
8Rolling and Static Equilibrium

8.1 RollingMotion

Rolling motion represents the general plane motion of a rigid
body It can be considered as a combination of pure transla-
tional motion parallel to a fixed plane plus a pure rotational
motion about an axis that is perpendicular to that plane. The
axis of rotation usually passes through the center of mass. In
Sect. 6.4, we’ve seen that the motion of an object (or a sys-
tem of particles) can always be considered as a combination
of the motion of the object relative to its center of mass plus
the motion of its center of mass relative to some origin O.
From Sect. 6.4.3, the kinetic energy of an object relative to
the origin is
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where vcm is the velocity of the center of mass of the object
relative to the origin O,mi is the mass of the ith particle and
v′
i is the linear velocity of the ith particle relative to the center
of mass. In the case of the general plane motion of a rigid
body, the motion can be considered as a combination of pure
translational motion of the center of mass plus pure rotational
motion about an axis passing through the center of mass and
perpendicular to the plane of motion. Therefore, the first term
in Eq. 8.1 can be written as
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the center of mass axis. Hence
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Thus, the total kinetic energy of a rolling object is the sum of
the translational kinetic energy of its center of mass and the
rotational kinetic energy about its center of mass.

8.2 RollingWithout Slipping

An important special case of the general plane motion is
rolling without slipping. Such motion occurs if a perfectly
rigid body rolls on a perfectly rigid surface. As the object rolls
without slipping, the instantaneous s′ point of contact between
the object and the surface is at rest relative to the surface since
there is no slipping. Now, consider a wheel of radius R rolling
without slipping along the straight track shown in Fig. 8.1.
The center of mass of the wheel moves along a straight line,
while a point on the rim such as P moves in a cycloid path. As
the wheel rotates through an angle θ , its center of mass moves
through a distance equal to the arc length s (see Fig. 8.2) given
by

Fig.8.1 Awheel of radius R rolling without slipping along the straight
track

Fig. 8.2 As the wheel rotates through an angle θ , its center of mass
moves through a distance equal to the arc length s
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Fig. 8.3 The combination of
pure rotational and translational
motions

s = Rθ

Hence, the speed of the center of mass is

vcm = ds

dt
= R

dθ

dt
= Rω

The acceleration of the center of mass is given by

acm = dvcm

dt
= R

dω

dt
= Rα

The combination of pure rotational and translational motions
is viewed in Fig. 8.3. In the pure translational motion (see
Fig. 8.3 part a) every particle in the wheel moves with the
velocity vcm . In pure rotational motion (see Fig. 8.3 part b),
each particle moves with an angular speed ω about the center
of mass axis and the linear speed of any particle at the rim is

vcm = Rω (8.2)

The resultingmotion of these two combinedmotions is shown
in Fig. 8.3 part c, where the linear velocity of each particle
is the vector sum of its linear velocity in pure translational
motion and its linear velocity in pure rotationalmotion. There-
fore, the instantaneous velocity of the point of contact is equal
to zero (v1 = 0) and of a point at the top of the wheel is equal
to twice the velocity of the center of mass (v2 = 2vcm). Note
that Eq. 8.2 is valid only in the special case of rolling without
slipping; in the general rolling motion this equation does not
hold. The total kinetic energy of a rigid object rolling without
slipping is therefore given by

K = 1
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2
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Anotherway to view rollingwithout slipping is to consider the
wheel to be in pure rotational motion about an instantaneous
axis that passes through the point of contact P (see Fig. 8.4).
In that case, the velocity of the point of contact P is zero and

Fig.8.4 Another way to view rolling without slipping is to consider the
wheel to be in pure rotational motion about an instantaneous axis that
passes through the point of contact P

Fig.8.5 A statistical frictional force acts on it at the instantaneous point
of contact producing a torque about the center

the velocity of the center of mass is vcm = Rω (since it is at
a distance R from the axis of rotation) and the velocity of a
point at the top is vt = 2Rω = 2vcm . Note that the angular
velocity ω of the wheel is the same as its angular velocity if
the axis of rotation is at the center of mass.

For simplicity, only homogeneous symmetrical objects
will be considered here such as hoops, cylinders, and spheres.
When a rigid body rolls without slipping with a constant
speed, there will be no frictional force acting on the body
at the instantaneous point of contact. However, if the object
is accelerating, then a statistical frictional force acts on it at
the instantaneous point of contact producing a torque about
the center (see Fig. 8.5). This will cause the object to rotate
about its center of mass. The direction of the statistical force
opposes the tendency of the object to slide. For example, if a
wheel is rolling down an incline, the direction of the frictional
force will be opposing the downward motion.

In most situations, the body and the surface are not per-
fectly rigid. As a result, the normal force would not be a single
force; rather it would be a number of forces that are distributed
over the area of contact (see Fig. 8.6). Therefore, each normal
force will exert an opposing torque since its line of action will
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Fig. 8.6 If the body and the surface are not perfectly, the normal force
would not be a single force; rather it would be a number of forces that
are distributed over the area of contact

not pass through the center ofmass. Furthermore, as the object
rolls over the surface, both the object and the surface undergo
deformation resulting in a loss in the mechanical energy.

Example 8.1 A uniform solid hoop of mass of 32 kg and
radius of 1.2 m rolls without slipping on a horizontal track
where the center of mass speed is 2 m/s. Find: (a) the total
energy of the hoop and compare it with its total energy if it
would slide without rolling; (b) the speed of the hoop at its
top and bottom.

Solution 8.1 (a) the total energy is given by
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2
Mv2cm = Mv2cm = (32 kg)(2 m/s)2 = 128 J

If the hoop slides without rolling its total kinetic energy is
1

2
Mv2cm , that is, its value is half of that if the hoop were to

roll without slipping.
(b)

vtop = 2vcm = 2(2 m/s) = 4 m/s

vbottom = 0

Example 8.2 A uniform solid cylinder, sphere, and hoop roll
without slipping from rest at the top of an incline (seeFig. 8.7).
Find out which object would reach the bottom first.

Solution 8.2 For each object, we have

Ki +Ui = K f +U f

0 + Mgh = 1

2
Mv2cm + 1

2
Icm

(
vcm

R

)2

Fig.8.7 Auniform solid cylinder, sphere and hoop roll without slipping
from rest at the top of an incline

Fig. 8.8 A marble ball of radius R and mass M rolls without slipping
down the incline

vcm =
√

2gh

1 + Icm/MR2

Hence, the speed of the center of mass of any object at the
bottom of the incline does not depend on its mass or size; it
depends only on its shape. Therefore, all objects of the same
shape such as spheres (of any mass or size) have the same
speed at the bottom. That is, the smaller the ratio Icm/MR2

the faster the object moves since less of its energy goes to
rotational kinetic energy andmore goes to translational kinetic
energy The ratio Icm/MR2 is equal to 0.4, 0.5, and 1 for
a sphere, cylinder, and hoop, respectively Therefore, these
objects will finish in the order of any sphere, any cylinder,
and any hoop.

Example 8.3 A marble ball of radius R and mass M rolls
without slipping down the incline shown in Fig. 8.8. Find: (a)
its acceleration; (b) the minimum coefficient of static friction
that is required to prevent slipping.

Solution 8.3 (a)ApplyingNewton’s second law inboth linear
and angular form (see Fig. 8.7) we have

∑
Fx = Mg sin θ − fs = Macm (8.3)

∑
Fy = n − Mg cos θ = 0

and ∑
τ = fs R = Icmα =

(
2

5
MR2

)(
acm
R

)

that gives

fs = 2

5
Macm (8.4)

Substituting Eq. 8.4 into Eq. 8.3 gives

Mg sin θ − 2

5
Macm = Macm

hence
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Fig. 8.9 A string wrapped
around a uniform solid cylinder
of radius of R and mass of M

acm = 5

7
g sin θ

and

fs == 2

7
Mg sin θ

(b) At the verge of slipping, the statistical frictional force is a
maximum given by

fsmax = μsn = 2

7
Mg sin θ

Hence, the coefficient of static frictionmust be at least as great

as μs = 2

7
tan θ in order for the ball not to slip.

Example 8.4 A string is wrapped around a uniform solid
cylinder of radius of R and mass of M as in Fig. 8.9. If the
cylinder is released from rest while the string is fixed in place
and assuming that the string does not slip at the cylinder’s
surface, find: (a) the acceleration of the center of mass using
Newton’s laws (b) the acceleration of the center of mass using
energy methods if the cylinder descends a distance h(c) the
tension in the string.

Solution 8.4 (a) Applying Newton’s second law in both the
linear and angular form gives

∑
Fy = T − Mg = −Macm (8.5)

∑
τ = T R = Icmα = 1

2
MR2(
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R

)

hence

T = 1

2
Macm (8.6)

Substituting Eq. 8.6 into Eq. 8.5 gives

−M9 + 1

2
Macm = −Macm

that gives

acm = 2

3
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(b) Energy Method

Ki +Ui = K f +U f
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that gives
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√
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From the expression v2 = v20 + 2acmh, and since v0 = 0 we
have

acm = v2cm

2h
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(b) From Eq. 8.6,
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Example 8.5 A uniform solid sphere of radius R and mass
M is released from rest at the top of an incline at a distance h
above the ground. If it rolls without slipping, find the speed
of the center of mass at the bottom of the incline.

Solution 8.5
Ki +Ui = K f +U f

0 + Mgh = 1

2
Mv2cm + 1

2
Icmω2

0 + Mgh = 1

2
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That gives

vcm =
√
10

7
gh

Example 8.6 A block of mass m is attached to a light string
that passes over a light pulley and is connected to a uniform
solid sphere of radius R andmassM as in Fig. 8.10. Show that

the acceleration of the system is a = g

1 + 7/5(M/m)
when

the block is released from rest.
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Fig. 8.10 A block of mass m is attached to a light string that passes
over a light pulley connected to a uniform solid sphere of radius R and
mass M

Solution 8.6 From conservation of energy, we have

mgh = 1

2
Mv2cm + 1

2
Icmω2 + 1

2
mv2

Since the block and the sphere are connected, they have the
same speed, therefore

mgh = 1

2
Mv2 + 1
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2
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Therefore, the speed of the system when the block is at the
bottom of the incline is

v =
√

2gh

1 + 7M/5m

The acceleration of the system is

v2 − v20 = 2ah

or

a = v2

2h
= 2gh

2h(1 + 7/5(M/m))

that gives

a = g

(1 + 7/5(M/m))

8.3 Static Equilibrium

An extended object is said to be in equilibrium if two condi-
tions are satisfied. First, the net external force acting on the
object must be equal to zero. Second, the net external torque
on the object about any origin must also be equal to zero.
In other words, an object is in equilibrium if its total linear
momentum and its total angular momentum (about any ori-
gin) are constants. Only the first condition is necessary if the
object can be treated as a particle. Thus, the conditions of
equilibrium may be written as

∑
F = 0 (Translational Equilibrium) (8.7)

∑
τ = 0 (Rotational Equilibrium) (8.8)

In terms of components, we may write

∑
Fx = 0,

∑
Fy = 0,

∑
Fz = 0 (8.9)

∑
τx = 0,

∑
τy = 0,

∑
τz = 0 (8.10)

An object is said to be in static equilibrium if it is at rest (there
isn’t any kind of motion with respect to our inertial frame of
reference). Now consider the case in which all external forces
acting on the object lie in the same plane (for example the
x–y plane). Such forces are called coplanar forces. The net
external torque due to these forces is then perpendicular to the
x–y plane and parallel to the z-axis. Equations 8.9 and 8.10
are, therefore, reduced to

∑
Fx = 0,

∑
Fy = 0,

∑
τz = 0

Next, we will prove that if the object is in translational equi-
librium where (ΣF = 0) and the net external torque on the
object is equal to zero about some origin, it is also equal to
zero about anyother origin.Note that the originmaybe chosen
anywhere inside or outside the object. Suppose that a num-
ber of forces F1,F2,F3, . . .Fn are acting on a rigid object at
different points (see Fig. 8.11) and that the object is in trans-
lational equilibrium. The point of application of F1 relative
to O is r1 and of F2 is r2 and so on. The net external torque
about O is given by

∑
τ0 = τ1+τ2+· · ·+τn = r1 × F1+r2 × F2+ + · · · rn × Fn

The net external torque about O′ (see Fig. 8.12) is
∑

τ0′ = τ ′
1+τ ′

2+ + · · · τ ′
n = r′1×F1+r′2×F2+ + · · · r′n ×Fn

= (r1 − r0′) ×F1 + (r2 − r0′) ×F2 + · + · · · (rn − r0′) ×Fn

= r1 × F1 + r2 × F2 + . + · · · rn × Fn − (r0′ × F1 + r0′ ×
F2 + + · · · r0′ × Fn)

=
∑

τ 0− (r0′ × (F1+F2+ +Fn)) =
∑

τ0−(r0′ ×
∑

F)

Since ΣF = 0 we have

∑
τ 0′ =

∑
τ 0
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Fig. 8.11 A number of forces F1,F2,F3, ..Fn act on a rigid object at
different points

Fig. 8.12 The net external torque on the object about Oõ

8.4 The Center of Gravity

The resultant gravitational force acting on an object is the
resultant of the individual gravitational forces acting on dif-
ferent mass elements of the object (see Fig. 8.13), i.e.,

∑
F =

∑
mig (8.11)

This force can be replaced by a single force that is equal to the
weight of the object (Mg) and that acts at a single point called
the center of gravity Now consider an object that is near the
earth’s surface where the force of gravity is assumed to be
constant over that range. Equation 8.11 becomes

∑
F =

∑
mig = g

∑
mi = Mg = w

To locate the center of gravity, let us calculate the net torque
acting on an object about an origin due to gravity This torque
is the vector sum of the individual torques acting on different
mass elements. That is,

Fig. 8.13 The resultant gravitational force acting on an object is the
resultant of the individual gravitational forces acting on different mass
elements of the object

τ =
∑

i

τ i =
∑

i

(ri × mig) =
(∑

i

miri

)
× g

τ =

( ∑
i miri

)

M
× Mg = rcm × w

τ = rcm × w

Therefore, we conclude that if the gravitational field (g) is
constant over the body, the center of gravity of the object
coincides with its center of mass.

Example 8.7 Two blocks of masses m2 = 20 kg and m1 =
10 kg are supported by a uniform horizontal beam of length
L = 1.5m and mass M = 6 kg (see Fig. 8.14). Find: (a) the
normal force exerted by the fulcrum (supporting point) on the
beam if it is placed under the center of gravity of the beam;
(b) the distance x in whichm2 must be placed in order for the
system to be balanced.

Fig. 8.14 Two blocks supported by a uniform horizontal beam
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Fig.8.15 The free-body diagram
of a ladder of length L and mass
M = 20 kg resting against a
smooth vertical wall

Solution 8.7 (a) The free-body diagram of the system in
shown in Fig. 8.14 where w1 = 196 N, w2 = 98 N, and
w = 58.8 N. Applying Newton’s second law to the beam
gives

∑
Fy = n − (59 N) − (98 N) − (196 N) = 0

and
n = 353 N

(b) The net external torque about an axis passing through the
center of the beam and perpendicular to the page is

∑
τz = (98 N)(0.75 m) − (196 N)x = 0

x = 0.37 m

Example 8.8 A ladder of length L and mass M = 20 kg
rests against a smooth vertical wall as shown in Fig. 8.15.
If the center of gravity of the ladder is at a distance of L/3
from the base, determine: (a) theminimumcoefficient of static
friction such that the ladder does not slip; (b) the magnitude
and direction of the resultant of the contact forces acting on
the ladder at the base; (c) if a man of mass of 70 kg climbs up

the ladder, what is the maximum distance the man can climb
before the ladder slips if μs = 0.4.

Solution 8.8 (a) Figure 8.15 shows the free-body diagram of
the ladder. Applying Newton’s second law to the ladder gives

∑
Fx = fs − n2 = 0

fs = n2

and

∑
Fy = n1 − Mg = 0

n1 = Mg

Applying Newton’s second law in angular form about O
(the point must be chosen to give minimum unknowns) we
have

∑
τz = n2L sin θ − 1

3
MgL cos θ = 0 (8.12)

If the ladder is at the verge of slipping the statistical frictional
force is maximum fs = μsn1. From Eq. 8.12, we have
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n2 = Mg

3 tan θ
= (196 N)

3 tan(51◦)
= 53 N = fs

hence

μs = fs
n1

= (53 N)

(196 N)
= 0.27

(b) The resultant of the contact forces on the ladder at the base
is

FR =
√

f 2s + n21 =
√

(53 N)2 + (196)2 N = 203 N

the direction of FR is

φ = tan−1 n1
fs

= tan−1 (196 N)

(52.9 N)
= 75◦

(c) The free-body diagram is shown in Fig. 8.15. From the
equilibrium condition, we have

∑
Fx = fs − n2 = 0

and ∑
Fy = n1 − mg − Mg = 0

or
fs = n2

and
n1 = (m + M)g

Furthermore, the resultant external torque about O is

∑
τz = n2L sin θ − 1

3
MgL cos θ − mgx cos θ = 0

thus

n2 = g

tan θ

(
M

3
+ m

(
x

L

))

at the verge of slipping

fs = μsn1 = μs g(M + m) = (0.4)(9.8 m/s2)(90 kg) = 353 N = n2

Hence
x = 0.54 L

Example 8.9 A uniform beam of weight w and length L is
held by two supports as in Fig. 8.16. A block of weight w1

is resting on the beam at a distance of L/6 from the center of
gravity of the beam. Find the magnitude of the forces exerted
by the supports on the beam.

Solution 8.9 The free-body diagram of the system is shown
in Fig. 8.16. Because the beam has a uniform density its cen-

ter of mass and gravity are located at its geometrical center.
Applying Newton’s second law gives

∑
Fy = 0

F2 + F1 − w − w1 = 0 (8.13)

Taking the torque about an axis passing through one end (at
F1) gives ∑

τz = 0

F2L − 2

3
Lw1 − L

2
w = 0 (8.14)

From Eqs. 8.13 and 8.14 we have

F2 = 2

3
w1 + w

2

and
F1 = w1

3
+ w

2

Example 8.10 A man of mass of 80 kg is standing at the
end of a uniform beam of mass of 30 kg and length of 12 m
as shown in Fig. 8.17. Find the tension in the rope and the
reaction force exerted by the hinge on the beam.

Solution 8.10 (a)The free-bodydiagram is shown inFig. 8.17.
Applying Newton’s second law to the beam
gives

∑
Fy = T sin 50◦ + FR sin θ − (294 N) − (784 N) = 0

∑
Fx = FR cos θ − T cos 50◦ = 0

The resultant torque about an axis passing through O is

∑
τz = T sin 50◦L − L(784N) − L

2
(294N) = 0

That gives T = 1215.3 N. Hence

FR cos θ = T cos 50◦ = (1215.3 N)(0.64) = 781.2 N
(8.15)

and

FR sin θ = −T sin 50◦ + (294 N) + (784 N)

= −(1215.3 N)(0.76) + (294 N) + (784 N) = 147 N
(8.16)

Dividing Eq. 8.16 by Eq. 8.15 gives
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Fig. 8.16 A uniform beam of weight w and length L balanced by two supports

Fig. 8.17 A man standing at the
end of a uniform beam

tan θ = (147 N)

(781.2 N)
= 0.2

θ = 10.6◦

and
FR =

√
(147)2 + (7812)2 = 795 N

Example 8.11 Auniformbeamofweight of 120N and length
of L is in horizontal static equilibrium as in Fig. 8.18.Neglect-
ing the masses of the ropes, find the tension in each string.
(The center of mass is at L/3 from one end).

Solution 8.11 The free-body diagram is shown in Fig. 8.18.
Applying Newton’s second law to the beam gives

∑
Fy = T1 cos θ + T2 cos 30

◦ − (120 N) = 0

or

T1 cos θ + T2(0.87) = (120 N) (8.17)

Also ∑
Fx = T1 sin θ − T2 sin 30

◦ = 0

or
T1 sin θ = T2 sin 30

◦ (8.18)

Taking the resultant torque on the beam about one end (at T1)
gives

∑
τ = (120 N)

L

3
− LT2 cos 30

◦ = 0

or

T2 = 46.2 N

Substituting T2 into Eqs. 8.18 and 8.17 gives

T1 sin θ = (46.2 N) sin 30◦ = 23.1 N

and
T1 cos θ + (46.2 N)(0.87) = (120 N)

T1 cos θ = 80 N

Hence

tan θ = (23.1 N)

(80 N)
= 0.3

That gives θ = 16.7◦ and T1 = (23.1 N)/ sin 16.7◦ =
80.3 N.

Example 8.12 A solid sphere of mass of 12 kg is in static
equilibrium inside thewedge shown in Fig. 8.19. If the surface
of the wedge is frictionless, find the forces that the wedge
exerts on the sphere.
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Fig. 8.18 A uniform beam held
by ropes in static equilibrium

Fig. 8.19 A solid sphere in static equilibrium inside a wedge

Solution 8.12 Applying Newton’s second law gives

∑
Fx = F1 sin 50

◦ − F2 sin 30
◦ = 0

or
F1 = 0.65F2

Also we have

∑
Fy = F1 cos 50

◦ + F2 cos 30
◦ − Mg = 0

or
0.65F2 cos 50

◦ + F2 cos 30
◦ − Mg = 0

That gives F2 = 91.6 N. Therefore

F1 = 0.65F2 = 0.65(91.6 N) = 59.5 N

Problems

1. A uniform cylinder of mass 3 kg and radius of 0.05 m rolls
without slipping along a horizontal surface. Find the total
energy of the cylinder at the instant its speed is 2 m/s.

2. A uniform solid cylinder of mass 10 kg and radius of 0.2
m rolls up the incline of angle 45◦ with an initial veloc-
ity of 15 m/s. Find the height in which the cylinder will
stop.

Fig. 8.20 A block suspended by
a cable attached to a uniform rod

Fig. 8.21 A uniform sphere
suspended by a light string and
leaning on a frictionless wall

3. A wheel of mass 2 kg and radius of 0.05 m rolls without
slipping with an angular speed of 3 rad/s on a horizontal
surface.Howmuchwork is required to accelerate thewheel
to an angular speed of 15 rad/s.

4. A blockweighing 1000N is held by a cable that is attached
to a uniform rod of weight 500 N (see Fig. 8.20). Find (a)
the tension in the cable, (b) the horizontal and vertical
components of the force exerted on the base of the rod.

5. A uniform sphere of radius r and massm is held by a light
string and leans on a frictionless wall as in Fig. 8.21. If
the string is attached a distance d above the center of the
sphere, find (a) the tension in the string, (b) the reaction
force exerted by the wall on the sphere.

6. Find the minimum force applied at the top of a wheel of
mass M and radius R to raise it over a step of height h as
in Fig. 8.22. Assume that the wheel does not slip on the
step.
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Fig. 8.22 A wheel raised over a step

Fig. 8.23 Three identical uniform blocks on top of each other
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7. Three identical uniform blocks each of length L are on top
of each other as in Fig. 8.23. Find the maximum value of
h in order for the stack to be in equilibrium.
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