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Central Force Motion

9.1 Motion in a Central Force Field
A force is said to be central under two conditions. First, the
direction of the force must always be toward or away from a
fixed point (see Fig. 9.1). This point is known as the center
of the force. Second, the magnitude of the force should only
be proportional to the distance r between the particle and the
center of the force. The central force may be written as
F=f(rr ©.1)
where r; is a unit vector in the direction of r. Therefore, if
f(r) < 0, then the central force is an attractive force since
it is directed toward the center of the force O (as shown in
Fig. 9.1) and if f(r) > 0, the force is repulsively directed
away from O.

Example 9.1 Which of the following forces are repulsive and

-3
—r(MF = 4711 (c0)F =
-

7

which are attractive? (a)F =

r(r—2)ry.

Solution 9.1 (a) Attractive, (b) repulsive, and (c) attractive if
0 < r < 2 and repulsive if r > 2.

9.1.1 Properties of a Central Force

1. The resulting motion of the particle takes place in a plane.
To show that we have from Eq. 9.1

F=f(r)r =ma
thus, a is parallel to r(r = rry) and we may write
rxa=>0

Hence,
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dv
20
r x =
or
hall =0
t(r X V)
Thus,

r X v =h = constant 9.2)
where h is a constant vector. Therefore, r and v always lie
in the same plane where h is perpendicular to that plane
for every value of . As a result, the path of the particle
takes place in a plane.

. The angular momentum of the particle is conserved. From

Eq. 9.2, we have
m(r x v) = mh

or
L = mh = constant

Thus, the angular momentum is equal to a constant at all
times (conserved).

. The position vector r of the particle with respect to the

center of force sweeps out equal areas in equal times or in
other words, the areal velocity is constant. To show that,
consider the plane of motion to be the x—y plane. During
an infinitesimally small time interval dt, the radius vector
r sweeps out an area equal to dA. From Fig. 9.2, this area
is equal to half of the area of a parallelogram with sides r
and dr. That is,

1
dA = — d
2|r>< r|

or

1
dA = —|r x vdt|
2
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F (attractive)
// F (repulsive)

m

\ Center of Force

X

Fig.9.1 The central force

Z

X

Fig. 9.2 During an infinitesimally small time interval df, the radius
vector r sweeps out an area equal to dA

or

Thus,

dA h
— = — = constant
dt 2

9.1.2 Equations of Motion in a Central Force
Field

The most convenient coordinate system to describe the motion
of a particle, under the influence of a central force, is the polar
coordinate system. This convenience lies in the fact that the
central force is in the r-direction. In Sect. 2.6, it has been
shown that the acceleration of a particle in a plane, in terms
of its polar coordinates, is given by
a=(F—réPr, + (6 + 2i6)6,
Applying Newton’s second law to the particle gives
F =ma

Fry =ml(F — r6*)ry 4 (16 + 2i6)81]

That gives

f(r) =m@ — ré?) 9.3)

m(r + 2i6) =0 9.4)

In Sect. 2.6, we’ve also seen that the velocity of a particle in
polar coordinates is given by

vV =it + 60,
Therefore, we have
r xv=rry x (ir; + réol) =ri(r; xry) + rzé(rl x 01)
=0+r20(r; x0;)=h

Taking the plane of motion to be the x—y plane, thenr; x 6
is parallel to the z-direction and we have

h = r26k = hk

Hence,

0 =h 9.5)

and Eq. 9.2 can be written as
d 2 A
—(@0)=0
A

or
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Y
r?6 = constant
Substituting Eq. 9.5 into Eq. 9.3 gives
h2
fr) = m('f - r_3) (9.6)
Letu = 1/r, then 7 = —it(l/uz). Since 26 = h, we have
u?> = 0 /h. Thus
. u du/dt du
r=—h{=)=—-h =—-h| — 9.7
0 do/dt dao
And
. d h du d h du\ do
r=—\-n—\)=—\| —-h—|)—
di do )~ de do ) dr X
2 ) Fig. 9.3 A particle moving from point P to P,, while a central force
. d“u\ . . 2 2 d<u that has its center at the origin acts on it
Fr=—-hl— )0 =—-hu|— (9.8)
do? do?
Substituting Eq. 9.8 into Eq. 9.6 gives r -
i g @
0 P o odr P
FQu) = m( K Sy e ) f 2
u)=m u FTE u r;
b ry .
or = "
d*u —1
W +u= Wf (1/u) 9.9) Fig.9.4 The central force is always acting in the direction of the radial

This is the equation of path in a central force field.

9.1.3 Potential Energy of a Central Force

Consider a particle moving from point P; to P> (see Fig. 9.3)
while a central force that has its center at the origin acts on it.
The path of the particle may be considered as a combination of
radial and curved segments. The central force is always acting
in the direction of the radial segments and is perpendicular to
the displacement along any of the curved segments. Thus, the
work done by the central force along any curved segment is
zero and the total work done in moving the particle along any
path is equal to the work done along a radial line from r; to
17 (see Fig. 9.4). That is, the work done by a central force is
independent of path. It depends only on the initial and final
positions of the particle.

From this, we conclude that the central force is a conserva-
tive force. You may also prove that V x F = 0. Hence, there
exists a potential energy and the work done by the gravita-
tional force may be written as

W =-AU

segments and is perpendicular to the displacement along any of the
curved segments. Therefore, the total work done in moving the parti-
cle along any path is equal to the work done along a radial line from
rjtory

The work done in moving the particle from P; to P; is

Py Iy rf r
W= F-dr:/ f(r)rl-drzf f(r)—--dr
ri ri r

Py

Since r - dr = rdr, we have

F
W:/ f(rdr

or

AU =Uy - U; = —/rff(r)dr (9.10)

9.1.4 TheTotal Energy

Since F is a conservative force, it follows that the total energy
is conserved (constant), that is,

1 2
E = Emv + U(r)
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Since
Vi=v.v=7i?+,%%
we have
o 2
E_zm(r +r0)+U(®) 9.11)
Substituting Eqs. 9.5 and 9.7 into Eq. 9.11 gives
E=tm(n(% 2+ : (h*)? ) +U
—2"\" \ao 2 )
or
du 2+ , 2(E-U) ©.12)
N U = —:-- .
de mh?
9.2 The Law of Gravity

In 1687, Isaac Newton made a remarkable discovery. Newton
stated that the force that holds planets in their orbit is the
same force that makes an apple fall from a tree. Newton’s law
of gravity states that every particle in the universe attracts
every other particle with a force that is directly proportional
to the product of the masses of the particles and inversely
proportional to the square of the distance between them. The
magnitude of this gravitational force is given by

Fo Gm;mz

I
where m; and my are the masses of the particles, r is the
distance between them, and G is the universal gravitational
constant. G has the same value if the particles (or objects) are
located anywhere in the universe and it is given by

G = 6.672 x 107" N.m?/kg?

The gravitational force is effective when one or both the
masses are very large. This is because G is a very small num-
ber. Note that, the gravitational force is not a contact force; it
is a field force that can act through any medium. The direc-
tion of the gravitational force is along the line joining the two
particles.

Therefore, the gravitational force is a central force since
its magnitude is proportional only to the distance between the
two particles (where one of the particles can be considered as
the center of force), and its direction is along the line joining
them (toward the center of force).

Figure 9.5 shows two particles of masses m and m;. Each
particle exerts a gravitational force on the other. Let the grav-
itational force exerted on my by m to be F»1, and that exerted
on m] by my to be Fi>. From Newton’s third law of action
and reaction, we have

Fig.9.5 Two particles of masses F5;

my and my. Each particle exerts a =

gravitational force on the other
F)> m;
/ Ira;
dﬁz

mp

Fio = -Fy

That is, the two forces form an action and reaction pair. In
terms of unit vectors, we may write

Gmimy
Fry=——5—rnp
V)
and
Gmimy
Fio=——5—rn
21

where r1; is a unit vector that is directed along the line joining
the two particles (directed from m; to my) and rp; is a unit
vector directed from mjy to m;. The negative sign indicates
that the force is attractive. That is, the force exerted on m;
by my will move m; in the direction opposite of r»p, i.e.,
toward m;. Where the force exerted on my by m; will move
my opposite to ry» (toward my). If particle P of mass of mp
interacts with a system of particles, the resultant gravitational
force Fp exerted on particle P due to all particles in the system
is the vector sum of the individual forces that each particle in
the system exerts on particle P:

n n —Gmpm;
Fp=) Fp=) — 5t

i=1 i=1 TP

where r;p is a unit vector directed from the ith particle in the
system toward the particle P and Fp; is the force exerted on
particle P by the ith particle. If particle P of mass m interacts
with an extended body of mass M, the resultant gravitational
force Fp exerted on particle P is the vector sum of the individ-
ual forces dF exerted on particle P due to each mass element
dM 1in the object, but in this case, the sum is replaced by an

integral
am
Fp:/dF:—Gm /—2 ry
r

where r| is a unit vector directed from the mass element dM
to the particle as shown in Fig. 9.6. The force of gravity gives
planets and other heavy celestial bodies their spherical shape.
That is because as the mass of the body becomes larger the
force of gravity becomes stronger and all particles from all
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Fig.9.6 A particle P of mass m
interacting with an extended body
of mass M

sides are attracted evenly toward the center. As a result, the
body tends to have a spherical shape.

Example 9.2 Two particles of masses m; = 0.2 kgand my =
0.3 kg are separated by a distance of 0.05 m. Find (a) the
gravitational force that each particle exerts on the other; (b)
at what distance a third particle m3 = 0.5 kg must be placed
at the other side of m such that the net gravitational force on
my is zero. (All particles lie on a straight line).

Solution 9.2 (a)

Gmymy _ (6.67 x 1071 Nm?/kg?)(0.2kg)(0.3kg)

2 (0.05 m)2

Flp = Fy = 1.6 x 107°N

(b)

Gm1m3

2
3
Gmimyp

2
3

If the net force on m; is zero, we have

ZFI =F3—Fi2=0

or
Fizs=Fn
Gmims _ Gmimy
"%1 - 3
that gives

,  my 5, (0.5kg)

= —r2 = ——22(0.05 m)*
31 m2r21 (O.Skg)( m)

r31 = 0.064 m

9.2.1 The Gravitational Force Between a Particle

and a Uniform Spherical Shell

Case I: A Particle outside the Shell Consider a particle of
mass m located outside a uniform spherical shell at point P as
in Fig. 9.7. Imagine this shell to be made of a large number
of thin rings each of outer thickness Rd6 and inner thickness
1. The ring is so thin (since d6 is used) that every particle in
the ring is at a distance s from P Furthermore, each particle
in the ring exerts a gravitational force on the particle at P.

From the symmetry of the ring, if a particle (1) on the
upper side exerts a gravitational force F1 on m, there is always
another particle (2) at the opposite side of the ring exerting
another force (F») on the particle. Because F| and F, are
equal in magnitude, then their y components cancel each other
out and their x components add up (see Fig. 9.7). Thus, the
resultant force exerted on m due to all particles of the sphere
is the sum of the x components of their forces. Therefore the
resultant force on m is along the x direction (toward the center
of the shell). The gravitational force exerted on m by a thin
ring of mass dM is

GmdM
dFy = 2

cos @

To express dM in terms of the density of the ring, we find the
volume of the thin ring

dV = 2wRsin0)(Rd6)l = 27 IR* sin 6d6
Since the shell has a uniform volume density p, dM is given

by
dM = pdV = p2xIR*sin0do

Thus,
27 plmGR? in 0d0
dF, = wplm 02()s¢ sin ©9.13)
s
From Fig. 9.7,
r — Rcos6
cosp = —— 9.14)
s
From the cosines law, we have
s =R* + r> — 2Rrcos 6 (9.15)
Substituting Eqgs. 9.14 and 9.15 into Eq. 9.13 gives
dF, = 27 pimGR?(r — R cos 6) sin 0d6 9.16)

(2 + R?2 — 2rRcos 6)3/2

From Eq. 9.15, we have
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Fig.9.7 Because F| and F; are
equal in magnitude, then their y
components cancel each other out
and their x components add up

F‘;.wimp

2sds = 2rR sin 6d 0

To integrate over all rings, 6 will change from 6 = 0 to .
From Eq. 9.15, we have at 6 = 0, s = r — R since (r > R),
and at @ = 7, s = r + R. Also, we have from Eq. 9.15

R 422
cosf = ——
2rR
Thus 5 s 5
—R
r—Rcosf = L
2r

Substituting this into Eq. 9.16 gives

GoplRm ("R 2 _ R? 47 GplR?
ng—ﬂp m/ <1+r )ds: rop "
r

) r $2 )
9.17)
Since 47R?pl = M, it follows that
GMm
Fo = 2

That is, the spherical shell behaves as a particle of mass M
located at its center.

Case II: A Particle inside the Shell If a particle is inside
a uniform spherical shell, the derivation of the gravitational
force exerted on the particle by the spherical shell is the same
as if the particle were outside the shell, except that the lower
integration limit is different. At = 0, s = R—rsincer < R.
Thus, we have

7GplRm 'R r2 — R?
¢ r? /R e )

-r

where r < R. That is, if the particle is inside the shell, the
gravitational force exerted on it by the shell is zero. However,
objects outside the shell may still exerts forces on the particle.
In summary, we have

GMm
(r=R)

F, =
4 I"2 -

P
“Fz.\'inq.r

Fig.9.8 The force exerted on a particle as a function of its r

Fo=0(@<R)

Figure 9.8 shows the force exerted on a particle as a function
of its location.

9.2.2 The Gravitational Force between a Particle
and a Uniform Solid Sphere

Case I: A Particle outside the Sphere Consider a particle
of mass m located outside a uniform solid sphere. The sphere
may be considered to be made of a series of concentric spher-
ical shells. The force exerted on the particle by each shell is
given by

GdMm
dFg = 2

The mass of each shell is dM = pdV = p4ma’da. Where p
is the volume density of the sphere and a is the distance from
the shell to the center of the sphere and da is the thickness of
the shell, Hence,

Gmpara’da
ng = r—2
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F
|
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|
|
|
I
- r
0 R
Fig.9.9 If a particle of mass m is located inside a uniform solid sphere  Fig.9.10 The force exerted on a particle as a function of its r
of mass M, then the gravitational force exerted on the particle is due
only to the part of the sphere of radius r < R and of mass of M _
2 | / dm = ldx
The total force exerted on m by the sphere is 0 a E W ﬂ| X

Gmpdr (R

Fg = ﬁ/ a’da
r 0

G(p*/37nR>)m

Fg= —

GMm
Fo=—5

9.18)

r

Thus, the solid sphere behaves as a particle of mass M located
at the center of the sphere.

Case II: A Particle inside the Sphere If a particle of mass
m is located inside a uniform solid sphere of mass M, then
the gravitational force exerted on the particle is due only to
the part of the sphere of radius r < R and of mass of M
(see Fig. 9.9). The remaining part of the sphere is a spherical
shell which exerts no force on the particle since the particle
is located inside it. From Eq. 9.18, the gravitational force
exerted on the particle due to a sphere of radius r and mass
M is given by

F, = SMim (9.19)
) :
Since the sphere has a uniform density, we have
_ M _ M
=W Ty
or
My Vi 43z
M~V 4/3zR3  R3
or
r3
M =M g (9.20)

Fig.9.11 The force exerted on a particle of mass m that is at a distance
of a from a thin rod of mass M and length L

Substituting Eq. 9.20 into Eq. 9.19 gives

GmMr

where r < R. Therefore at the center of the sphere,
Fe=0

Figure 9.10 shows the force exerted on a particle as a function
of its location.

Example 9.3 (a) Find the gravitational force exerted on a par-
ticle of mass m that is at a distance of a from a thin rod of
mass M and length L as in Fig. 9.11; (b) find the force in (a)
ifa> L.

Solution 9.3 (a)

GmdM
ar = 222

X

since the rod is uniform we have
M
dM = \dx = de

Thus
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dr

Fig.9.12 The gravitational force exerted on a particle of mass m that
is at a distance a from the center of a uniform solid disk of radius R and
mass M

Integrating from a to a + L gives

GmM /H+de7c;mM -1t GmM[1 1 1 GmM
L J. 2 L x “ L |la a+L] a@a+L)

a

In vector form,
GmM

o a(a+L)i

(b) if @ > L, then

GmM
F="";

a?

That is, the rod can be considered as a particle of mass M that
is at a distance a from m.

Example 9.4 Find the gravitational force exerted on a particle
of mass m that is at a distance a from the center of a uniform
solid disk of radius R and mass M as shown in Fig. 9.12.

Solution 9.4 Let us divide the disk into thin concentric rings
of radius r and thickness dr. By symmetry, the resultant force
on the particle is directed along the axis of the ring, since the
y-components of the forces exerted by all particles of the ring
will cancel out, where their x-components will add up. That s,

GdMm cos 6
dF = ————
r2+a?

Since the mass element dM is given by dM = o 2rrdr), we

have
_ Go 2nrdr)mcosf

dF =
r2+a?

or
_ Go Q2nrdr)ma

(r2 + a2)3/2

The total force is

R rdr
F = 271G0ma/

2 +a>)-127R
r=0 (r2 + a2)*2

= nGama[ ~12

0

a

F=2n Gam|:1 m}

Example 9.5 A uniform solid sphere has a mass of 4.7 kg and
a radius of 0.05 m. Find the magnitude of the gravitational
force that the sphere exerts on a 0.02 kg particle located at
(a) 0.5 m from the center of the sphere; (b) 0.03 m from the
center of the sphere; (c¢) at the surface of the sphere; (d) at the
center of the sphere.

Solution 9.5 (a)

GmM _ (6.67 x 107" Nm? /kg?)(0.02 kg)(4.7 kg)

Fls = 25x107'N
=02 0.5 m)? x
(b)
—11 2 2
Flo= Gmgvlr _ (6.67 x 10 Nm~/kg~)(0.02 kg)(4.7 kg)(0.03 m) C15x10° N
R (0.05 m)3
(©)
—11 2 2
P - GmM__ (667 x 10~ Nm?/ke) 0.2 k) 4.7ke) _, o 10
R? (0.05 m?)
(d)
Fls =0

Example 9.6 Three concentric spherical shells have masses
of My, M>, and M3 and radius of R, R, and R3, respectively,
as in Fig. 9.13. Find the gravitational force exerted on a parti-
cle of mass m located at (a) r = a(b)r = b(c)r = c(d)r =d.

Solution 9.6 (a)

(b)

Fig.9.13 Three concentric spherical shells
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GMlm
F =
b2
(©)
GMm GMym Gm
F= 2 + ) =C—2(M1+M2)
d

Gm
F = ?(Ml +M2 +M3)

Example 9.7 A spaceship of mass m; is moving along a
straight line path between the earth and the sun. At what dis-
tance from the center of the earth will the gravitational force
of the sun balances that of the earth?

Solution 9.7 At that point, we have

Fig = Fis
GmlME _ GmlMs
2 d-r)?
or
d—r?  Ms
r2 a Mg

d[Mg — (MgMs)'/2]
Mg — Mg

Example 9.8 An artificial satellite is moving in a circular
orbit about the earth at a distance of 1500 km above the earth’s
surface. Find its speed and period.

Solution 9.8
GmsMEg msv2
-2 =

r r

GMg

r

where r is the distance between the center of the earth and the
satellite. That is,

r = (6.37 x 10°m) + (1500 x 10°m) = 7.9 x 10°m

Hence,

GMg (6.67 x 10~ 11Nm2 /kg2)(5.98 x 1024kg) 3
V= - =7.1x10"m/s
r (7.9 x 10°m)

2 2(3.1.4)(7.9 x 100
p= 20 26 1DEI X I0Tm) e oc — 116.15 min
v (71 x 103m/s)

9.2.3 Weight and Gravitational Force

In Chap. 4, we’ve seen that the weight of an object is defined
as the gravitational force exerted on the object by the earth
(or any other astronomical object) and it is directed toward
the center of the earth. The weight of an object is given by
w = mg, where g is the free-falling acceleration and its value
near the earth’s surface is 9.8 m/s2. The exact form of the
gravitational force between any two objects was given earlier
in this chapter by Newton’s law of gravity In the case of an
earth—particle system, the gravitational force that each one
exerts on the other is

GMgm
F, = 5

/%

where Mg is the mass of the earth and m is the mass of the
particle that is at a distance r from the center of the earth. Note
that, it is assumed that the earth is a perfect sphere of uniform
mass distribution, and therefore behaves as a particle. In real-
ity, the earth is not a perfect sphere but rather an ellipsoid.
Furthermore, the earth’s density is not uniform since it varies
with the radius of earth.

The earth’s density also varies at the earth’s surface from
one region to another. In addition, if the earth’s rotation is
included, then the resultant force on an object will be its
weight plus the centripetal force exerted on the object due
to the rotation. However, these variations are often neglected.
From the definition of weight, we have

GMEm
w=mg=F; = 5

r

therefore
_ GMg

2

g 9.21)

,
As you can see the free-falling acceleration does not depend
on the mass of the object as was predicted before. If the object
is falling near the earth’s surface, then distance r in Eq. 9.21
can be replaced by Rg which is the radius of the earth and we

have
_ GMg

8§ = R125

If the object is at a distance / from the earth’s surface, we
may write
GMEg

87 Re +h)?

Thus, the weight of an object decreases with increasing alti-
tude. Table 9.1 shows the variation of g with altitude.
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Table 9.1 Variation of g with altitude

Altitude /1 (km) g (m/s?)
1000 7.34
6000 26
10000 1.49
30000 0.3
60000 0.09

Example 9.9 A man can jump vertically upward from the
earth’s surface and reach an altitude of 0.2 m. Find the altitude
the man can reach if he jumps with the same initial velocity
on the surface of the moon.

. V2—V2 .
Solution 9.9 Using the formulay —yy = 72g° and by taking
yo = O atthe earth’s surface and y = & at the maximum height
and that v = 0O there, we have

2
h= 0
2g
Since the initial velocity of the man is the same on earth and
on moon, we have
hege = hmg&m

At the surface of the moon

_ GMy  (6.67 x 10711 Nm? /kg?)(7.36 x 1022 kg)
TR T (1.74 x 106 m)2

= 1.6 m/s?

9.8 m/s?
By = heSE = 02 m) S8/ o
gm (1.6 m/s2)
That is, the maximum height reached by the man on the moon

is six times the height reached on earth.

Example 9.10 A neutron star of radius of 12 km has a gravi-
tational acceleration of 1 x 10'2 m/s? at its surface. Calculate
its average density.

Solution 9.10 The gravitational acceleration of a particle
near the surface of the star is

_ GM,
g§= R?
2 12 2 3 2
M, = gR;, _ (1 x 10" m/s*)(12 x 10° m) — 25 1030 ke
G (6.67 x 10~ 11 Nm?2/kg?)

3M 32 x 1039k
o=t — (2 % & _58x107 kg/m>

4R 4(3.14)(12 x 103 m)3

Example 9.11 Find the free-fall acceleration of a body that
is at a distance of 0.05Rg above the surface of the earth.

Solution 9.11
_ GMg  GMg _ GMg
&= (Re + 1?2~ (Rg +0.05Rp)2 ~ (1.05Rg)?
6.67 x 10711 Nm?2/kg?)(5.98 x 10** k
_ (667 x m?/kg?)(5.98 x 8 _g0ms

(6.7 x 106 m)2

9.2.4 The Gravitational Field

As mentioned previously, the gravitational force is a field
force that can act through empty space, i.e., physical contact
between objects is not necessary for such a force to act. An
alternative way in describing the gravitational attraction is
by introducing the concept of the gravitational field. Suppose
a test particle of mass myg is placed at different points from
another mass M (which represents the center of the gravita-
tional force). At each point, the test particle will experience
a gravitational force that depends on its distance from M and
is given by

—GMmyg
Fg = —}’2 r|

where r is a unit vector that points radially outwards. There-
fore, M may be considered as producing a gravitational field
in the space around it. This field can be sensed by the force
that the test particle experience when placed in the vicinity
of M. The gravitational field produced by M at any point in
space is thus given by

F, -GM
g=—=—5n
my r

That is, the gravitational field at a point is defined as the
gravitational force per unit mass at that point. A map of the
field can be drawn showing the gravitational field at any point
in space. Figure 9.14 shows the gravitational field vectors near
the earth’s surface and at large distances from the earth. Note
that, the gravitational field is an example of a static field since
the field at any point is constant with time.

Example 9.12 Find the magnitude and direction of the grav-
itational field at the point P in the arrangement shown in
Fig. 9.15, where all particles have equal masses.

Solution 9.12 Since all masses are equal, the net gravitational
force at P is due to the sum of the x-components of F3 and
F,. That is,
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Fig.9.14 The gravitational field vectors near the earth’s surface and at
large distances from the earth

X

Fig.9.15 Finding the magnitude and direction of the gravitational field
atP

. 4Gmmyg . 4Gmmgy 2 ., 8Gmmy,
F =2F3cosfi= =——i= i
5a 502 5 5542
8Gm |
8= _——F7—,1
5542

9.3  Conic Sections

Conic sections are produced if a double right circular cone
intersects with a plane. It may be a circle, a parabola, an
ellipse, or a hyperbola.

I
I
I
I
+
I
I
I
I
I
I
I
I
I
I
I
I
I
1

Fig. 9.16 A conic section has the property that the ratio e (called the
eccentricity) of the distance between any point on the curve (for example
point P) and another point called the focus (F) to the distance between
P and a line called the directrix is equal to a constant

9.3.1 The Polar Equation of a Conic Section

A conic section has the property that the ratio e (called the
eccentricity) of the distance between any point on the curve
(for example point P) and another point called the focus (F) to
the distance between P and a line called the directrix is equal
to a constant (see Fig. 9.16). This constant differs from one
conic section to another. Consider Fig. 9.16 where the focus
F is at the origin O of the x and y coordinate system and the
directrix is at x = d. Since the distance between P and F is

PF =r
then, the nearest distance between P and the directrix is
PD=d—FE=d —rcos0

The eccentricity is therefore given by

PF r
o= — = —
PD d—rcosf

Hence,
ed

= (9.22)
14+ ecosf

This equation is the polar equation of a conic section.

1. Ellipse: ¢ < 1 From Fig. 9.17, you can see that at
0 =0,r =0V andatf =, r = OV’. Substituting this into
Eq. 9.22 gives

d
ov =21
1+e
and
oV’ — ed
T l—e

Since V'V’ is the length of the major axis which is equal to
2a, (a is the length of the semimajor axis) we have
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X
Fig.9.17 Inanellipse,atd =0,r = OV andatf =, r = OV’
OV +0V' =2a (9.23)
or
ed ed
=2a
I+e 1—e
Hence,
ed
a =
1—e2
Or
ed = a(l — é?)

Substituting into Eq. 9.22, the polar equation of an ellipse is

_ a(l — ¢?)
" 14ecost
That gives
a(l —é?)
oV = T =a(l —e) (9.24)
and 5
1—
oV’ = M —a(l+e) (9.25)

The distance C between the center of the ellipse and the focus
is
C=CV-0V=a—a(l —e)=ae

Since from Fig.9.17, we have ¢ < a,1i.e., the distance between
the foci is less than that between the vertices, then ¢ < 1. Fur-
thermore, you can prove thatc = /a2 — b2 orb = a+/1 — €2
where b is the length of the semiminor axis of the ellipse.

2. Parabola: ¢ = 1 Since e = 1, Eq. 9.22 becomes

d
y = —m—mm
1+ cos®

D

d

Fig.9.18 Inaparabola, as 6 approaches 7, r becomes infinite and hence
a— oo

(Polar Equation of a Parabola) As 6 approaches r, r becomes
infinite and hence a — oo (see Fig. 9.18).

3. Hyperbola: ¢ > 1 The hyperbola has two branches as
shown in Fig. 9.19. For the gravitational force, only the first
branch (I) represents a possible motion of the particle since
GM /h? must be positive. The polar equation of a hyperbola
is given by

ae® —1)
T 1+ ecost

9.3.2 Motion in a Gravitational Force Field

The path of a particle in any central force field can be
found by solving the equation of motion (d%u/d6* + u =
—1/(mh*u®)f (1/u) (Eq. 9.9) if the form of the force is known.
In the case of a gravitational force, we have

—GM,
f)=—5—

where M is assumed to be fixed and that it is attracting a
particle of mass m and r is the distance between them. In
terms of u, we have

f(1/u) = —GMmu®

Substituting this into the equation of motion gives

u + — (—GMmu®)
— 4+ u=——(—GMmu
de? mh2u?
or )
d“u GM

This equation is a nonhomogeneous linear differential equa-
tion. Its solution may be given by
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Fig.9.19 The hyperbola

L Ceos(o - )+ 2
u=—=_Ccos(® — —
r h?
where C and ¢ are integration constants. ¢ is known as the
phase angle and it can be chosen to be ¢ = 0 if the x-axis is
chosen such that at & = 0, r is a minimum. That gives

1 GM
u=—=Ccos9+7 9.27)

r

or
_ h*GM ed

r = =
1+g—ﬁ;cose 1+ ecosé

Thus, the path of the particle under the influence of the gravita-
tional force field is a conic with ed = h*/GM andd = 1/C
and e = h*C/GM . If a planet is moving in elliptical orbit
about the sun, then the maximum and minimum distances of
the planet from the sun (OV and OV’) are called the aphe-
lion and perihelion respectively If a satellite is moving about
a planet in an elliptical orbit, the maximum and minimum
distances of the satellite from the planet are called the apogee
and perigee respectively.

9.3.3 The Gravitational Potential Energy

Consider a particle of mass m moving under the influence
of a larger particle of mass M (M > m). By using Eq. 9.10

Tf
(AU =Ur = U; = —/ f(r)dr) and noting that f(r) =

—GMm/r?, the change in the gravitational potential energy
of the system as m moves from r; to 7 in the field of M is

T GMm
r2

"t dr
}’2

dr = GMm/

i

AU, = Ugf—Ugi=/

i

—177 1 1
= GMm| — = GMm| — — —
"y ri re

That is, as the particle of mass m moves toward or away
from M, the potential energy of the system decreases and
increases respectively Note that, the lighter particle (i) gains
most of the kinetic energy as the potential energy changes. By
choosing the reference point at infinity (r; = oo) then U; = 0
and taking ry = r gives

—GMm

Ug(r) =

For more than two-particle systems, there is more than one
gravitational force (one for each pair of particles). Hence,
there is more than one potential energy The total potential
energy is the sum of the potential energies of each pair. For
example if there are three particles, the total potential energy is

Gmimy  Gmimz = Gmom3
Utot=U12+U13+U23=_< + +

ri2 r13 r23

Force from Potential Energy The gravitational force may
be obtained from its corresponding potential energy. That is,

F d {(—GMm —GMm .
= —_—— rh =
§ dr 7 ! 2

Example 9.13 Find the potential energy of the system as
shown in Fig. 9.20.

Solution 9.13
U=Up+U;+Uxp
mimy  mpms3  mpm
()
r2 r13 3

8 x10%kg) (12x10%kg) (6 x 104 kg)
(0.3 m) (0.32 m) (0.36 m)

— _(6.67x10711 Nm2/kg2)( ) — _54x1077]

Example 9.14 Two particles of equal masses (3kg) are sep-
arated by a distance of 0.3 m : (a) Find the potential energy
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0.3m

400kg ma\ 200kg

0.1m 0.2m

Fig.9.20 The gravitational potential energy of a system of three parti-
cles

of the system; (b) how much work is required to reduce their
separation to 0.1 m, (c) to increase their separation to 0.5 m.
Solution 9.14 (a)

—Gm? _ —(6.67 x 10~ Nm?/kg?)(3 kg)? _

_ _ -9
U= p 03 m) 2x1077J
(b) The work done by the gravitational force is
21 1
W=-AU=U;—-U=-GCGm|———
oIy

_ ~11 2 1o 2 S
= —(6.67x 107" Nm~/kg")(3 kg) ((0,3m) (O.]m)>

that gives W = 4 x 10~ J. The work done by an external
agentis W = —4 x 107 J.
(c) The work done by the gravitational force is

11
W = —AU = —Gm® <7 - 7) = —(6.67x10~"" Nm?/kg®>)(3 kg)z(

1
" ©03m) (05 m))

W=-8x10"107g

The work done by an external agent is +8 x 10717,

9.3.4 Energy in a Gravitational Force Field

The equation of motion in terms of energy is given by Eq. 9.12:

du 2+u2_ 2(E - U)
do  mh?

The gravitational potential energy of a two-particle system of
masses M and m is given by

—GMm

Ug (r) =
In terms of u we may write
Ug(1/u) = —GMmu (9.28)

Furthermore, the solution of the equation (Eq. 9.26) of
motion in the gravitational force field is

1 GM
u=-==Ccosb + — (9.29)
r h?

Substituting Eqs. 9.28 and 9.29 into Eq. 9.12 gives

M\*> 2E 2 M
(Csin6)? + Cc0s6+G— =—— —| —GMm Cc0s0+G—
h? mh?  mh? h?

That gives

2E  G*M?

CP=""4+—
mh? h4

or
C 2k + G2M? ( ing C > 0)
=.l— assumin >
mi2 T &

Substituting this value of C into Eq. 9.29 gives

GM 2E G2M?
u= h_2 + W + h—4 cos 6
GM . GM I+ 2Eh? P
= COS
h2 h? G2M?m

GM 2Eh?
M:h—2 1+ 1+mCOS9

or

(9.30)

Comparing this equation with the polar equation of a conic
section (Eq. 9.22), we have

2ER?

14+ =
+ G2M2%m

e =

Thus the trajectory of the particle is an ellipse if e < 1, thatis
if E < 0. Therefore, if the potential energy of the particle is
greater than its kinetic energy the particle’s path is an ellipse
since it does not have enough energy to reach infinit