical model and FEA

Coil Spacer

Pole (MPa) Mid-plane (MPa) Pole (MPa)

Yoking in press 154 (145) 88 (122) 152 (156)

After spring-back 32 (40) 40 (43) 51 (50)

After skin welding 66 (72) 68 (65) 84 (81)

At 77 K 61 (73) 46 (45) 68 (56)

FEA predictions are shown in parentheses
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7.4.2.2 Coil Winding and Curing

Both coil layers were wound using a single cable piece. Coil end parts, wedges, and
pole blocks were made of aluminum-silicon bronze C642. The end parts were
fabricated at LBNL using five-axis computerized numerical control machining and
coated with a 0.125 mm thick ceramic layer.

Small axial gaps were introduced between the pole blocks and between the
wedges and end parts to account for differential thermal expansion during reaction
in the axial direction. Voltage taps made of thin stainless-steel strips were inserted
between the cable and the insulation during winding around the end parts. After the
winding of the inner coil, the ceramic binder was applied and the wet coil was
prepared for curing. After preliminary cycling at low pressures, a final azimuthal
pressure of 45 MPa and a radial pressure of 10 MPa were applied to achieve the
target coil geometry. The curing temperature of 150 �C was held for 30 min to
provide good turn bonding.

The inter-layer insulation was made of three layers of 0.125 mm thick ceramic
cloth. The middle layer contained two quench protection heaters made of 0.025 mm
thick stainless-steel strips (Fig. 7.7). The insulation assembly was impregnated with
ceramic binder and cured in a special fixture. The coil outer layer was wound on top
of the cured inner layer, which was covered by the inter-layer insulation. The outer
layer was then filled with ceramic binder and cured along with the previously cured
inner layer. A cured coil for the technological model is shown in Fig. 7.8.

The azimuthal size of the cured coils was measured at four locations along the coil
straight section at an azimuthal pressure of 2 MPa. The average azimuthal size for
the first coil was 0.2 mm over its nominal size. To correct the coil size of the second
coil, the wedge insulation was changed from 50% overlap to butt lap. The average
azimuthal size of the second coil at 2 MPa was only 0.01 mm over the nominal coil
size. The average measured azimuthal modulus of elasticity for the cured coils was
about 20 GPa. Electrical measurements, taken on the coils to check for turn-to-turn
shorts, did not detect any problems at that stage.

Fig. 7.7 The middle layer of the inter-layer insulation with strip-heaters. (Chichili et al. 2001)
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7.4.2.3 Coil Reaction

Two coils with ground insulation were mounted around a stainless-steel mandrel and
placed in the reaction fixture. The ground insulation consisted of three layers of
0.125 mm thick ceramic cloth preformed into shape using the ceramic binder.
The cable ends were welded to prevent tin leakage during reaction. The retort was
pumped for several hours and then purged with argon with a flow rate of ~1 cm3/s.
The reaction cycle had two steps: 575 �C for 200 h followed by 700 �C for 40 h with
a ramp rate of 25 �C/h. The coil temperature was monitored at several locations
throughout the reaction. The difference between the coil and the furnace temperature
above 500 �C was less than 2 �C.

Both mechanical and electrical measurements were also taken on the coils after
reaction. It was found that after reaction the coils expanded axially by 9 mm (!)
whereas the length of an annealed MJR cable in free state expanded by only 1 mm/m.
This unexpectedly large increase of the coil length was related to the restricted radial
and free axial coil expansion in the reaction fixture.

The azimuthal coil size was measured using a reacted practice coil. It was found
that it increased after reaction by about 0.5 mm at an applied pressure of ~15 MPa.
Therefore, the size of the next coils during curing was reduced by 0.5 mm to allow
the coils to grow azimuthally to the nominal size during reaction, thereby avoiding
high pressure in the mold and coil axial extrusion.

Tin leaks were found in both coils after reaction. This defect was attributed to the
lack of a low temperature step at 200–210 �C, when tin diffuses as a solid phase, as
well as to the high coil compression during reaction. Even though the coils were
clearly damaged, magnet fabrication was continued to study all aspects of the
assembly procedure.

Fig. 7.8 Dipole coil with coated parts after impregnation with ceramic binder and curing in a
precise mold. (Chichili et al. 2001)
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7.4.2.4 Splice Joints

Brittle Nb3Sn coil leads were spliced to flexible Nb-Ti cables using special tooling
and Pb-30Sn solder with Kester 44 Rosin Flux. Splicing was performed while coils
were still inside the reaction fixture. Each Nb3Sn lead was placed between two Nb-Ti
cables and encased in a 0.55 mm thick, 125 mm long copper cage with a copper top
plate. The Nb3Sn leads and the Nb-Ti cables were always supported to protect the
brittle Nb3Sn cable from any possible damage. Both splice joints were heated to
~230 �C by heaters placed in tooling slots. The bolts on the tooling were tightened
with the increase in temperature until the right splice geometry was obtained.

7.4.2.5 Epoxy Impregnation

Two coils were impregnated together with CTD-101K epoxy at a temperature of
60 �C. The stainless-steel mandrel used during reaction was replaced with a Teflon
mandrel. The mandrel diameter was chosen such that at the curing temperature it
expanded to fill the coil aperture. Thanks to the large thermal expansion of Teflon,
after impregnation it was easily removed from the coil aperture. A 0.125 mm thick
mold-released polyimide film was placed between and around the coils in the
impregnation fixture. In principle, this polyimide layer allowed splitting the coils
after impregnation. Pictures of impregnated coils are shown in Fig. 7.9.

7.4.2.6 Model Assembly and Instrumentation

The impregnated coil assembly and various components of the magnet support
structure were instrumented with gauges to measure stress values during magnet
assembly and operation. To measure the azimuthal stress, four capacitance gauges
were installed between the outer pole blocks and the coil. Capacitance gauges were

Fig. 7.9 (a) Epoxy impregnated coil assembly with Teflon mandrel in the aperture; and (b) cross-
section of the impregnated coil. (Chichili et al. 2001)
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fabricated in-house and calibrated at room and helium temperatures. Resistive strain
gauges were installed on spacers, clamps, and the skin.

The coils and yoke were assembled in a dedicated tooling and then compressed in
a vertical press (Fig. 7.10). The press load was increased incrementally until the gap
between the yoke halves, which was controlled by dial indicators, reached the
nominal value. At this pressure the aluminum clamps were easily inserted using a
separate set of pusher blocks. Then, the press load was released and the assembly
sprang back to an equilibrium position. The measured maximum stress in the pole
region of the coil outer layer was about 100 MPa, while the stress in the coil–yoke
spacers was 200 MPa in the pole region and 100 MPa in the spacer mid-plane.

At this stage the assembly of the technological model was complete. Lessons
learned during coil fabrication and magnet assembly were implemented in the next
dipole models.

7.5 Short Models

7.5.1 Short Dipole Models

Six 1 m long dipole models of the HFDA series were fabricated and tested at FNAL
from 2001 to 2005. The first three models, HFDA02 to HFDA04, used cables made
from MJR Nb3Sn composite wire produced by OST. The next three models,

Fig. 7.10 Coil-yoke assembly inside the yoking and clamping tooling ready for installation in the
vertical press. (Chichili et al. 2001)
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HFDA05 to HFDA07, used cables made from powder-in-tube (PIT) Nb3Sn wire
produced by Shape Metal Innovation. The MJR round wire had a higher critical
current density Jc(12 T, 4.2 K) of 2.0–2.2 kA/mm2, but a larger sub-element
diameter Deff of ~0.100 mm, whereas the PIT round wire had a lower Jc of
~1.6–1.8 kA/mm2 and a smaller Deff of ~0.050 mm.

In the early 2000s, a new improved R&D composite wire based on the restack rod
process (RRP) was developed by OST (Parrell et al. 2005). This wire had a high
Jc(12 T, 4.2 K) up to 3 kA/mm2, and a larger number of smaller sub-elements, which
significantly improved the stability of this wire with respect to “flux jumps.” The
cross-sections of the round Nb3Sn wires used in the HFDA dipole models are shown
in Fig. 7.11.

The cable in HFDA01 to HFDA03 had a 0.025 mm thick stainless-steel core to
control the inter-strand resistance, while the cable in HFDA04 to HFDA07 had no
core. Cables used in HFDA01–05 had 28 strands; the number of strand was then
reduced to 27 to optimize the cable packing factor. Cross-sections of the 28-strand
and 27-strand Rutherford cables without core made from PIT composite wire are
shown in Fig. 7.12.

The cable for the first eleven 1 m long coils was produced at LBNL. The cable for
1 m long coils 12–19, for the 2 m long coil 20, and for the 4 m long coil 21 was made
in-house using FNAL cabling machine. The cable for coils 1–11 was cleaned with
ABZOL VG to remove any oil residue left from the cabling process. Later, it was
found that cable cleaning does not affect coil properties, thus cable cleaning for the
subsequent coils was not used.

The main features of the 1 m long dipole models HFDA02–07 are summarized in
Table 7.7. The magnet design and fabrication procedures were similar to those used
in the technological model HFDA01. Some design and technological changes were
introduced throughout the short model R&D to address the problems found during
the technological model fabrication, and to incorporate the feedback from dipole
model fabrication and tests. The most important changes are described below.

Fig. 7.11 Cross-sections of Nb3Sn round wires: (a) MJR54/61; (b) PIT192; and (c) RRP108/127.
(Zlobin 2011)
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7.5.1.1 HFDA02

The cable insulation had 30% overlap in coil 3 and 40% in coil 4. The coil azimuthal
size during curing was reduced by 0.5 mm with respect to the nominal coil size, such
that after reaction the coils were at the nominal size without excessive pressure on
the conductor during reaction. Coil 3 was about 0.2 mm larger than coil 4 due to the
difference in mid-thickness of the used bare cable.

The coil end parts (v. 2) were re-optimized to better match the cable positions in
the end areas (Fig. 7.13). The end parts were produced using water-jet machining,
which is more cost-effective than five-axis CNC machining. No end-part coating
was used in this and the following magnets.

The coil reaction cycle was revised to avoid the tin leaks observed in the
technological model coils. The new heat treatment cycle included three steps:
210 �C for 100 h, 340 �C for 48 h, and 650 �C for 180 h. This heat treatment
schedule was used for all the short models made of the MJR cables.

Ground insulation was made of two layers of 0.25 mm thick ceramic cloth. Since
it was found that the heater strips between the two coil layers in the technological
model had been jammed during coil processing, which increased the risk of heater-
to-coil shorts, quench protection heaters in this and the next models of this series
were installed between the two layers of ground insulation. Voltage taps were
installed only on the coil leads.

Table 7.7 HFDA model features

Magnet
HFDA

Coil
number

Strand
type

Cable
core

Coil
ends

Coil
impregnation

Skin
design

02 3, 4 MJR Yes v. 1 Glued Welded

03 5, 6 MJR Yes v. 1 Glued Welded

04 7, 8 MJR No v. 2 Glued Welded

05 12, 13 PIT No v. 2 Separate Bolted

06 14, 15 PIT No v. 2 Separate Bolted

07 12, 14 PIT No v. 2 Separate Bolted

Fig. 7.12 Cross-sections of (a) 28-strand and (b) 27-strand cables
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7.5.1.2 HFDA03

The HFDA03 fabrication process was similar to that of HFDA02. The two coils in
this magnet had virtually the same azimuthal size. To provide more flexibility in
adjusting the tooling and to improve splice quality, a new splicing fixture was made
to splice each Nb3Sn lead individually. The splicing procedure was adjusted to
eliminate possible strand damage, which was believed to be one of the main reasons
for the poor quench performance of HFDA02. To provide visual control of the splice
quality, copper boxes were not used.

The ground insulation consisted of three layers of 0.125 mm thick ceramic cloth.
Strip heaters were weaved (see Fig. 7.7) into the insulation middle layer. Additional
voltage taps were placed on the outer layer of each coil, adjacent to the layer jump.
Special holes were made in the iron yoke to correct the iron saturation effect in the
normal sextupole b3. This iron yoke was used for all following dipole models.

7.5.1.3 HFDA04

Based on the HFDA03 test results, the coil lead end was redesigned to keep the coil
lead cables in the mid-plane (Fig. 7.14). The entire splice joint was placed in the lead
end saddle to ensure reliable splice support during splicing and at all stages of
magnet assembly and operation. The length of the coil straight section in this and
the next short models was reduced by ~200 mm to house the lead splices within the
coil end saddle and still use the same tooling. To allow better control of the coil
mid-plane position and provide the possibility of splicing each coil lead individually,
the two coils were separated in the reaction fixture by a stainless-steel plate.

Fig. 7.13 Longitudinal sections of the coil lead end with (a) first; and (b) second generation end
parts
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Coil 7 was impregnated first alone, and then coil 8 was impregnated together with
coil 7. The first step ensured an accurate mid-plane position and the second step
provided proper matching of the two coils in the mid-plane areas.

Coil alignment inside the iron yoke was done using only one outer pole block
with an extension. Special spacers were used to prevent large variations of the
azimuthal stress in the left and right sides of the coil during yoking. The stainless-
steel end blocks extended to cover part of the splice block, thus moving the stress
discontinuity away from the Nb3Sn lead.

HFDA04 was the last model that used the cable with MJR strands. By that time, it
had been recognized and experimentally confirmed that strong flux jump instabilities
in these strands with a large Nb3Sn sub-element size were the main cause of the poor
quench performance of HFDA02–04 (Zlobin et al. 2005).

Fig. 7.14 Coil end design:
(a) version 1; and (b)
version 2 with straight coil
leads
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7.5.1.4 HFDA05

The HFDA05 dipole was similar to HFDA04, except for the cable, which was made
of PIT Nb3Sn composite wires. Before insulation, the cable was annealed at 200 �C
for 30 min to reduce residual stresses accumulated during cable manufacturing. The
cable was insulated using a new insulation type. It was wrapped with two layers of
0.125 mm thick ceramic tape. The first layer was dry ceramic tape wrapped with a
0.75 mm gap. The second layer consisted of the same ceramic tape impregnated by
the manufacturer with CTD-1008 binder. It was also wrapped with 0.75 mm gaps
overlapping the gaps from the first layer.

The reaction cycle was adapted for the PIT wire and had only one step with a
temperature ramp rate of 25 �C/h to a reaction temperature of 655 �C for 170 h. Both
coils were reacted and impregnated separately to allow testing of the first PIT coil in
a dipole mirror structure (see Sect. 7.5.1.7).

None of the outer pole blocks had alignment extensions. The coil alignment
inside the yoke was done by using “scale” measurements. To eliminate large
differences in azimuthal stress between the left and right sides of the coil assembly,
special spacers were used, as in HFDA04. Unlike previous HFDA models, the
HFDA05 yoke gap was, by design, closed after cool-down.

7.5.1.5 HFDA06

The cable type and preparation procedures were the same as in HFDA05. The cable
was wrapped with 0.75 mm gaps with two layers of 0.125 mm thick and 12 mmwide
ceramic tape pre-impregnated with binder. The outer layer was wrapped to overlap
the gaps in the inner layer.

Each coil was impregnated with binder and cured in a closed cavity mold at
150 �C for 0.5 h with a 0.125 mm azimuthal polyimide shim in the mid-plane.

Coils 14 and 15 were reacted individually in a single-coil reaction fixture. The
intended reaction cycle for both coils had three steps: 210 �C for 100 h, 331 �C for
48 h, and 675 �C for 64 h (coil 14) or 100 h (coil 15). The reaction of coil 14 was
interrupted during ramping at 331 �C and then restarted several times due to
malfunctioning of the oven. Nonetheless, coil 14 was the best performing PIT coil.
Coils 14 and 15 were impregnated with epoxy separately after splicing with Nb-Ti
leads in the same fixture that was used for reaction.

7.5.1.6 HFDA07

This magnet was assembled using the best coils, 12 and 14, previously tested in
HFDA05 and HFDA06.
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7.5.1.7 Dipole Mirror Magnets

Single dipole coils were tested using a special coil test structure (CTS), also known
as dipole mirror, under operating conditions similar to those of real magnets
(Chichili et al. 2004). CTS noticeably reduced the turnaround time of coil fabrication
and evaluation, as well as material and labor costs. The dipole mirror used the same
mechanical structures and assembly procedures as the complete dipole magnets, and
allowed advanced instrumentation to be used.

The HFDM dipole mirror is shown in Fig. 7.15. The mirror’s mechanical
structure is similar to the HFDA dipole structure, except for the iron yoke, which
is split horizontally, and one of the two coils is substituted with half-cylinder iron
blocks. The transverse coil pre-stress and support are provided in the same way as
in the dipoles by a combination of aluminum clamps and a bolted stainless-steel
skin.

The main parameters of the coils tested in the dipole mirror structure are sum-
marized in Table 7.8. The most important details of the mirror magnets are described
below.

7.5.1.8 HFDM01

The first mirror magnet HFDM01A (also called HFDA03A) had two main goals—to
test a mirror magnet structure with bolted skin, and to study the effect of lead splices
on the magnet quench performance. The magnet used coil 5, which was tested
previously in HFDA03. The goal of the HFDM01B test (also called HFDA03B)
was to assess the splice joints in a configuration similar to a real magnet, because the

Fig. 7.15 Return end of short dipole mirror structure. The coil is paired with an iron semi-cylinder
inside the iron yoke and the bolted skin half-shell. (Zlobin 2011)
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splices were initially suspected as the main cause of poor quench performance of the
first HFDA dipole models. Additionally, HFDM01B allowed checking whether the
conductor could carry currents above 20 kA under conditions similar to those found
in a magnet. For this purpose, the inner- and outer-layer mid-plane turns on each side
of coil 5 were cut from the rest of the coil, spliced to flexible Nb-Ti cables, and
connected in series.

7.5.1.9 HFDM02

HFDM02 was fabricated and tested with a new coil 10, made from 28-strand MJR
cable. The cable was insulated for the first time with pre-impregnated ceramic tape,
which would later be used in HFDA05–07. Each end saddle had holes underneath
the lead splice joints to improve splice cooling. The coil was reacted without the
inner mandrel to allow for cable expansion inside the bore. This approach was
chosen to reduce possible cable stress/strain degradation during reaction and
improve gas removal from the coil before and during reaction. This trial coil
demonstrated poor quench performance similarly to previously tested MJR coils.
Therefore, it was not used in the next HFDA magnets.

7.5.1.10 HFDM03

Coil 12, the first coil made of PIT cable, was tested first in a dipole mirror
configuration to verify the effect of cable stability on the magnet performance. For
the coil design and fabrication features, see HFDA05 described above.

7.5.1.11 HFDM04, HFDM05

These two mirror magnets were fabricated and tested to increase the dipole field to
11–12 T by using the newly developed high-Jc RRP strands. The cable had
39 strands, each of 0.7 mm diameter, a width of 14.34 mm, a mid-thickness of

Table 7.8 Dipole mirror design features

Mirror magnet Coil number Coil length (m) Wire type Wire diameter (mm) Skin type

HFDM01 5 1 MJR54/61 1 Bolted

HFDM02 10 1 MJR54/61 1 Bolted

HFDM03 12 1 PIT192 1 Bolted

HFDM04 16 1 RRP54/61 0.7 Bolted

HFDM05 17 1 RRP54/61 0.7 Bolted

HFDM06 19 1 RRP108/127 1 Bolted

LM01 20 2 PIT192 1 Welded

LM02 21 4 RRP108/127 1 Welded
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1.258 mm, and a keystone angle of 0.972�. The cable for HFDM04 was produced at
LBNL. The cable for HFM05 was made in two steps. First, the rectangular cable was
made at LBNL. Then it was annealed and re-rolled to its final keystone geometry at
FNAL. A high-Jc 0.7 mm diameter RRP54/61 strand with a sub-element size of
~0.085 mm was used to mitigate the instability problems and thereby increase the
achievable field. The coil cross-section was modified for this thinner 39-strand cable
without changing the coil layer width and outer coil radius (Fig. 7.16). Three coils of
this design were fabricated and two were tested in a mirror configuration.

7.5.1.12 HFDM06

This mirror magnet used the coil made of RRP108/127 Nb3Sn strand 1 mm in
diameter with a larger number of sub-elements and increased sub-element spacing.
To reduce the strand deformation on the cable edges, the number of strands in the
cable was reduced from 28 to 27. The Rutherford cable was made at FNAL in two
steps. First a low-compaction rectangular cable was produced, and it was then
re-rolled to its final keystoned cross-section, after a short intermediate annealing of
the rectangular cable at 190 �C in air.

7.5.1.13 LM1 (HFDM07)

This mirror magnet was used to test the first 2 m long coil 12, which was made of
27-strand PIT cable. The coil fabrication procedure was similar to coils 14 and 15.
The magnet assembly was similar to HFDM03.

Fig. 7.16 Coil cross-
section based on 39-strand
cable
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7.5.1.14 LM2 (HFDM08)

This mirror magnet was used to test the first 4 m long Nb3Sn dipole coil as part of the
Nb3Sn coil technology scale-up program. The coil was made of 27-strand Ruther-
ford cable with 1 mm Nb3Sn RRP108/127 strands. The total cable length in the coil
was about 166 m. The coil design and the magnet fabrication procedure were similar
to HFDM06.

7.6 Dipole Model Tests

Six short dipoles of the HFDA series were built and tested at FNAL from 2002 to
2006. It was the first in the world series of nearly identical Nb3Sn accelerator
magnets, which provided the first data on magnet quench performance, field quality,
and especially on the reproducibility of magnet technology and performance.

7.6.1 Quench Performance

The HFDA dipole models were tested in liquid helium at 4.5 K and at lower
temperatures. Quench performance of HFDA02 to HFDA07 is shown in Fig. 7.17.
The first three models HFDA02 to HFDA04, made of the MJR wire, were limited by
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flux jumps in the superconductor and only reached 4–7 T (Zlobin et al. 2005). The
three last magnets were made of the more stable PIT wire, and at 4.5 K reached their
short sample field of 9.3–9.4 T. The field level in these models was limited by the
relatively low Jc of the PIT wire. At 2.2 K, the maximum field in PIT models
increased to ~10 T thanks to the increase of the superconductor Jc at lower temper-
atures (Fig. 7.18).

Ramp rate dependences of the HFDA05–07 quench field normalized to the Bmax

value measured at 4.5 K and dI/dt ¼ 20 A/s are shown in Fig. 7.19. The shape of the
ramp rate dependences at current ramp rates above 125–150A/s suggests that they are
dominated by the large eddy current losses in the cable without a stainless-steel core.

7.6.2 Field Quality

The field harmonics were measured at 4.5 K using a 250 mm long (43 mm long in
HFDA05) 25 mm diameter probe. The probe had a tangential coil to measure high-
order harmonics, as well as dedicated dipole and quadrupole coils to measure low
order harmonics.

The transfer function TF, normal sextupole b3 and decapole b5 harmonics mea-
sured in HFDA07 vs. the bore field are shown in Fig. 7.20.

Analysis shows that the iron saturation effect in the TF is in a good agreement
with the calculations. In b3 the iron saturation effect was minimized at high fields by
using special correction holes in the yoke.

Figure 7.21 shows the measured ramp rate sensitivity of the normal sextupole b3
in HFDA02–07. In this figure the width Δb3 of the sextupole loop at B ¼ 2 T is
plotted vs. the current ramp rate (Zlobin et al. 2007). HFDA02 to HFDA04 models
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demonstrated a very small and reproducible eddy current effect, due to large
crossover resistances in the cable with stainless-steel core and due to the high
resistance of the strand matrix (RRR ~10). The Δb3 in HFDA05 to HFDA07 rapidly
changed with the ramp rate. The negative slope of the Δb3 ramp rate dependences
indicates that the effect was due to the eddy currents in the cable rather than in the
strands in spite of the lower copper matrix resistivity in the PIT wires (RRR ~50).
These results prove that the eddy current magnetization effect could be suppressed
using cored cables and strands with a small twist pitch.

The width of sextupole loops Δb3 extrapolated to dI/dt ¼ 0 corresponds to the
persistent current component of a coil magnetization, which is proportional to
Jc�Deff. The persistent current effect is reproducible in HFDA models made of the
same wire type. The b3 loops in HFDA02 to HFDA04 were larger than in HFDA05
to HFDA07 due to the higher Jc and largerDeff in the MJR wires. These larger values
also caused noticeable b3 fluctuations at low fields in these models, associated with
flux jumps in the superconductor (Zlobin et al. 2006). It was realized that the large
persistent current effect in Nb3Sn accelerator magnets cannot be reduced to an
acceptable level by reducing the sub-element size because of technological limita-
tions for high-Jc Nb3Sn wires based on the IT or PIT processes. It was shown,
however, that the main component can be compensated using a simple passive
correction based on thin iron strips developed and tested at FNAL (Kashikhin
et al. 2003).

Measurements of b3 decay and “snap-back” effects, important for accelerator
magnets, were done at a 3 kA plateau for 30 min. It was found that the b3 decay was
very small relative to that seen in Nb-Ti accelerator magnets.

Geometrical field harmonics in HFDA02 to HFDA07 are shown in Table 7.9.
They were determined as average values between current up and down ramps at
3 kA. The average values of the low-order geometrical harmonics for HFDA series
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are rather small, below one unit, except for the normal sextupole b3. Standard
deviations (SD) of the measured normal b2 and skew a2 gradients, and the normal
b3 sextupole, are relatively large with respect to the other harmonics.

The standard deviations of normal and skew harmonics measured in six HFDA
models are compared in Table 7.9 with the results of the first six 40 mm aperture
SSC dipole models made with Nb-Ti superconductor (Jackson 1986). The variation
of skew harmonics in the Nb3Sn and Nb-Ti models is rather close. The variation of
normal harmonics is larger in the former, since it includes both fabrication errors of
coil components and size variations of the shims used to adjust the coil pre-stress.

-100

-80

-60

-40

-20

0

20

40

60

0 10 20 30 40 50 60 70 80 90

Δb
3 i

n 
un

its

Current ramp rate in A/s

HFDA02
HFDA03
HFDA04
HFDA05
HFDA06
HFDA07

Fig. 7.21 Ramp rate sensitivity of the normal sextupole b3. (Zlobin et al. 2007)

Table 7.9 HFDA02–07
geometrical field harmonics,
10�4

n HFDA SSC-40 mm

Average SD SD

an bn an bn an bn
2 �0.37 �0.15 7.3 4.1 2.77 0.79

3 0.55 2.06 0.6 4.3 0.22 1.24

4 �0.73 �0.06 0.9 0.7 0.29 0.15

5 0.17 0.60 0.1 0.9 0.12 0.30

6 �0.04 0.00 0.2 0.2 0.11 0.03

7 0.01 0.20 0.1 0.2 0.03 0.06

9 �0.02 �0.05 0.1 0.1 0.08 0.05
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7.7 Dipole Mirror Tests

7.7.1 Conductor and Coil Technology Study

Six short dipole mirror magnets of the HFDM series were built and tested at FNAL
between 2002 and 2006. The first tests were performed to validate the mirror
structure and to develop and demonstrate the coil technology (HFDM01–02).
Then the focus moved towards understanding and improving conductor and magnet
flux jump stability (HFDM03–06).

Training data of dipole coils tested using the dipole mirror structure are plotted in
Fig. 7.22. The coils made of 1 mm MJR54/61 wire with the largest Deff, and those
made with the first high-Jc 0.7 mm RRP54/61 wire with relatively low RRR
demonstrated erratic quench performance and large quench current degradation at
4.5 K, as the corresponding dipole models. The coil made of 1 mm PIT192 wire
showed stable training performance and reached its short sample limit (SSL) at
4.5 K. A similar performance was later confirmed by the PIT dipole models
(Fig. 7.17). The coil with the high-Jc 1 mm RRP108/127 wire reached at 4.5 K the
highest quench current, which corresponds to ~97% of its SSL limit. Noticeable
variations of quench current at the current plateau, however, pointed to magnetic or,
perhaps, mechanical instabilities in the coil.
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Fig. 7.22 Dipole mirror training at 4.5 K (solid markers) and lower temperatures (open markers).
(Zlobin 2011)
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7.7.2 Technology Scale-Up

Nb3Sn technology scale-up is a key phase for magnet implementation in accelera-
tors. It addresses problems related to winding, curing, reaction, impregnation, and
handling of long Nb3Sn coils, as well as long magnet assembly and performance.
The scale-up was done in two steps, starting in 2006–2007 with fabricating and
testing of a 2 m long Nb3Sn dipole coil made of PIT wire (Zlobin et al. 2007). Then,
a year later, the first 4 m long dipole coil made of RRP108/127 Nb3Sn wire was
fabricated and tested (Chlachidze et al. 2009). Pictures of the 4 m long Nb3Sn coil
and dipole mirror are shown in Fig. 7.23.

Training quenches of the 2 m long PIT coil (LM01) and the 4 m long RRP coil
(LM02) at 4.5 K are shown in Fig. 7.24, where they are compared with the
corresponding 1 m long coils that were also tested in dipole mirror magnets.

The 2 m PIT coil reached its SSL and a field level of 10 T at 4.5 after a short
training, similar to the corresponding 1 m long PIT coil tested in dipole mirror
HFDM03. The 4 m long RRP coil, unlike its short version, was limited at 4.5 K by
strong flux jump instabilities in the coil outer layer (perhaps caused by conductor
damage during coil fabrication or magnet assembly). After suppressing these insta-
bilities by heating the coil outer layer using quench heaters, however, it reached
~90% of its SSL at 4.5 K. The maximum quench current was limited by quenches in
the coil inner-layer mid-plane turns, which were impacted by the heat flux from the
heaters.

7.8 Conclusion

Nb3Sn accelerator dipole magnets based on shell-type coils and the W&R method
were developed at FNAL. The twin-aperture magnet designs with horizontal and
vertical aperture arrangements and cold and warm iron yokes met the VLHC
technical requirements and offered substantial cost reductions for the collider magnet
system.

The R&D program experimentally demonstrated the main magnet parameters
(maximum field, quench performance, field quality) and their reproducibility using a
series of 1 m long single-aperture models, as well as demonstrated the technology
scale-up using longer coils. As part of the technology development, nineteen 1 m
long two-layer dipole coils were fabricated and tested in six dipole and six dipole
mirror models. The last three dipoles and two mirrors reached their design fields of
10–11 T. All six short dipole models showed good, well-understood, and
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reproducible field quality. The quench performance and field quality data confirmed
the good reproducibility and robustness of the magnet design and technology. It was
the first time that Nb3Sn technology scale-up was performed by building and testing

Fig. 7.23 (a) First in the world 4 m long Nb3Sn dipole coil. (b) Dipole mirror LM02 with 4 m coil
prepared for transportation to the FNAL magnet test facility. (Zlobin 2011)
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2 m and 4 m long dipole coils. The first positive results of the Nb3Sn technology
scale-up phase reinforced high expectations for the practical use of this technology in
particle accelerators.
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