
9Central Force Motion

9.1 Motion in a Central Force Field

A force is said to be central under two conditions. First, the
direction of the force must always be toward or away from a
fixed point (see Fig. 9.1). This point is known as the center
of the force. Second, the magnitude of the force should only
be proportional to the distance r between the particle and the
center of the force. The central force may be written as

F = f (r)r1 (9.1)

where r1 is a unit vector in the direction of r. Therefore, if
f (r) < 0, then the central force is an attractive force since
it is directed toward the center of the force O (as shown in
Fig. 9.1) and if f (r) > 0, the force is repulsively directed
away from O.

Example 9.1 Which of the following forces are repulsive and

which are attractive? (a)F = −3√
r
r1(b)F = 4r2r1(c)F =

r(r − 2)r1.

Solution 9.1 (a) Attractive, (b) repulsive, and (c) attractive if
0 < r < 2 and repulsive if r > 2.

9.1.1 Properties of a Central Force

1. The resulting motion of the particle takes place in a plane.
To show that we have from Eq. 9.1

F = f (r)r1 = ma

thus, a is parallel to r(r = rr1) and we may write

r × a = 0

Hence,

r × dv
dt

= 0

or
d

dt
(r × v) = 0

Thus,

r × v = h = constant (9.2)

where h is a constant vector. Therefore, r and v always lie
in the same plane where h is perpendicular to that plane
for every value of t. As a result, the path of the particle
takes place in a plane.

2. The angular momentum of the particle is conserved. From
Eq. 9.2, we have

m(r × v) = mh

or

L = mh = constant

Thus, the angular momentum is equal to a constant at all
times (conserved).

3. The position vector r of the particle with respect to the
center of force sweeps out equal areas in equal times or in
other words, the areal velocity is constant. To show that,
consider the plane of motion to be the x–y plane. During
an infinitesimally small time interval dt, the radius vector
r sweeps out an area equal to dA. From Fig. 9.2, this area
is equal to half of the area of a parallelogram with sides r
and dr. That is,

dA = 1

2
|r × dr|

or

dA = 1

2
|r × vdt|
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Fig. 9.1 The central force

Fig. 9.2 During an infinitesimally small time interval dt, the radius
vector r sweeps out an area equal to dA

or
dA
dt

= 1

2
|r × v|

Thus,

dA

dt
= h

2
= constant

9.1.2 Equations of Motion in a Central Force
Field

Themost convenient coordinate system to describe themotion
of a particle, under the influence of a central force, is the polar
coordinate system. This convenience lies in the fact that the
central force is in the r-direction. In Sect. 2.6, it has been
shown that the acceleration of a particle in a plane, in terms
of its polar coordinates, is given by

a = (r̈ − rθ̇2)r1 + (rθ̈ + 2ṙθ̇ )θ1

Applying Newton’s second law to the particle gives

F = ma

f (r)r1 = m[(r̈ − rθ̇2)r1 + (rθ̈ + 2ṙθ̇ )θ1]

That gives
f (r) = m(r̈ − rθ̇2) (9.3)

m(rθ̈ + 2ṙθ̇ ) = 0 (9.4)

In Sect. 2.6, we’ve also seen that the velocity of a particle in
polar coordinates is given by

v = ṙr1 + rθ̇θ1

Therefore, we have

r × v = rr1 × (ṙr1 + rθ̇θ1) = rṙ (r1 × r1) + r2θ̇ (r1 × θ1)

= 0 + r2θ̇ (r1 × θ1) = h

Taking the plane ofmotion to be the x–y plane, then r1×θ1
is parallel to the z-direction and we have

h = r2θ̇k = hk

Hence,
r2θ̇ = h (9.5)

and Eq. 9.2 can be written as

d

dt
(r2θ̇ ) = 0

or
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r2θ̇ = constant

Substituting Eq. 9.5 into Eq. 9.3 gives

f (r) = m

(
r̈ − h2

r3

)
(9.6)

Let u = 1/r, then ṙ = −u̇(1/u2). Since r2θ̇ = h, we have
u2 = θ̇/h. Thus

ṙ = −h

(
u̇

θ̇

)
= −h

(
du/dt

dθ/dt

)
= −h

(
du

dθ

)
(9.7)

And

r̈ = d

dt

(
− h

du

dθ

)
= d

dθ

(
− h

du

dθ

)
dθ

dt

r̈ = −h

(
d2u

dθ2

)
θ̇ = −h2u2

(
d2u

dθ2

)
(9.8)

Substituting Eq. 9.8 into Eq. 9.6 gives

f (1/u) = m
( − h2u2

(
d2u

dθ2

)
− h2u3

)

or
d2u

dθ2
+ u = −1

mh2u2
f (1/u) (9.9)

This is the equation of path in a central force field.

9.1.3 Potential Energy of a Central Force

Consider a particle moving from point P1 to P2 (see Fig. 9.3)
while a central force that has its center at the origin acts on it.
The path of the particlemay be considered as a combination of
radial and curved segments. The central force is always acting
in the direction of the radial segments and is perpendicular to
the displacement along any of the curved segments. Thus, the
work done by the central force along any curved segment is
zero and the total work done in moving the particle along any
path is equal to the work done along a radial line from ri to
rf (see Fig. 9.4). That is, the work done by a central force is
independent of path. It depends only on the initial and final
positions of the particle.

From this, we conclude that the central force is a conserva-
tive force. You may also prove that ∇ × F = 0. Hence, there
exists a potential energy and the work done by the gravita-
tional force may be written as

W = −�U

Fig. 9.3 A particle moving from point P1 to P2, while a central force
that has its center at the origin acts on it

Fig.9.4 The central force is always acting in the direction of the radial
segments and is perpendicular to the displacement along any of the
curved segments. Therefore, the total work done in moving the parti-
cle along any path is equal to the work done along a radial line from
ri to rf

The work done in moving the particle from P1 to P2 is

W =
∫ P2

P1
F · dr =

∫ rf

ri
f (r)r1 · dr =

∫ rf

ri
f (r)

r
r

· dr

Since r · dr = rdr, we have

W =
∫ rf

ri
f (r)dr

or

�U = Uf −Ui = −
∫ rf

ri
f (r)dr (9.10)

9.1.4 TheTotal Energy

Since F is a conservative force, it follows that the total energy
is conserved (constant), that is,

E = 1

2
mv2 +U (r)
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Since
v2 = v · v = ṙ2 + r2θ̇2

we have

E = 1

2
m(ṙ2 + r2θ̇2) +U (r) (9.11)

Substituting Eqs. 9.5 and 9.7 into Eq. 9.11 gives

E = 1

2
m

(
h2

(
du

dθ

)2

+
(

1

u2

)
(hu2)2

)
+U

or (
du

dθ

)2

+ u2 = 2(E −U )

mh2
(9.12)

9.2 The Law of Gravity

In 1687, Isaac Newton made a remarkable discovery. Newton
stated that the force that holds planets in their orbit is the
same force that makes an apple fall from a tree. Newton’s law
of gravity states that every particle in the universe attracts
every other particle with a force that is directly proportional
to the product of the masses of the particles and inversely
proportional to the square of the distance between them. The
magnitude of this gravitational force is given by

F = Gm1m2

r2

where m1 and m2 are the masses of the particles, r is the
distance between them, and G is the universal gravitational
constant. G has the same value if the particles (or objects) are
located anywhere in the universe and it is given by

G = 6.672 × 10−11 N.m2/kg2

The gravitational force is effective when one or both the
masses are very large. This is because G is a very small num-
ber. Note that, the gravitational force is not a contact force; it
is a field force that can act through any medium. The direc-
tion of the gravitational force is along the line joining the two
particles.

Therefore, the gravitational force is a central force since
its magnitude is proportional only to the distance between the
two particles (where one of the particles can be considered as
the center of force), and its direction is along the line joining
them (toward the center of force).

Figure 9.5 shows two particles of massesm1 andm2. Each
particle exerts a gravitational force on the other. Let the grav-
itational force exerted onm2 bym1 to be F21, and that exerted
on m1 by m2 to be F12. From Newton’s third law of action
and reaction, we have

Fig. 9.5 Two particles of masses
m1 and m2. Each particle exerts a
gravitational force on the other

F12 = −F21

That is, the two forces form an action and reaction pair. In
terms of unit vectors, we may write

F21 = −Gm1m2

r212
r12

and

F12 = −Gm1m2

r221
r21

where r12 is a unit vector that is directed along the line joining
the two particles (directed from m1 to m2) and r21 is a unit
vector directed from m2 to m1. The negative sign indicates
that the force is attractive. That is, the force exerted on m1

by m2 will move m1 in the direction opposite of r21, i.e.,
toward m2. Where the force exerted on m2 by m1 will move
m2 opposite to r12 (toward m1). If particle P of mass of mP

interacts with a system of particles, the resultant gravitational
forceFP exerted on particle P due to all particles in the system
is the vector sum of the individual forces that each particle in
the system exerts on particle P:

FP =
n∑

i=1

FPi =
n∑

i=1

−GmPmi

r2iP
riP

where riP is a unit vector directed from the ith particle in the
system toward the particle P and FPi is the force exerted on
particle P by the ith particle. If particle P of mass m interacts
with an extended body of massM , the resultant gravitational
force FP exerted on particle P is the vector sum of the individ-
ual forces dF exerted on particle P due to each mass element
dM in the object, but in this case, the sum is replaced by an
integral

FP =
∫

dF = −Gm
∫

dM

r2
r1

where r1 is a unit vector directed from the mass element dM
to the particle as shown in Fig. 9.6. The force of gravity gives
planets and other heavy celestial bodies their spherical shape.
That is because as the mass of the body becomes larger the
force of gravity becomes stronger and all particles from all
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Fig. 9.6 A particle P of mass m
interacting with an extended body
of massM

sides are attracted evenly toward the center. As a result, the
body tends to have a spherical shape.

Example 9.2 Two particles of massesm1 = 0.2 kg andm2 =
0.3 kg are separated by a distance of 0.05 m. Find (a) the
gravitational force that each particle exerts on the other; (b)
at what distance a third particle m3 = 0.5 kg must be placed
at the other side of m1 such that the net gravitational force on
m1 is zero. (All particles lie on a straight line).

Solution 9.2 (a)

F12 = F21 = Gm1m2

r212
= (6.67 × 10−11 Nm2/kg2)(0.2 kg)(0.3 kg)

(0.05 m)2
= 1.6 × 10−9N

(b)

F13 = Gm1m3

r231

F12 = Gm1m2

r221

If the net force on m1 is zero, we have

∑
F1 = F13 − F12 = 0

or
F13 = F12

Gm1m3

r231
= Gm1m2

r221

that gives

r231 = m3

m2
r221 = (0.5 kg)

(0.3 kg)
(0.05 m)2

r31 = 0.064 m

9.2.1 The Gravitational Force Between a Particle
and a Uniform Spherical Shell

Case I: A Particle outside the Shell Consider a particle of
massm located outside a uniform spherical shell at point P as
in Fig. 9.7. Imagine this shell to be made of a large number
of thin rings each of outer thickness Rdθ and inner thickness
l. The ring is so thin (since dθ is used) that every particle in
the ring is at a distance s from P Furthermore, each particle
in the ring exerts a gravitational force on the particle at P.

From the symmetry of the ring, if a particle (1) on the
upper side exerts a gravitational forceF1 onm, there is always
another particle (2) at the opposite side of the ring exerting
another force (F2) on the particle. Because F1 and F2 are
equal inmagnitude, then their y components cancel each other
out and their x components add up (see Fig. 9.7). Thus, the
resultant force exerted on m due to all particles of the sphere
is the sum of the x components of their forces. Therefore the
resultant force onm is along the x direction (toward the center
of the shell). The gravitational force exerted on m by a thin
ring of mass dM is

dFg = GmdM

s2
cosφ

To express dM in terms of the density of the ring, we find the
volume of the thin ring

dV = (2πR sin θ)(Rdθ)l = 2π lR2 sin θdθ

Since the shell has a uniform volume density ρ, dM is given
by

dM = ρdV = ρ2π lR2 sin θdθ

Thus,

dFg = 2πρlmGR2 cosφ sin θdθ

s2
(9.13)

From Fig. 9.7,

cosφ = r − R cos θ

s
(9.14)

From the cosines law, we have

s2 = R2 + r2 − 2Rr cos θ (9.15)

Substituting Eqs. 9.14 and 9.15 into Eq. 9.13 gives

dFg = 2πρlmGR2(r − R cos θ) sin θdθ

(r2 + R2 − 2rR cos θ)3/2
(9.16)

From Eq. 9.15, we have
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Fig. 9.7 Because F1 and F2 are
equal in magnitude, then their y
components cancel each other out
and their x components add up

2sds = 2rR sin θdθ

To integrate over all rings, θ will change from θ = 0 to π .
From Eq. 9.15, we have at θ = 0, s = r − R since (r ≥ R),
and at θ = π, s = r + R. Also, we have from Eq. 9.15

cos θ = R2 + r2 − s2

2rR

Thus

r − R cos θ = r2 + s2 − R2

2r

Substituting this into Eq. 9.16 gives

Fg = πGρlRm

r2

∫ r+R

r−R

(
1 + r2 − R2

s2

)
ds = 4πGρlR2m

r2
(9.17)

Since 4πR2ρl = M , it follows that

Fg = GMm

r2

That is, the spherical shell behaves as a particle of mass M
located at its center.

Case II: A Particle inside the Shell If a particle is inside
a uniform spherical shell, the derivation of the gravitational
force exerted on the particle by the spherical shell is the same
as if the particle were outside the shell, except that the lower
integration limit is different. At θ = 0, s = R−r since r < R.
Thus, we have

Fg = πGρlRm

r2

∫ r+R

R−r

(
1 + r2 − R2

s2

)
ds = 0

where r < R. That is, if the particle is inside the shell, the
gravitational force exerted on it by the shell is zero. However,
objects outside the shell may still exerts forces on the particle.
In summary, we have

Fg = GMm

r2
(r ≥ R)

Fig. 9.8 The force exerted on a particle as a function of its r

Fg = 0 (r < R)

Figure 9.8 shows the force exerted on a particle as a function
of its location.

9.2.2 The Gravitational Force between a Particle
and a Uniform Solid Sphere

Case I: A Particle outside the Sphere Consider a particle
of mass m located outside a uniform solid sphere. The sphere
may be considered to be made of a series of concentric spher-
ical shells. The force exerted on the particle by each shell is
given by

dFg = GdMm

r2

The mass of each shell is dM = ρdV = ρ4πa2da. Where ρ

is the volume density of the sphere and a is the distance from
the shell to the center of the sphere and da is the thickness of
the shell, Hence,

dFg = Gmρ4πa2da

r2
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Fig.9.9 If a particle of mass m is located inside a uniform solid sphere
of mass M , then the gravitational force exerted on the particle is due
only to the part of the sphere of radius r < R and of mass of M

The total force exerted on m by the sphere is

Fg = Gmρ4π

r2

∫ R

0
a2da

Fg = G(ρ4/3πR3)m

r2

Fg = GMm

r2
(9.18)

Thus, the solid sphere behaves as a particle of massM located
at the center of the sphere.

Case II: A Particle inside the Sphere If a particle of mass
m is located inside a uniform solid sphere of mass M , then
the gravitational force exerted on the particle is due only to
the part of the sphere of radius r < R and of mass of M
(see Fig. 9.9). The remaining part of the sphere is a spherical
shell which exerts no force on the particle since the particle
is located inside it. From Eq. 9.18, the gravitational force
exerted on the particle due to a sphere of radius r and mass
M1 is given by

Fg = GM1m

r2
(9.19)

Since the sphere has a uniform density, we have

ρ = M1

V1
= M

V

or
M1

M
= V1

V
= 4/3πr3

4/3πR3 = r3

R3

or

M1 = M
r3

R3 (9.20)

Fig. 9.10 The force exerted on a particle as a function of its r

Fig.9.11 The force exerted on a particle of mass m that is at a distance
of a from a thin rod of mass M and length L

Substituting Eq. 9.20 into Eq. 9.19 gives

Fg = GmMr

R3

where r < R. Therefore at the center of the sphere,

Fg = 0

Figure 9.10 shows the force exerted on a particle as a function
of its location.

Example 9.3 (a) Find the gravitational force exerted on a par-
ticle of mass m that is at a distance of a from a thin rod of
mass M and length L as in Fig. 9.11; (b) find the force in (a)
if a � L.

Solution 9.3 (a)

dF = GmdM

x2

since the rod is uniform we have

dM = λdx = M

L
dx

Thus

dF = GmM

Lx2
dx
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Fig. 9.12 The gravitational force exerted on a particle of mass m that
is at a distance a from the center of a uniform solid disk of radius R and
massM

Integrating from a to a + L gives

F = GmM

L

∫ a+L

a

dx

x2
= GmM

L

[ −1

x

]a+L

a
= GmM

L

[
1

a
− 1

a + L

]
= GmM

a(a + L)

In vector form,

F = GmM

a(a + L)
i

(b) if a � L, then

F = GmM

a2
i

That is, the rod can be considered as a particle of massM that
is at a distance a from m.

Example 9.4 Find the gravitational force exerted on a particle
of mass m that is at a distance a from the center of a uniform
solid disk of radius R and mass M as shown in Fig. 9.12.

Solution 9.4 Let us divide the disk into thin concentric rings
of radius r and thickness dr. By symmetry, the resultant force
on the particle is directed along the axis of the ring, since the
y-components of the forces exerted by all particles of the ring
will cancel out, where their x-componentswill add up. That is,

dF = GdMm cos θ

r2 + a2

Since the mass element dM is given by dM = σ(2πrdr), we
have

dF = Gσ(2πrdr)m cos θ

r2 + a2

or

dF = Gσ(2πrdr)ma

(r2 + a2)3/2

The total force is

F = 2πGσma
∫ R

r=0

rdr

(r2 + a2)3/2
= πGσma

[
(r2 + a2)−1/2

−1/2

]R
0

F = 2πGσm

[
1 − a√

a2 + R2

]

Example 9.5 Auniform solid sphere has amass of 4.7 kg and
a radius of 0.05 m. Find the magnitude of the gravitational
force that the sphere exerts on a 0.02 kg particle located at
(a) 0.5 m from the center of the sphere; (b) 0.03 m from the
center of the sphere; (c) at the surface of the sphere; (d) at the
center of the sphere.

Solution 9.5 (a)

F1s = GmM

r2
= (6.67 × 10−11 Nm2/kg2)(0.02 kg)(4.7 kg)

(0.5 m)2
= 2.5 × 10−11 N

(b)

F1s = GmMr

R3 = (6.67 × 10−11 Nm2/kg2)(0.02 kg)(4.7 kg)(0.03 m)

(0.05 m)3
= 1.5 × 10−9 N

(c)

F1s = GmM

R2 = (6.67 × 10−11 Nm2/kg2)(0.02 kg)(4.7 kg)

(0.05 m2)
= 2.5 × 10−9 N

(d)
F1s = 0

Example 9.6 Three concentric spherical shells have masses
ofM1,M2, andM3 and radius of R1,R2, and R3, respectively,
as in Fig. 9.13. Find the gravitational force exerted on a parti-
cle of mass m located at (a) r = a(b)r = b(c)r = c(d)r = d .

Solution 9.6 (a)
F = 0

(b)

Fig. 9.13 Three concentric spherical shells
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F = GM1m

b2

(c)

F = GM1m

c2
+ GM2m

c2
= Gm

c2
(M1 + M2)

(d)

F = Gm

d2 (M1 + M2 + M3)

Example 9.7 A spaceship of mass m1 is moving along a
straight line path between the earth and the sun. At what dis-
tance from the center of the earth will the gravitational force
of the sun balances that of the earth?

Solution 9.7 At that point, we have

F1E = F1S

Gm1ME

r2
= Gm1MS

(d − r)2

or
(d − r)2

r2
= MS

ME

r = d [ME − (MEMS)
1/2 ]

ME − MS

Example 9.8 An artificial satellite is moving in a circular
orbit about the earth at a distance of 1500 km above the earth’s
surface. Find its speed and period.

Solution 9.8
GmsME

r2
= msv2

r

v =
√
GME

r

where r is the distance between the center of the earth and the
satellite. That is,

r = (6.37 × 106m) + (1500 × 103m) = 7.9 × 106m

Hence,

v =
√

GME
r

=
√

(6.67 × 10−11Nm2/kg2)(5.98 × 1024kg)

(7.9 × l06m)
= 7.1 × 103m/s

T = 2πr

v
= 2(3.1.4)(7.9 × 106m)

(71 × 103m/s)
= 6968.8s = 116.15min

9.2.3 Weight and Gravitational Force

In Chap. 4, we’ve seen that the weight of an object is defined
as the gravitational force exerted on the object by the earth
(or any other astronomical object) and it is directed toward
the center of the earth. The weight of an object is given by
w = mg, where g is the free-falling acceleration and its value
near the earth’s surface is 9.8 m/s2. The exact form of the
gravitational force between any two objects was given earlier
in this chapter by Newton’s law of gravity In the case of an
earth–particle system, the gravitational force that each one
exerts on the other is

Fg = GMEm

r2

where ME is the mass of the earth and m is the mass of the
particle that is at a distance r from the center of the earth. Note
that, it is assumed that the earth is a perfect sphere of uniform
mass distribution, and therefore behaves as a particle. In real-
ity, the earth is not a perfect sphere but rather an ellipsoid.
Furthermore, the earth’s density is not uniform since it varies
with the radius of earth.

The earth’s density also varies at the earth’s surface from
one region to another. In addition, if the earth’s rotation is
included, then the resultant force on an object will be its
weight plus the centripetal force exerted on the object due
to the rotation. However, these variations are often neglected.
From the definition of weight, we have

w = mg = Fg = GMEm

r2

therefore

g = GME

r2
(9.21)

As you can see the free-falling acceleration does not depend
on the mass of the object as was predicted before. If the object
is falling near the earth’s surface, then distance r in Eq. 9.21
can be replaced by RE which is the radius of the earth and we
have

g = GME

R2
E

If the object is at a distance h from the earth’s surface, we
may write

g = GME

(RE + h)2

Thus, the weight of an object decreases with increasing alti-
tude. Table 9.1 shows the variation of g with altitude.
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Table 9.1 Variation of g with altitude

Altitude h (km) g (m/s2)

1000 7.34

6000 2.6

10000 1.49

30000 0.3

60000 0.09

Example 9.9 A man can jump vertically upward from the
earth’s surface and reach an altitude of 0.2m. Find the altitude
the man can reach if he jumps with the same initial velocity
on the surface of the moon.

Solution 9.9 Using the formula y−y0 = v2−v20−2g and by taking
y0 = 0 at the earth’s surface and y = h at themaximum height
and that v = 0 there, we have

h = v20
2g

Since the initial velocity of the man is the same on earth and
on moon, we have

hEgE = hmgm

At the surface of the moon

gm = GMm

R2m
= (6.67 × 10−11 Nm2/kg2)(7.36 × 1022 kg)

(1.74 × l06 m)2
= 1.6 m/s2

hm = hE
gE
gm

= (0.2 m)
(9.8 m/s2)

(1.6 m/s2)
= 1.2 m

That is, the maximum height reached by the man on the moon
is six times the height reached on earth.

Example 9.10 A neutron star of radius of 12 km has a gravi-
tational acceleration of 1×1012 m/s2 at its surface. Calculate
its average density.

Solution 9.10 The gravitational acceleration of a particle
near the surface of the star is

g = GMn

R2
n

Mn = gR2n
G

= (1 × 1012 m/s2)(12 × 103 m)2

(6.67 × 10−11 Nm2/kg2)
= 2 × 1030 kg

ρ = 3Mn

4πR3
n

= 3(2 × 1030 kg)

4(3.14)(12 × 103 m)3
= 2.8 × 1017 kg/m3

Example 9.11 Find the free-fall acceleration of a body that
is at a distance of 0.05RE above the surface of the earth.

Solution 9.11

g = GME

(RE + h)2
= GME

(RE + 0.05RE)2
= GME

(1.05RE)2

= (6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

(6.7 × 106 m)2
= 8.9 m/s2

9.2.4 The Gravitational Field

As mentioned previously, the gravitational force is a field
force that can act through empty space, i.e., physical contact
between objects is not necessary for such a force to act. An
alternative way in describing the gravitational attraction is
by introducing the concept of the gravitational field. Suppose
a test particle of mass m0 is placed at different points from
another mass M (which represents the center of the gravita-
tional force). At each point, the test particle will experience
a gravitational force that depends on its distance fromM and
is given by

Fg = −GMm0

r2
r1

where r1 is a unit vector that points radially outwards. There-
fore,M may be considered as producing a gravitational field
in the space around it. This field can be sensed by the force
that the test particle experience when placed in the vicinity
of M . The gravitational field produced by M at any point in
space is thus given by

g = Fg

m0
= −GM

r2
r1

That is, the gravitational field at a point is defined as the
gravitational force per unit mass at that point. A map of the
field can be drawn showing the gravitational field at any point
in space. Figure 9.14 shows the gravitational field vectors near
the earth’s surface and at large distances from the earth. Note
that, the gravitational field is an example of a static field since
the field at any point is constant with time.

Example 9.12 Find the magnitude and direction of the grav-
itational field at the point P in the arrangement shown in
Fig. 9.15, where all particles have equal masses.

Solution 9.12 Since allmasses are equal, the net gravitational
force at P is due to the sum of the x-components of F3 and
F2. That is,
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Fig. 9.14 The gravitational field vectors near the earth’s surface and at
large distances from the earth

Fig.9.15 Finding the magnitude and direction of the gravitational field
at P

F = 2F3 cos θ i = 4Gmm0

5a2
cos θ i = 4Gmm0

5a2
2√
5
i = 8Gmm0

5
√
5a2

i

g = 8Gm

5
√
5a2

i

9.3 Conic Sections

Conic sections are produced if a double right circular cone
intersects with a plane. It may be a circle, a parabola, an
ellipse, or a hyperbola.

Fig. 9.16 A conic section has the property that the ratio e (called the
eccentricity) of the distance between any point on the curve (for example
point P) and another point called the focus (F) to the distance between
P and a line called the directrix is equal to a constant

9.3.1 The Polar Equation of a Conic Section

A conic section has the property that the ratio e (called the
eccentricity) of the distance between any point on the curve
(for example pointP) and another point called the focus (F) to
the distance between P and a line called the directrix is equal
to a constant (see Fig. 9.16). This constant differs from one
conic section to another. Consider Fig. 9.16 where the focus
F is at the origin O of the x and y coordinate system and the
directrix is at x = d . Since the distance between P and F is

PF = r

then, the nearest distance between P and the directrix is

PD = d − FE = d − r cos θ

The eccentricity is therefore given by

e = PF

PD
= r

d − r cos θ

Hence,

r = ed

1 + e cos θ
(9.22)

This equation is the polar equation of a conic section.
1. Ellipse: e < 1 From Fig. 9.17, you can see that at

θ = 0, r = OV and at θ = π, r = OV ′. Substituting this into
Eq. 9.22 gives

OV = ed

1 + e

and

OV ′ = ed

1 − e

Since VV ′ is the length of the major axis which is equal to
2a, (a is the length of the semimajor axis) we have
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Fig. 9.17 In an ellipse, at θ = 0, r = OV and at θ = π, r = OV ′

OV + OV ′ = 2a (9.23)

or
ed

1 + e
+ ed

1 − e
= 2a

Hence,

a = ed

1 − e2

Or
ed = a(1 − e2)

Substituting into Eq. 9.22, the polar equation of an ellipse is

r = a(1 − e2)

1 + e cos θ

That gives

OV = a(1 − e2)

1 + e
= a(1 − e) (9.24)

and

OV ′ = a(1 − e2)

1 − e
= a(1 + e) (9.25)

The distanceC between the center of the ellipse and the focus
is

C = CV − OV = a − a(1 − e) = ae

Since fromFig. 9.17,we have c < a, i.e., the distance between
the foci is less than that between the vertices, then e < 1. Fur-
thermore, you can prove that c = √

a2 − b2 or b = a
√
1 − e2

where b is the length of the semiminor axis of the ellipse.
2. Parabola: e = 1 Since e = 1, Eq. 9.22 becomes

r = d

1 + cos θ

Fig.9.18 In a parabola, as θ approachesπ, r becomes infinite and hence
a → ∞

(Polar Equation of a Parabola) As θ approaches π, r becomes
infinite and hence a → ∞ (see Fig. 9.18).

3. Hyperbola: e > 1 The hyperbola has two branches as
shown in Fig. 9.19. For the gravitational force, only the first
branch (I) represents a possible motion of the particle since
GM /h2 must be positive. The polar equation of a hyperbola
is given by

r = a(e2 − 1)

1 + e cos θ

9.3.2 Motion in a Gravitational Force Field

The path of a particle in any central force field can be
found by solving the equation of motion (d2u/dθ2 + u =
−1/(mh2u2)f (1/u) (Eq. 9.9) if the formof the force is known.
In the case of a gravitational force, we have

f (r) = −GMm

r2

where M is assumed to be fixed and that it is attracting a
particle of mass m and r is the distance between them. In
terms of u, we have

f (1/u) = −GMmu2

Substituting this into the equation of motion gives

d2u

dθ2
+ u = −1

mh2u2
(−GMmu2)

or
d2u

dθ2
+ u = GM

h2
(9.26)

This equation is a nonhomogeneous linear differential equa-
tion. Its solution may be given by
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Fig. 9.19 The hyperbola

u = 1

r
= C cos(θ − φ) + GM

h2

where C and φ are integration constants. φ is known as the
phase angle and it can be chosen to be φ = 0 if the x-axis is
chosen such that at θ = 0, r is a minimum. That gives

u = 1

r
= C cos θ + GM

h2
(9.27)

or

r = h2/GM

1 + Ch2
GM cos θ

= ed

1 + e cos θ

Thus, the path of the particle under the influence of the gravita-
tional force field is a conic with ed = h2/GM and d = 1/C
and e = h2C/GM . If a planet is moving in elliptical orbit
about the sun, then the maximum and minimum distances of
the planet from the sun (OV and OV ′) are called the aphe-
lion and perihelion respectively If a satellite is moving about
a planet in an elliptical orbit, the maximum and minimum
distances of the satellite from the planet are called the apogee
and perigee respectively.

9.3.3 The Gravitational Potential Energy

Consider a particle of mass m moving under the influence
of a larger particle of mass M (M � m). By using Eq. 9.10

(�U = Uf − Ui = −
∫ rf

ri
f (r)dr) and noting that f (r) =

−GMm/r2, the change in the gravitational potential energy
of the system as m moves from ri to rf in the field of M is

�Ug = Ugf −Ugi =
∫ rf

ri

GMm

r2
dr = GMm

∫ rf

ri

dr

r2

= GMm

[−1

r

]rf
ri

= GMm

(
1

ri
− 1

rf

)

That is, as the particle of mass m moves toward or away
from M , the potential energy of the system decreases and
increases respectively Note that, the lighter particle (m) gains
most of the kinetic energy as the potential energy changes. By
choosing the reference point at infinity (ri = ∞) thenUi = 0
and taking rf = r gives

Ug(r) = −GMm

r

For more than two-particle systems, there is more than one
gravitational force (one for each pair of particles). Hence,
there is more than one potential energy The total potential
energy is the sum of the potential energies of each pair. For
example if there are three particles, the total potential energy is

Utot = U12 +U13 +U23 = −
(
Gm1m2

r12
+ Gm1m3

r13
+ Gm2m3

r23

)

Force from Potential Energy The gravitational force may
be obtained from its corresponding potential energy. That is,

Fg = − d

dr

(−GMm

r

)
r1 = −GMm

r2
r1

Example 9.13 Find the potential energy of the system as
shown in Fig. 9.20.

Solution 9.13

U = U12 +U13 +U23

= −G

(
m1m2

r12
+ m1m3

r13
+ m2m3

r23

)

= −(6.67×10−11 Nm2/kg2)

(
(8 × 104 kg)

(0.3 m)
+ (12 × 104 kg)

(0.32 m)
+ (6 × 104 kg)

(0.36 m)

)
= −5.4×10−5 J

Example 9.14 Two particles of equal masses (3kg) are sep-
arated by a distance of 0.3 m : (a) Find the potential energy



148 9 Central Force Motion

Fig. 9.20 The gravitational potential energy of a system of three parti-
cles

of the system; (b) how much work is required to reduce their
separation to 0.1 m, (c) to increase their separation to 0.5 m.

Solution 9.14 (a)

U = −Gm2

r
= −(6.67 × 10−11 Nm2/kg2)(3 kg)2

(0.3 m)
= −2 × 10−9 J

(b) The work done by the gravitational force is

W = −�U = Ui −Uf = −Gm2
(
1

ri
− 1

rf

)

= −(6.67×10−11 Nm2/kg2)(3 kg)2
(

1

(0.3 m)
− 1

(0.1 m)

)

that gives W = 4 × 10−9 J. The work done by an external
agent is W = −4 × 10−9 J.
(c) The work done by the gravitational force is

W = −�U = −Gm2
(
1

ri
− 1

rf

)
= −(6.67×10−11 Nm2/kg2)(3 kg)2

(
1

(0.3 m)
− 1

(0.5 m)

)

W = −8 × 10−10 J

The work done by an external agent is +8 × 10−10J.

9.3.4 Energy in a Gravitational Force Field

The equation ofmotion in termsof energy is givenbyEq. 9.12:

(
du

dθ

)2

+ u2 = 2(E −U )

mh2

The gravitational potential energy of a two-particle system of
masses M and m is given by

Ug(r) = −GMm

r

In terms of u we may write

Ug(1/u) = −GMmu (9.28)

Furthermore, the solution of the equation (Eq. 9.26) of
motion in the gravitational force field is

u = 1

r
= C cos θ + GM

h2
(9.29)

Substituting Eqs. 9.28 and 9.29 into Eq. 9.12 gives

(C sin θ)2 +
(
C cos θ + GM

h2

)2

= 2E

mh2
− 2

mh2

(
− GMm

(
C cos θ + GM

h2

))

That gives

C2 = 2E

mh2
+ G2M 2

h4

or

C =
√

2E

mh2
+ G2M 2

h4
(assuming C > 0)

Substituting this value of C into Eq. 9.29 gives

u = GM

h2
+

√
2E

mh2
+ G2M 2

h4
cos θ

= GM

h2
+ GM

h2

√
1 + 2Eh2

G2M 2m
cos θ

or

u = GM

h2

[
1 +

√
1 + 2Eh2

G2M 2m
cos θ

]
(9.30)

Comparing this equation with the polar equation of a conic
section (Eq. 9.22), we have

e =
√
1 + 2Eh2

G2M 2m

Thus the trajectory of the particle is an ellipse if e < 1, that is
if E < 0. Therefore, if the potential energy of the particle is
greater than its kinetic energy the particle’s path is an ellipse
since it does not have enough energy to reach infinity. The
trajectory of the particle is a parabola if e = 1 and hence
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Fig. 9.21 Different paths

if E = 0. In that case, the kinetic energy of the particle is
equal to its potential energy and thus it can reach infinity
with zero kinetic energy. Finally, the trajectory of the particle
is a hyperbola if e > 1 and therefore if E > 0. That is, if
the kinetic energy of the particle is greater than its potential
energy, then it will reach infinity with positive kinetic energy

• Elliptical Orbit E < 0
• Parabolic Orbit E = 0
• Hyperbolic Orbit E > 0

Different paths are shown in Fig. 9.21.

9.4 Kepler’s Laws

After analyzing the astronomical data of theDanish astronomer
Tycho Brahe, the German astronomer Johannes Kepler for-
mulated his three laws of planetary motion.

9.4.1 Kepler’s First Law

Every planet moves in an elliptical orbit with the sun at one
focus as shown in Fig. 9.21.

Proof The gravitational force between the sun and a planet is

F = −GMSMP

r2
r1

where MS and MP are the masses of the sun and the planet,
respectively The acceleration of the planet is

Fig. 9.22 From the first property of a central force we have r × v =
h =constant, where h is a constant vector perpendicular to the x-y plane

a = −GMS

r2
r1

From the first property of a central force, we have r × v =
h =constant, where h is a constant vector perpendicular to
the x–y plane (see Fig. 9.22). Since r = rr1 and v = dr/dt =
drr1/dt = rdr1/dt + (dr/dt)r1 we have

h = rr1×
(
r
dr1
dt

+ dr

dt
r1

)
= r2

(
r1× dr1

dt

)
+r

dr

dt

(
r1×r1

)

= r2
(
r1 × dr1

dt

)
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a × h =
( −GMS

r2
r1

)
×

(
r2

(
r1 × dr1

dt

))
= −GMS

[(
r1

dr1
dt

)
r1 − (r1 · r1) dr1dt

]

Using
A × (B × C) = (A · C)B − (A · B)C

Since r1 · dr1/dt = 0 and r1 · r1 = r21 = 1, we have

a × h = GMS
dr1
dt

= d

dt
(GMSr1)

Also we have

a × h = dv
dt

× h = d

dt
(v × h)

since h is a constant vector. That gives

d

dt
(v × h) = d

dt
(GMSr1)

or
v × h = GMSr1 + C

where C is a constant vector. Since

h2 = h · h = (r × v) · h = r · (v × h)

= (rr1) · (GMSr1 + C) = rGMS(r1 · r1) + r(r1 · C)

and since
r1 · C = C cos θ

we have
h2 = rGMS + rC cos θ

or

r = h2

GMS + C cos θ
= h2/GMS

1 + C/GMScos θ

This equation is of a conic section and since the only closed
conic section is an ellipse the law is proved.

9.4.2 Kepler’s Second Law

The radius vector drawn from the sun to the planet sweeps
out equal areas in equal periods of time.

Proof This was proved in Sect. 9.1 as a property of a central
force, where we’ve seen that for any central force, the position
vector r of the particle from the center of force O sweeps out
equal areas in equal times. That is,

dA

dt
= h

2
= constant

or

dA

dt
= L

2m
= constant

Here, the center of force is the sun and the particle is the
planet, hence we have

dA

dt
= L

2MP

9.4.3 Kepler’s Third Law

The square of the period of revolution of any planet about the
sun is proportional to the cube of the semimajor axis of its
orbit.

Proof The area of an ellipse is given by A = πab, where a
and b are the semimajor and semiminor axis of the ellipse,
respectively. From Kepler’s second law, the areal velocity is
a constant given by

dA

dt
= h

2
= constant

Therefore, the period of revolution may be considered as
the time it takes the radius vector to sweep an area of πab

T = πab

h/2

From Sect. 9.3, we have b = a
√
1 − e2. That gives

T = πa2
√
1 − e2

h/2

Also, we’ve seen that the eccentricity for the gravitational
force is given by e = h2C/GM or e = h2C/GMS in the case
of the planet–sun system. Since ed = a(1 − e2), we have

h2

GMS
= a(1 − e2)

or √
1 − e2 = h√

GMSa

Thus,

T = 2πa2h

h
√
GMSa

= 2π√
GMS

a3/2

or
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T 2 =
(

4π2

GMS

)
a3 = KSa

3

where KS is a constant that has a value given by

KS = 4π2

GMS
= 2.97 × 10−19 s2/m3

This proves Kepler’s third law. Note that, Kepler’s laws apply
also for satellites. In such cases, the mass of the sun in the
previous equations is replaced by the earth or any other planet
about which the satellite revolves.

9.5 Circular Orbits

The orbits of most planets in our solar system are almost
circular. Next, we will find the total energy of a body of mass
m moving in a circular orbit about a massive body of mass
M that is assumed to be fixed (at rest) in an inertial frame of
reference. From that energy, we will find the eccentricity and
prove that the orbit is circular. The potential energy of such
system is

U = −GMm

r

where r is the radius of the circular orbit. Applying Newton’s
second law to m gives

GMm

r2
= m

v2

r
(9.31)

Therefore, the kinetic energy of the particle is

K = 1

2
mv2 = GMm

2r

The total energy of m is therefore given by

E = K +U = GMm

2r
− GMm

r

or

E = −GMm

2r
(9.32)

In Sect. 9.4, the eccentricity of orbit in terms of energy was
given by

e =
√
1 + 2Eh2

G2M 2m
(9.33)

Substituting Eq. 9.32 into Eq. 9.33 gives

e =
√
1 +

(−GMm

2r

2h2

G2M 2m

)

Fig. 9.23 The potential, kinetic
and total energy as functions of r
of an object in a circular orbit

Since h = rv for a circular orbit and since GMm/r2 = mv2/r
and thus v = √

GM /r, we have

h = √
rGM

and

e =
√
1 +

(−GMm

2r

2rGM

G2M 2m

)
= 0

Hence the orbit is circular. The potential, kinetic, and total
energy as functions of r of an object in circular orbit are
shown in Fig. 9.23.

Example 9.15 A satellite of mass of 1000 kg is in circular
orbit about the earth at an altitude ofRE/2.What is the amount
of work required to move the satellite to an altitude of 2RE .

Solution 9.15

W = �E = Ef − Ei = GMEms

( −1

2rf
−

( −1

2ri

))
= GMEms

( −1

4RE
+ 1

RE

)

= 3GMEms

4RE
= 3(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)(1000 kg)

4(6.37 × 106 m)
= 4.7×1010 J

9.6 Elliptical Orbits

For an elliptical orbit, we have

ed = a(1 − e2) = h2

GM
(9.34)

Substituting Eq. 9.33 into Eq. 9.34 gives

a

(
1 −

(
1 + 2Eh2

G2M 2m

))
= h2

GM

That gives

E = −GMm

2a

The speed of an object in an elliptical orbit can be found from

K = E −U
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1

2
mv2 = −GmM

2a
+ GmM

r

v2 = GM

(
2

r
− 1

a

)

v =
√
GM

(
2

r
− 1

a

)

9.7 The Escape Speed

The escape speed vesc is the speed required for an object to
escape from the influence of the gravitational field of an astro-
nomical object or system. Suppose an object of massm is pro-
jected from the surface of a planet of massM . The minimum
speed for the object to escape the gravitational field of the
planet is that in which the object has zero total mechanical
energy at infinity. From conservation of energy, we have

Ki +Ui = Kf +Uf

1

2
mv2esc +

(−GMm

R

)
= 0

Hence

vesc =
√
2GM

R

where R is the radius of the planet. If the object’s initial speed
is greater than the escape speed from that planet, then the
object will still have some kinetic energy at infinity. Table.9.2
shows planetary data escape speeds

Example 9.16 What is the escape speed from the surface of:
(a) Earth; (b) Mars; (c) Pluto.

Solution 9.16 (a)

vesc =
√

2GME
RE

=
√

2(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

(6.37 × 106 m)
= 1.12 × 104 m/s

(b)

vesc =
√

2GMM
RM

=
√

2(6.67 × 10−11 Nm2/kg2)(6.42 × 1023 kg)

(3.37 × 106 m)
= 5 × 103 m/s

(c)

vesc =
√

2GMP
RP

=
√

2(6.67 × 10−11 Nm2/kg2)(1.4 × 1022 kg)

(1.5 × 106 m)
= 1.1 × 103 m/s

Example 9.17 What must be the minimum speed of a space-
craft that is at a distance of 3RE from the center of the earth
in order for it to escape the gravitational field of the earth?

Solution 9.17 Theminimum speed is that inwhich the space-
craft has zero total mechanical energy at infinity,

Ki +Ui = Kf +Uf

1

2
mv2esc +

(−GMEm

3RE

)
= 0

vesc =
√

2GME
3RE

=
√

2(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

3(6.37 × l06 m)
= 6.46 × 103 m/s

Example 9.18 Given that the period ofMars in its orbit about
the sun is 1.88 years and its semimajor axis of the orbit is
22.8 × 1010 m, find the mass of the sun.

Solution 9.18 The period in seconds is

T = 5.94 × 107s

From Kepler’s second law, we have

MS = 4π2a3

GT2
= 4(3.14)2(22.8 × 1010 m)3

(6.67 × 10−11 Nm2/kg2)(5.94 × 107 s)2
= 1.99 × 1030 kg

Example 9.19 Halley’s Comet moves in an elliptical orbit
about the sun. Its semimajor axis of orbit is 2.7× 1012 m and
its farthest distance (OV ′ = Ra) from the sun (the aphelion)
is 5.3 × 1012 m. Find its period and its closest approach to
the sun (the perihelion OV = Rp).

Solution 9.19 From Kepler’s third law,

T 2 = KSa
3 = (2.97 × 10−19 s2/m3)(2.7 × 1012 m)3

T = 2.4 × 109 s = 76 years

From Eq. 9.23, we have

OV + OV ′ = 2a

or
Rp + Ra = 2a

Rp = 2a−Ra = 2(2.7× 1012 m) − (5.3× 1012 m) = 1× 1011 m

Example 9.20 If Pluto’s distance from the sun at perihelion
is 4.43× 1012m, find (a) the ratio of its speed at perihelion to
its speed at aphelion; (b) the eccentricity of orbit; (c) the total
energy.
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Table 9.2 Planetary data escape speeds

Body Mass (kg) Radius (m) Semimajor axis a (m) Escape speed (km/s)

Mercury 3.18 × 1023 2.43 × 106 5.79 × 1010 4.3

Venus 4.88 × 1024 6.06 × 106 1.08 × 1011 10.3

Earth 5.98 × 1024 6.37 × 106 1.496 × 1011 11.2

Mars 6.42 × 1023 3.37 × 106 2.28 × 1011 5

Jupiter 1.90 × 1027 6.99 × 107 7.78 × 1011 60

Saturn 5.68 × 1026 5.85 × 107 1.43 × 1012 36

Uranus 8.68 × 1025 2.33 × 107 2.87 × 1012 22

Neptune 1.03 × 1026 2.21 × 107 4.5 × 1012 24

Pluto 1.4 × 1022 1.5 × 106 5.91 × 1012 1.1

Moon 7.36 × 1022 1.74 × 106 2.3

Sun 1.99 × 1030 6.96 × 108 618

Solution 9.20 From Table. 9.2, we have a = 5.9 × 1012 m,
therefore

Ra = 2a−Rp = 2(5.9× 1012 m) − (4.43× 1012 m) = 7.37× 1012 m

From the conservation of angular momentum,

MPvaRa = MPvpRp

hence,
vp
va

= Ra

Rp
= (7.37 × 1012m)

(4.43 × 1012m)
= 1.7

(b) From Eq. 9.24 (OV = Rp = a(1 − e)), we have

e = 1 − Rp

a
= 1 − (4.43 × 1012 m)

(5.9 × 1012 m)
= 0.25

(c)

E = −GMm

2a
= −(6.67 × 10−11 Nm2/kg2)(1.99 × 1030 kg)(1.4 × 1022 kg)

2(5.9 × 1012 m)
= −1.6 × 1029 J

Example 9.21 Two stars of equal massM revolve about their
center of mass with a speed v as shown in Fig. 9.24. Find the
period of motion of each star.

Solution 9.21 The gravitational force that one star exerts on
the other is

F = GM 2

4r2
= Mv2

r

where r is the radius of orbit. Therefore,

v =
√
GM

4r

and

Fig. 9.24 Two stars of equal
massM revolve about their
center of mass with a speed v

T = 2πr

v
= 2πr

√
4r

GM
= 4π

√
r3

GM

Example 9.22 A spaceship is fired from the surface of Mars
with a speed of 12 × 103m/s, find its speed at a very far
distance from Mars.

Solution 9.22
Ki +Ui = Kf +Uf

1

2
mv2i −

(
GmMM

RM

)
= 1

2
mv2f + 0

v2f = v2i − 2GMM

RM

= (12 × 103 m/s)2 − 2(6.67 × 10−11 Nm2/kg2)(6.42 × 1023 kg)

(3.37 × 106 m)

That gives vf = 1.1 × 104 m/s.
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Problems

1. Calculate the gravitational force between the earth and
(a) the sun, (b) the moon.

2. Calculate the gravitational acceleration at the surface of
Mars.

3. Three particles of masses m1 = 2 kg, m2 = 6 kg, and
m3 = 3 kg are located at the points (0, 0), (0, 5), and
(5, 0), respectively. Find magnitude and direction of the
resultant gravitational force exerted on m3.

4. The Geosynchronous satellites move in a circular orbit
in the equatorial plane of the earth. They move in such a
way that they always remain over the same point on the
earth. Find the height and velocity of this satellite.

5. If the eccentricity of the orbit of Mercury about the sun
is e = 0.206 and its semimajor axis is a = 0.387 AU,
find (a) the distance of its farthest and closest approach
to the sun (the aphelion and perihelion), (b) its period,
(c) its total energy, (d) its angular momentum. (1 AU =
1.495 × 1011m).

6. A body is released at a distance r from the center of the
earth. Find its velocity just as it hits the surface of the
earth.
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indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

7. Show that the speed of a satellite in an elliptical orbit
about the earth at apogee and perigee are given by

vp =
√
GM

a

√
1 + e

1 − e
=

√
GM

a

√
Ra

Rp

and

va =
√
GM

a

√
1 − e

1 + e
=

√
GM

a

√
Rp

Ra

8. An artificial satellite moves in an elliptical orbit about
the earth. Its perigee and apogee altitudes are 1100 km
and 4100 km respectively Find (a) the velocity of the
satellite at perigee and apogee, (b) its semimajor axis, (c)
its eccentricity, (d) the equation of its orbit, (e) its period,
(f) its speed when it is at a distance of 3000 km above the
earth’s surface.

9. A satellite is at a distance of 1.2RE from the center of
the earth. Find the speed required for the satellite at this
altitude (where it represents the orbit perigee) to be in
(a) circular orbit, (b) parabolic orbit, (c) elliptical orbit of
eccentricity of e = 0.7.

10. Suppose the earth suddenly stops moving about the sun,
find the time it would take the earth to fall to the sun.
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