
7Rotation of Rigid Bodies

7.1 Rotational Motion

Rotational motion exists everywhere in the universe. The
motion of electrons about an atom and the motion of the
moon about the earth are examples of rotational motion.
Objects cannot be treated as particles when exhibiting rota-
tional motion since different parts of the object move with
different velocities and accelerations. Therefore, it is neces-
sary to treat the object as a system of particles.

7.2 The PlaneMotion of a Rigid Body

When all parts of a rigid body move parallel to a fixed plane,
then the motion of the object is referred to as plane motion.
Therearetwotypesofplanemotion,whicharegivenasfollows:

1. The pure rotational motion: The rigid body in such a
motion rotates about a fixed axis that is perpendicular to a
fixed plane. In other words, the axis is fixed and does not
move or change its direction relative to an inertial frame
of reference.

2. The general plane motion: The motion here can be consid-
ered as a combination of pure translational motion parallel
to a fixed plane in addition to a pure rotationalmotion about
an axis that is perpendicular to that plane. This chapter
discusses the kinematics and dynamics of pure rotational
motion.

7.2.1 The Rotational Variables

Suppose a rigid body of an arbitrary shape is in pure rotational
motion about the z-axis (see Fig. 7.1). Let us analyze the
motion of a particle that lies in a slice of the body in the x-y
plane as in Fig. 7.2. This particle (at point P) will rotate in
a circle of fixed radius r which represents the perpendicular
distance from P to the axis of rotation. If you look at any other

particle in the object youwill see that every particle will rotate
in its own circle that has the axis of rotation at its center. In
other words, different particles move in different circles but
the center of all of these circles lies on the rotational axis.
Suppose the particle moves through an arc length s starting at
the positive x-axis. Its angular position is then given by

θ = s

r

r and θ are the polar coordinates of a point in a plane (which
was mentioned in Sect. 2.6) where θ is always measured from
the positive x-axis. Because θ is the ratio of the arc length
to the radius, it is a pure (dimensionless) number. The unit
usually used to measure θ is the radians (rad). One radian
is defined as the angle subtended by an arc of length that is
equal to the radius of the circle. Since one rotation (360◦)
corresponds to θ = 2πr/r = 2π rad, it follows that:

1 rev = 360◦ = 2π rad

1 rad = 57.3◦ = 0.159 rev

Note that if the particle completes one revolution, θ will
not become zero again, it is then equal to 2π rad. Thus for
example for three revolutions the angular position is given by

θ = (2π + 2π + 2π) rad = 6π rad

Suppose that the particle in Fig. 7.2 is at point P1 at t1 and
at point P2 at t2 where it changes its angular position from θ1
to θ2 (see Fig. 7.3). Its angular displacement is then given by

�θ = θ2 − θ1

�θ is positive for counterclockwise rotations (increasing θ )
and negative for clockwise rotations (decreasing θ ). If the
particle undergoes this angular displacement during a time
interval �t, the average angular velocity ω is then defined as
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104 7 Rotation of Rigid Bodies

Fig.7.1 A rigid body of an arbitrary shape is in pure rotational motion
about the z-axis

Fig. 7.2 The motion of a particle that lies in a slice of the body in the
x-y plane

Fig.7.3 The particle is at point P1 at t1 and at P2 at t2, where it changes
its angular position from θ1 to θ2

ω = θ2 − θ1

t2 − t1
= �θ

�t

The instantaneous angular velocity is

ω = lim�t→0

�θ

�t
= dθ

dt

ω has units of rad/s or s−1. The average angular acceleration
is defined as

α = ω2 − ω1

t2 − t1
= �ω

�t

The instantaneous angular acceleration is

α = lim�t→0

�ω

�t
= dω

dt

where α is in rad/s2 or s−2. Note thatω is positive for increas-
ing θ and negative for decreasing θ , while α is positive for
increasing ω and negative for decreasing ω. When a rigid
body is in pure rotational motion, all particles in the body
rotate through the same angle during the same time interval.
Thus, all particles have the same angular velocity and the same
angular acceleration. Therefore,ω and α describes themotion
of the whole body In the case of pure rotational motion, the
direction of ω is along the axis of rotation (also see Sect. 7.4),
it can be determined by the right-hand rule or of advance of
a right-handed screw as in Fig. 7.4. The direction of α is in
the same direction of ω if ω is increasing or in the opposite
direction if ω is decreasing.

The quantities θ, ω and α in pure rotational motion are
the rotational analog of x, v and a in translational one-
dimensional motion. The vectors ω and α are not used in the
case of pure rotational motion, they are used in the general
rotational motion when the axis of rotation changes its
direction with time. Note that only the infinitesimal angular
displacement dθ can be represented by a vector but not the
finite angular displacement �θ . This is because the finite
angular displacement �θ does not obey the commutative
law of vector addition (see Fig. 7.5) and therefore cannot be
represented by a vector. Hence, the instantaneous angular
velocity and acceleration (ω and α) can be represented by
vectors but not their average values (ω and α).

Example 7.1 Convert each of the following into the other
angular units: 15◦, 0.25 rev/s2, 3 rad/s.

Solution 7.1

15o = (15 deg)

(
1 rev

360 deg

)
= 0.042 rev

15o = (15 deg)

(
2 π rad

360 deg

)
= 0.26 rad

0.25 rev/s2 =
(
0.25

rev

s2

)(
2π rad

1rev

)
= 1.57 rad/s2

0.25 rev/s2 =
(
0.25

rev

s2

)(
360 deg

1 rev

)
= 90 deg/s2
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Fig. 7.4 The direction of ω is along the axis of rotation and can be
determined by the right-hand rule or of advance of a right-handed screw

Fig. 7.5 Changing the order of addition will change the final result

3 rad/s =
(
3
rad

s

)(
1 rev

2π rad

)
= 0.48 rev/s

3 rad/s =
(
3
rad

s

)(
360o deg

2π rad

)
= 172 deg/s

Example 7.2 A rotating rigid object has an angular position
given by θ(t) = ((0.3)t2 + (0.4)t3) rad. Determine: (a) the
angular displacement of the object and the average angular
velocity during the time interval from t1 = 1s to t2 = 2 s.
(b) the instantaneous angular velocity and the instantaneous
angular acceleration at t = 5 s.

Solution 7.2 (a)
�θ = θ2 − θ1

θ1 = ((0.3)(1 s)2 + (0.4)(1 s)3) = 0.7 rad

and
θ2 = ((0.3)(2 s)2 + (0.4)(2 s)3) = 4.4 rad

�θ = (4.4 rad) − (0.7 rad) = 3.7 rad

ω = �θ

�t
= (3.7 rad)

(1 s)
= 3.7 rad/s

(b)

ω = dθ

dt
= ((0.6)t + (1.2)t2) rad/s

at t = 5 s

ω = (0.6)(5 s) + (1.2)(5 s)2 = 33 rad/s

α = dω

dt
= ((0.6) + (2.4)t) rad/s2

at t = 5s

α = (0.6) + (2.4)(5 s) = 12.6 rad/s2

Example 7.3 Awheel is rotatingwith an angular acceleration
that is given by α = (9 − 2t) rad/s2. (a) Find the angular
velocity and displacement at any time if at t = 0 the wheel
has an angular velocity of 2 rad/s and an (initial) angular
displacement of 3 rad; (b) at what angular displacement will
the wheel reach its maximum angular velocity

Solution 7.3 (a)

ω =
∫

αdt =
∫

(9 − 2t)dt = 9t − t2 + c1

Since at t = 0 ω = 2 rad/s, we have c1 = 2 rad/s and
hence

ω = (9t − t2 + 2) rad/s

θ =
∫

ωdt =
∫

(9t − t2 + 2)dt = 9

2
t2 − 1

3
t3 + 2t + c2

Since at t = 0, θ = 3 rad, then c2 = 3 rad and

θ =
(
9

2
t2 − 1

3
t3 + 2t + 3

)
rad

(b) The maximum velocity is when α = dω/dt = 0, or
9 − 2t = 0, i.e. at t = 4.5 s The angular displacement at that
time is

θ = 9

2
(4.5 s)2 − 1

3
(4.5 s)3 + 2(4.5 s) + 3 = 72.8 rad
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7.3 Rotational Motion with Constant
Acceleration

Apure rotational motionwith constant angular acceleration is
the rotational analogue of the pure translational motion with
constant acceleration.The correspondingkinematic equations
of pure rotational motion can be obtained by using the same
method that is used for obtaining the kinematic equations
of pure translational motion. To show this, consider a rigid
object rotating with a constant angular acceleration during a
time interval from t1 to t2 through an angle from θ1 to θ2.
Let t1 = 0, t2 = t, ω1 = ωo, ω2 = ω, θ1 = θo, and θ2 = θ.

Because the angular acceleration is constant it follows that the
angular velocity changes linearly with time and the average
angular velocity is given by

ω = ω0 + ω

2

Since
α = α = ω2 − ω1

t2 − t1
= ω − ω0

t

we have
ω = ω0 + αt (7.1)

Furthermore

ω = θ2 − θ1

t2 − t1
= θ − θ0

t
= ω0 + ω

2

Hence

θ = θ0 + 1

2
(ω0 + ω)t (7.2)

Substituting Eq. 7.1 into Eq. 7.2 gives

θ = θ0 + 1

2
(ω0 + ω)t = θ0 + 1

2
(ω0 + ω0 + αt)t

or

θ = θ0 + ω0t + 1

2
αt2 (7.3)

Finally solving for t from Eq. 7.1 and substituting into Eq. 7.2
gives

θ = θ0 + 1

2
(ω0 + ω)t = θ0 + 1

2
(ω0 + ω)

(
ω − ω0

α

)

or
ω2 = ω2

0 + 2α(θ − θ0) (7.4)

Note that as mentioned earlier, if a rigid object is in pure
rotational motion, all particles in the object have the same
angular velocity and angular acceleration. Different particles
move in different circles but the center of these circles lies

at the axis of rotation. As the rigid body rotates, a particle
in the body will move through a distance s along its circular
path (see Fig. 7.6). The angular displacement of the particle
is related to s by

s = rθ

where r is the radius of the circle in which the particle is
moving along.Differentiating the above equationwith respect
to t gives

ds

dt
= r

dθ

dt

Since ds/dt is the magnitude of the linear velocity of the
particle and dθ/dt is the angular velocity of the body we may
write

v = rω (7.5)

Therefore, the farther the particle is from the rotational axis
the greater its linear speed. The direction of the linear speed
of the particles is always tangent to the path (as mentioned
in Sect. 2.2.3). In Sect. 2.4.6 we have seen that a particle in
nonuniform circular motion has both tangential and radial
components of acceleration. The radial component is due to
the change in the direction of the velocity and is given by

ar = v2

r
(7.6)

Substituting Eq. 7.5 into Eq. 7.6 gives

ar = v2

r
= rω2

The tangential component of the acceleration is due to the
change in the magnitude of the velocity and it is given by

at = dv

dt
= r

dω

dt

or
at = rα

The total linear acceleration of the particle (see Fig. 7.7)
is given by

a = at + ar

It’s magnitude is given by

a =
√
at2 + ar2 =

√
r2α2 + r2ω4 = r

√
α2 + ω4

Table. 7.1 shows the linear/rotational analogous equations.

Example 7.4 A disc of radius of 10 cm rotates from rest with
a constant angular acceleration. If it requires 2 s for it to rotate
through an angular displacement of 60o: (a) find the angular



7.3 Rotational Motion with Constant Acceleration 107

Fig. 7.6 As the rigid body rotates, a particle in the body will move
through a distance s along its circular path

Fig. 7.7 The total acceleration of the particle

Table 7.1 Kinematic equations

Rotational motion about a fixed
axis with constant α

Linear motion with constant a

ω = ω0 + αt v = v0 + at

θ = θ0 + 1

2
(ω + ω0)t x = x0 + 1

2
(v + v)t

θ = θ0 + ω0t + 1

2
αt2 x = x0 + v0t + 1

2
at2

ω2 = ω2
0 + 2α(θ − θ0) v2 = v20 + 2a(x − x0)

acceleration of the disc; (b) its angular velocity at t = 2s and
at t = 6s, (c) the linear speed at t = 2s of a point that is at a
distance of 7 cm from the center of the disc; (d) the distance
that this point has moved during that time interval.

Solution 7.4 (a) We have ω0 = 0 and θ = (60 deg)
(2π rad/360 deg) = 1.05 rad. By choosing the reference
position θ0 = 0 we have

θ = θ0 + ω0t + 1

2
αt2

α = 2θ

t2
= 2(1.05 rad)

(2 s)2
= 0.525 rad/s2

Fig. 7.8 Two sprockets connected at the rim

(b)

ω = ω0 + αt = (0.525 rad/s2)(2 s) = 1.05 rad/s

at t = 6 s

ω = (0.525 rad/s2)(6s) = 3.15 rad/s

(c)
v = rω = (0.07 m)(1.05 rad/s) = 0.074 m/s

(d)
s = rθ = (0.07 m)(1.05 rad) = 0.074 m

Example 7.5 Two sprockets are attached to each other as in
Fig. 7.8. There radii are r1 = 2 cm and r2 = 5 cm. If the
angular velocity of the smaller sprocket is 2 rad/s, find the
angular velocity of the other.

Solution 7.5 A point at the rim of one sprocket has the same
linear speed as a point at the rim of the other sprocket since
they are attached to each other, i.e.,

r1ω1 = r2ω2 = v

hence

ω2 = r1
r2

ω1 = (2 cm)

(5 cm)
(2 rad/s) = 0.8 rad/s

Example 7.6 Find the angular speed of the moon in its orbit
about the earth in rev/day.

Solution 7.6 Assuming that the moon’s orbit is circular, the
linear speed of the moon is given by v = 2πr/T , where r
is the mean distance from the earth to the moon and T is its
period. Thus, the angular velocity of the moon is

ω = rv = 2π

T
= 2(3.14)

(27.3 day)
= 0.23 rad/day

or
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ω =
(
0.23

rad

day

)(
1 rev

2π rad

)
= 0.037 rev/day

7.4 Vector Relationship Between Angular
and Linear Variables

Consider a rigid body in pure rotational motion about a fixed
axis (for example the z-axis). For any particle in the object,
its linear velocity is given by

v = rω = R sin θω

where R is the position vector of the particle from the origin
(see Fig. 7.9) and θ is the angle between the position vector
and the z-axis. As shown in Fig. 7.9, the direction of y is
perpendicular to the plane formed by ω and R where it can
be verified using the right-hand rule. Therefore, by using the
definition of vector product we may write

v = ω × R (7.7)

The total linear acceleration is

a = dv
dt

= d

dt
(ω × R)

From Sect. 1.9.1 (d/dt(A×B) = A× dB/dt + dA/dt ×B)

we have

a = dω

dt
× R + ω × dR

dt

= α × R + ω × v

|α × R| = αR sin θ = rα = at

Furthermore, the direction of α ×R is tangent to the circular
path of the particle at any instant (see Fig. 7.9). Thus the
quantity α × R is just the tangential component of the total
acceleration

at = α × R (7.8)

In addition

|ω × v| = ωv sin 90o = ωv = rω2 = ar

The direction of ω×v is along the direction of r (radial direc-
tion). Hence, the quantity ω × v is the radial component of
the total acceleration

ar = ω × v (7.9)

Equations 7.7–7.9 are the vector relationship between angular
and linear quantities.

Fig.7.9 A rigid body in pure rotational motion about a fixed axis (here
the z-axis)

7.5 Rotational Energy

In Chap. 6 we have seen that the kinetic energy of a discrete

system of particles isK = 1

2

∑
i

miv
2
i wheremi and vi are the

mass and linear velocity of the ith particle respectively (see
Fig. 7.10). From Eq. 7.5, we have

vi = riω

where ri is the perpendicular distance from the particle to
the axis of rotation. Therefore the total kinetic energy of the
system is

KR = 1

2

∑
i

(mir
2
i )ω

2

The quantity between brackets is known as the moment of
inertia of the system

I =
∑
i

mir
2
i

This quantity shows how the mass of the system is distributed
about the axis of rotation. Thus, to find the rotational inertia,
the axis of rotation must be specified. If the rotational axis
changes its position or direction, I changes as well. The SI
unit of the moment of inertia is kgm2. The rotational kinetic
energy can thus be written as

KR = 1

2
Iω2

This quantity is the rotational analogue of the kinetic energy
in translational motion. Note that this energy is not a new kind
of energy; it is just the sumof the translational kinetic energies
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Fig. 7.10 A system of particles rotating about the z-axis

of the particles. For a rigid body which is a continuous system
of particles, the sum is replaced by an integral

I = lim�mi→0

∑
i

mir
2
i =

∫
r2dm

In solving problems ρ, σ , and λ (see Sect. 6.3.4) are often
used to express dm in terms of its position coordinates.

7.6 The Parallel-Axis Theorem

The parallel-axis theorem states that the moment of inertia I
of a system about any axis that is parallel to an axis passing
through the center of mass is

I = Icm + MD2

where Icm is the moment of inertia about an axis passing
through the center of mass, M is the total mass of the sys-
tem, and D is the perpendicular distance between the two
parallel axes.

Proof Consider an axis that is perpendicular to the page and
passing through the center of mass of the object. Figure 7.11
shows a thin slice of the object that lies in the x-y plane.
Because the origin is taken at the center of mass we have

zcm = xcm = ycm = 0

The moment of inertia of the object about the center of mass
axis is

Icm =
∫

r2dm =
∫

(x2 + y2)dm

Fig. 7.11 The Parallel-axis Theorem

where x and y are the coordinates of the mass element dm
from the center of mass (the origin). Now consider another
axis that is parallel to the first axis and that passes through
a point P as shown in Fig. 7.11. Suppose that the x and y
coordinates of P from the center of mass are xp and yp. The
moment of inertia about an axis passing through P is

IP =
∫

[(x − xP)2 + (y − yP)2]dm

where (x− xP) and (y− yP) are coordinates of dm from point
P Expanding this equation gives

IP =
∫

(x2 + y2)dm − 2xP

∫
xdm − 2yP

∫
ydm +

∫
(x2P + y2P)dm

Since xcm = ycm = 0 and since

xcm = 1

M

∫
xdm

and

ycm = 1

M

∫
ydm

it follows that the second and third terms are zero. Thus

IP = Icm + D2
∫

dm

where

D =
√

(x2P + y2P)

is the perpendicular distance between the two parallel axes.
Hence
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Fig.7.12 The rotational inertia of various rigid bodies of uniform den-
sity

IP = Icm + MD2 (Parallel–Axis Theorem)

Special Moment of Inertia Fig. 7.12 gives the rotational
inertia of various rigid bodies of uniform density.

7.7 Angular Momentum of a Rigid Body
Rotating about a Fixed Axis

Consider a rigid body rotating about a fixed axis (the z-axis)
with an angular speed ω as shown in Fig. 7.13. The angular
momentum of the ith particle with respect to the origin is
given by

Li = Ri × pi

Since the angle between Ri and pi is 90, then Li = Ripi. As
seen from Fig. 7.13,Li is not parallel toω.Li can be analyzed
to two components, a component parallel to ω written (Liz)

and a component perpendicular to ω, (Li⊥). The magnitude
of Liz is given by

Fig. 7.13 A rigid body rotating about a fixed axis (the z-axis) with an
angular speed ω

Liz = Li sin θ = Ripi sin θ = Ri(mivi) sin θ

= Rimi(riω) sin θ = mir
2
i ω

where ri is the radius of the circle in which the particle is
moving along and Ri = ri sin θ . Therefore, the total angular
momentum of the rigid body along the z-direction is

Lz =
∑
i

mir
2
i ω =

( ∑
i

mir
2
i

)
ω

Lz = Iω

where I is the moment of inertia of the rigid body about the
rotational axis (z-axis). This equation can also be written in
component form since Lz is parallel to ω, that is,

Lz = Iω (7.10)

Therefore, if a rigid body is rotating about a fixed axis (say
the z-axis), the component of the angular momentum along
that axis is given by Eq. 7.10. Now suppose that the rigid body
is symmetric and homogeneous and that it is rotating about
its symmetrical axis (see Fig. 7.14). For any two particles (1
and 2) opposing each other with an equal angular momenta
L1 and L2, the perpendicular components, L1⊥ and L2⊥, of
the angular momenta cancel each other out since they are in
opposite directions. That leaves the parallel components L1z

and L2z which add up since they have the same direction.
For all particles in the object the total angular momentum is,
therefore, given by

L =
∑
i

Liz = Lz = Iω
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Fig.7.14 Ahomogenous symmetrical rigid body rotating about its sym-
metrical axis

Hence, the total angular momentum of a symmetrical homo-
geneous body in pure rotation about its symmetrical axis is
given by

L = Iω (7.11)

Note that Eq. 7.10 is valid for any rigid object in pure rotation
where it only gives the component of the angular momen-
tum that is parallel to the rotational axis. On the other hand,
Eq. 7.11 is valid only for a symmetrical homogeneous rigid
object rotating about its symmetrical axis, where the angular
momentum in the equation is the total angular momentum
and it is directed along the axis of rotation. The net external
torque acing on the rigid object is equal to the rate of change
of the total angular momentum of the object, i.e.,

	τ ext = dL
dt

In the case of any rigid object symmetrical or not, the net
external torque acting on the object about the axis of rotation
(say the z-axis) is equal to the rate of change of the component
of angular momentum that is along that axis

	τ extz = dLz

dt
= d(Iω)

dt
= Iα

However, if the object is symmetric and homogeneous in pure
rotation about its symmetrical axis we may write

	τ ext = dL
dt

= d(Iω)

dt
= Iα

Example 7.7 A 5 kg wheel of radius of 0.1 m decelerates
from an angular speed of 5 rad/s to rest after going through
an angular displacement of 10 rev If a frictional force causes
the wheel to decelerate, find the torque due to this force.

Solution 7.7 The angular displacement is

�θ = (10 rev)

(
2π rad

1 rev

)
= 62.8 rad

The angular acceleration of the wheel is

α = ω2 − ω2
0

2�θ
= 0 − (5 rad/s)2

2(62.8 rad)
= −0.2 rad/s

The external torque is

τ = Iα = MR2α = (5 kg)(0.1 m)2(−0.2 rad/s2) = −0.01 Nm

Example 7.8 Three masses are connected by massless rods
as in Fig. 7.15. If m = 0.1 kg, find the moment of inertia of
the system and the corresponding kinetic energy if it rotates
with an angular speed of 5 rad/s about: (a) the z-axis; (b) the
y-axis and; (c) the x-axis (a = 0.2 m).

Solution 7.8 (a)

Iz =
∑
i

mir
2
i = 2ma2 + m

2
a2 + ma2 = 7

2
ma2

= 7

2
(0.1 kg)(0.2 m)2 = 0.014 kgm2

KR = 1

2
Izω

2 = 1

2
(0.014 kgm2)(5 rad/s)2 = 0.175 J

(b)

Iy = m

2
a2 + 2ma2 = 5

2
ma2 = 5

2
(0.1 kg)(0.2 m)2 = 0.01 kgm2

Fig. 7.15 Three masses connected by massless rods
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Fig. 7.16 A uniform thin rod of massM and length L

KR = 1

2
Iyω

2 = 1

2
(0.01 kgm2)(5 rad/s)2 = 0.125 J

(c)

Ix = ma2 = (0.1 kg)(0.2 m)2 = 4 × 10−3 kgm2

KR = 1

2
Ixω

2 = 1

2
(4 × 10−3 kgm2)(5 rad/s)2 = 0.05 J

Example 7.9 Fig. 7.16 shows a uniform thin rod of mass M
and length L. Find the moment of inertia of the rod about an
axis that is perpendicular to it and passing through: (a) the
center of mass; (b) at one end; (c) at a distance of L/6 from
one end.

Solution 7.9 (a) The mass dm of an element in the rod is

dm = λdx =
(
M

L

)
dx

Icm = Iy =
∫

r2dm =
∫ L

2

x=− L
2

x2
(
M

L

)
dx = M

L

(
x3

3

)∣∣∣∣
L/2

−L/2
= 1

12
ML2

(b)

Iy′ = Icm + MD2 = 1

12
ML2 + M

(
L

2

)2

= 1

3
ML2

(c)

Iy′′ = Icm + MD2 = 1

12
ML2 + M

(
L

2
− L

6

)2

= 7

36
ML2

Example 7.10 Fig. 7.17 shows a uniform thin plate of mass
M and surface density σ . Find the moment of inertia of the
plate about an axis passing through its center of mass if its
length is b and its width is a (the z-axis).

Fig. 7.17 A uniform thin plate of massM and surface density σ

Solution 7.10 A mass element dm has an area dxdy and is at
a distance r = √

x2 + y2 from the axis of rotation. Therefore,
we have

Icm =
∫

r2dm =
∫

r2σdA =
∫ a/2

y=−a/2

∫ b/2

y=−b/2
(x2 + y2)

(
M

ab

)
dxdy

= M

ab

∫ a/2

y=−a/2

(
x3

3
+ xy2

)
|b/2x=−b/2dy = M

ab

∫ a/2

y=−a/2

(
b3

12
+ by2

)
dy

= M

ab

(
b3y

12
+ y3b

3

)∣∣∣∣
a/2

x=−a/2
= M

ab

[
ab3

12
+ ab3

12

]
= 1

12
M

(
a2 + b2

)

Example 7.11 Find the moment of inertia of a uniform solid
cylinder of radius R, length L and mass M about its axis of
symmetry.

Solution 7.11 Method 1: Using a single integration by divid-
ing the cylinder into thin cylindrical shells each of radius r,
length L and thickness dr as in Fig. 7.18, then each volume
element is given by

dV = 2πrdrL

and
dm = ρdV = ρ(2πrdrL)

I =
∫

r2dm =
∫ R

0
r2(ρ2πrLdr) = 2πρL

∫ R

0
r3dr = πρL

2
R4

Since

ρ = M

πR2L

then

I = 1

2
MR2

Method 2:Using double integration: dividing the cylinder into
thin rods each of mass
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Fig.7.18 Calculating the moment of inertia of a uniform solid cylinder
with the volume element defined in different ways

dm = ρdV = ρLrdrdθ

I =
∫

r2dm =
∫ 2π

0

∫ R

r=0
r3ρLdrdθ = ρ

L

4
R4

∫ 2π

θ=0
dθ = πρLR4

2

Since

ρ = M

πR2L

We have

I = 1

2
MR2

Method 3: Using triple integration Dividing the cylinder into
small cubes each of mass given by

dm = ρrdrdθdz

I =
∫

r2dm =
∫ 2π

θ=0

∫ R

r=0

∫ L

z=0
ρr3drdθdz = ρL

R4

4

∫ 2π

θ=0
dθ = πρLR4

2

Fig. 7.19 Three rods of length L and massM are connected together

Since

ρ = M

πR2L

Therefore,

I = 1

2
MR2

Example 7.12 Three rods of length L and mass M are con-
nected together as in Fig. 7.19. Determine the moment of
inertia of the system about an axis passing through O and
perpendicular to the page (the rods lie in the same plane).

Solution 7.12 The moment of inertia of a thin rod about an
axis that is perpendicular to it and passing through one end is
1/3ML2. The total moment of inertia at O is the sum of the
moment of inertias of the rods, i.e.,

I = I1 + I2 + I3 = 3

(
1

3
ML2

)
= ML2

Example 7.13 Find the moment of inertia of a spherical shell
of radius R and mass M about an axis passing through its
center of mass.

Solution 7.13 Let us divide the spherical shell into thin rings
each of area (see Fig. 7.20) given by

dA = 2πR sin θRdθ = 2πR2 sin θdθ

I =
∫

r2dm =
∫

R2 sin2 θσ2πR2 sin θdθ

since σ = M /4πR2, we have

I = M

2
R2

∫ π

θ=0
sin3 θdθ = M

2
R2

∫ π

θ=0
(1 − cos2 θ) sin θdθ

= M

2
R2

[
− cos θ + cos3 θ

3

]π

θ=0
= 2

3
MR2
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Fig. 7.20 A spherical shell divided into thin rings

7.8 Conservation of Angular Momentum of
a Rigid Body Rotating About a Fixed Axis

In Chap.5 we have seen that if the net external torque acting
on a system of particles relative to an origin is zero then the
total angular momentum of the system about that origin is
conserved

Li = Lf = constant (isolated system)

In the case of a rigid object in pure rotational motion, if
the component of the net external torque about the rotational
axis (say the z-axis) is zero then the component of angular
momentum along that axis is conserved, i.e., if

τz = dLz
dt

= 0

then
Iiωi = If ωf

That is, the angular momentum is not necessarily conserved
in all directions. It is conserved in the direction where the net
external torque is equal to zero.

7.9 Work and Rotational Energy

Consider a rigid body rotating about a fixed axis as in
Fig. 7.21. If a force that lies in the x-y plane is applied to
the body at P, then the work done on the body if it rotates
through an angle dθ is

Fig. 7.21 A rigid body rotating about a fixed axis

dW = F · ds = F · ds
dt

dt = F · vdt = F · (ω × r)dt

= (r × F) · ωdt = τ · ωdt

Since τ and ω are parallel, (the force lies in the x-y plane
therefore the total torque is parallel to the z-axis) we have

dW = τωdt = τ
dθ

dt
dt = τdθ

Therefore, the total work done in displacing the body from θ1
to θ2 is

W =
∫ θ2

θ1

τdθ (7.12)

If this torque is constant we have

W = τ(θ2 − θ1) = τ�θ

The Work–Energy Theorem The work–energy theorem
states that the work done by an external force while a rigid
object rotate from θ1 to θ2 is equal to the change in the rota-
tional energy of the object. This follows from Eq. 7.12 and
by using the fact that along the axis of rotation the torque is
given by τz = Iα (see Sect. 7.7), thus

W =
∫ θ2

θ1

τdθ =
∫ θ2

θ1

Iαdθ =
∫ ω2

ω1

Iω
dω

dt
dt =

∫ ω2

ω1

Iωdω = 1

2
Iω2

2 − 1

2
Iω2

1

W = �K = 1

2
Iω2

2 − 1

2
Iω2

1
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Table7.2 AnalogousEquations in linearMotion andRotationalMotion
about a Fixed Axis

Rotational motion Linear motion

τ = Iα F = ma

W = ∫ θ

θ0
τdθ W = ∫ x

x0
Fdx

KR = 1
2 Iω

2 K = 1
2mv

2

P = τω P = Fv

7.10 Power

The instantaneous power delivered to rotate an object about
a fixed axis is found from

P = dW

dt
= τzdθ

dt
= τzωz

Table. 7.2 shows analogous equations in linear motion and
rotational motion about a fixed axis

Example 7.14 A disc of radius R = 0.08 m and mass of 5 kg
is rotating about its central axis with an angular speed of 170
rev/min. Find: (a) the rotational kinetic energy of the disc; (b)
Suppose that the same disc rotate using a motor that delivers
an instantaneous of power 0. 2hp, find in that case the torque
applied to the disc.

Solution 7.14 (a) Since the rotational axis is the axis of sym-
metry of the disc, then the moment of inertia is

I = 1

2
MR2 = 1

2
(5 kg)(0.08 m)2 = 0.016 kgm2

The angular velocity of the disc is

ω =
(
170 rev

min

)(
2π rad

1 rev

)(
1 min

60 s

)
= 17.8 rad/s

K = 1

2
Iω2 = 1

2
(0.016 kgm2)(17.8 rad/s)2 = 2.5 J

(b)

P = (0.2 hp )

(
746 W

1hp

)
= 149.2 W

and

τ = P

ω
= (149.2 W)

(17.8 rad/s)
= 8.4 Nm

Example 7.15 Consider a light rope wrapped around a uni-
form cylindrical shell of mass 30 kg and radius of 0.2 m as
in Fig. 7.22. Suppose that the cylinder is free to rotate about
its central axis and that the rope is pulled from rest with a
constant force of magnitude of 35 N. Assuming that the rope
does not slip, find: (a) the torque applied to the cylinder about

Fig. 7.22 A light rope wrapped around a uniform cylindrical shell

its central axis; (b) the angular acceleration of the cylinder;
(c) the acceleration of a point in the unwinding rope; (d) the
number of revolutions made by the cylinder when it reaches
an angular velocity of 12 rad/s, (e) the work done by the
applied force when the rope is pulled a distance of 1m, (f)
the work done using the work–energy theorem.

Solution 7.15 (a) Because the line of action of both the
weight and the normal forces passes through the central axis
of the cylinder, they produce no torque.Hence, the total torque
acting on the cylinder is

τ = FR = (35 N)(0.2 m) = 7 N/m

(b) The moment of inertia of the cylinder is

I = MR2 = (30 kg)(0.2 m)2 = 1.2 kgm2

and

α = τ

I
= (7 Nm)

(1.2 kgm2)
= 5.8 rad/s2

(c) The acceleration of a point in the unwinding rope is the
same as the acceleration of a point at the rim of the cylinder,
i.e.,

a = Rα = (0.2 m)(5.8 rad/s2) = 1.2 m/s2

(d)
ω2 = ω2

0 + 2αθ

Since ω0 = 0,

θ = (12 rad/s)2

2(5.8 rad/s2)
= 12.4 rad

or
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θ = (12.4 rad)

(
1 rev

2π rad

)
= 2 rev

(e) If the rope has moved a distance of lm, the angular
displacement of the cylinder is

θ = s

R
= (1 m)

(0.2 m)
= 5 rad

the work done is

W =
∫ θ

θ0

τdθ = τ(θ − θ0) = (7 Nm) ((5 rad) − 0) = 35 J

(f) The final angular speed when θ = 5 rad is

ω2 = ω2
0 + 2αθ = 0 + 2(5.8 rad/s2)(5 rad)

That gives ω = 7.6 rad/s. From the work–energy theorem
we have

W = �K = 1

2
Iω2 − 1

2
Iω2

0 = 1

2
(1.2 kgm2)(7.6 rad/s)2 − 0 = 35 J

Example 7.16 A uniform rod of mass M = 0.75kg and
length L = 1m is hinged at one end and is free to rotate
in a vertical plane as in Fig. 7.23. If the rod is released from
rest at an angle θ = 30o to the horizontal, find; (a) the initial
angular acceleration of the rod when it is released; (b) the
initial acceleration of a point at the end of the rod; (c) from
conservation of energy find the angular speed of the rod at its
lowest position (Neglect friction at the pivot).

Solution 7.16 (a) Since the normal force exerted by the pin on
the rod passes through O, then the only force that contributes
to the torque is the force of gravity This force acts at the
center of gravity which is at the center of mass (see Sect. 8.4).
Therefore the net external torque is

Fig. 7.23 A uniform rod free to rotate at one end

τ = MgL

2
cos θ = (0.75 kg)(9.8 m/s2)(1 m)

2
cos 30◦ = 3.2Nm

The moment of inertia about the rotational axis is

I = 1

3
ML2 = (0.75 kg)(1 m)2

3
= 0.25 kgm2

and hence

α = τ

I
= (3.2 Nm)

(0.25 kgm2)
= 12.8 rad/s2

(b) The acceleration of a point at the end of the rod is

at = rα = Lα = (1 m)(12.8 rad/s2) = 12.8 m/s2

(c) When the rod reaches its lowest position, the potential
energy of its center of mass is transformed into rotational
kinetic energy of the rod. From conservation of energy we
have Ki + Ui = Kf + Uf . Taking the potential energy to be
zero at the lowest position, gives

0 + Mg
L

2
(sin θ + 1) = 1

2
Iω2 + 0

That gives

ω =
√
Mg

L

I
(sin θ + 1) =

√
(0.75 kg)(9.8 m/s2)(1m)

(0.25 kgm2)
(sin 30◦ + 1) = 6.64 rad/s

Example 7.17 Find the net torque on the system shown in
Fig. 7.24 where r1 = 5 cm, r2 = 15 cm, F1 = 10 N,F2 =

Fig.7.24 A cylinder with a core section is free to rotate about its center.
Ropes wrapped around the inner and outer sections exert different forces
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Fig. 7.25 A block of mass m is
attached to a light string that is
wrapped around the rim of a
uniform solid disk of radius R and
massM

20 N and F3 = 15 N. Neglect the mass and friction of the
ropes and pulleys.

Solution 7.17 Since all forces lie in the same plane the net
torque is

τnet = τ1 + τ2 + τ3 = (10 N)(0.05 m) + (20 N)(0.05 m)

− (15 N)(0.15 m) = −0.75 Nm

Example 7.18 A block of mass m is attached to a light string
that is wrapped around the rim of a uniform solid disc of
radius R and massM as in Fig. 7.25. Assuming that the string
does not slip and that the disc rotates without friction, find:
(a) the acceleration of the block; (b) the angular acceleration
of the disc, and; (c) the tension in the string when the system
is released from rest.

Solution 7.18 The free-body diagrams of the disc and the
block are shown in Fig. 7.25. Applying Newton’s second law
to the block gives

T − mg = −ma

or

a = mg − T

m
(7.13)

where positive y is chosen to be directed upwards. Applying
Newton’s second law in angular form to the disc gives

τ = RT = Iα

or

α = RT

I

Since the acceleration of the block is equal to the (tangential)
acceleration of a point at the rim of the disc we have

a = Rα = TR2

I
(7.14)

Equating Eqs. 7.13 and 7.14 gives

TR2

I
= mg − T

m

T = g

1/m + R2/I
= g

1/m + 2R2/MR2

that gives

T = mg

1 + 2m/M

Substituting this into Eq. 7.14

a = TR2

I
= 2TR2

MR2

gives

a = g

1 + M /2m

Finally

α = a

R
= g

R(1 + M /2m)

Example 7.19 A homogeneous solid sphere of mass 4.7 kg
and radius of 0.05 m rotate from rest about its central axis
with a constant angular acceleration of 3 rad/s2. Find: (a) the
torque that produces this angular acceleration; (b) the work
done on the sphere after 7 revolutions; (c) the work done after
7 revolutions using the work–energy theorem.

Solution 7.19 (a)

τ = Iα = 2

5
MR2α = 2

5
(4.7 kg)(0.05 m)2(3 rad/s2) = 0.014 N

(b)

θ = (7 rev)

(
2π rad

1 rev

)
= 44 rad

and

W = τ�θ = (0.014 N/m)(44 rad) = 0.6 J
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Fig. 7.26 AtwoodÕs machine

assuming θ0 = 0.
(c) After seven revolutions the angular velocity is

ω2 = ω2
0 + 2α(θ − θ0)

Since ω0 = 0, we have

ω2 = 2αθ = 2(3 rad/s2)(44 rad)

that gives ω = 16.24 rad/s. Hence

W = 1

2
Iω2 − 1

2
Iω2

0 = 1

2
(4.7 × 10−3 kgm2)(16.24 rad/s2)2 − 0 = 0.6 J

Example 7.20 Fig. 7.26 shows Atwood’s machine when the
mass of the pulley is considered. If the system is released
from rest (and assuming that the string does not stretch or
slip) and that the friction of the pulley is negligible, find linear
acceleration of the blocks and the angular acceleration of the
pulley.

Solution 7.20 Fig. 7.26 shows the free-bodydiagram for each
block and for the pulley Applying Newton’s second law gives

T1 − m1g = m1a

T2 − m2g = −m2a

τ = (T1 − T2)R = −Iα

and

n − T1 − T2 − Mg = 0

The torque is negative because the pulley rotates in the clock-
wise direction. Therefore we have

T1 − T2 + g(m2 − m1) = a(m1 + m2)

and

T2 − T1 = Iα

R
= Ia

R2

That gives

a = g(m2 − m1)

(m1 + m2 + I/R2)

If the pulley is a uniform solid disc then

I = 1

2
MR2

and

a = g(m2 − m1)

(m1 + m2 + M /2)

α = g(m2 − m1)

R(m1 + m2 + M /2)

Example 7.21 Auniform solid cylinder of radius of 0.2m and
mass of 10 kg is rotating about its central axis. If the angu-
lar speed of the cylinder is 5 rad/s:(a) calculate the angular
momentum of the cylinder about its central axis; (b) Suppose
the cylinder accelerates at a constant rate of 0.5 rad/s2, find
the angular momentum of the cylinder at t = 3s(c) find the
applied torque; (d) find the work done after 3s.

Solution 7.21 (a) The moment of inertia of the cylinder is

I = 1

2
MR2 = 1

2
(10 kg)(0.2 m)2 = 0.2 kgm2

for homogeneous symmetrical objects the total angular
momentum is

L = Iω = (0.2 kgm2)(5 rad/s) = 1 kgm2/s

(b) At t = 3 s

ω = ω0 + αt = (5 rad/s) + (0.5 rad/s2)(3 s) = 6.5 rad/s

at that instant

L = Iω = (0.2 kgm2)(6.5 rad/s) = 1.3 kgm2/s

(c)
τ = Iα = (0.2 kgm2)(0.5 rad/s2) = 0.1 Nm
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Fig.7.27 A uniform solid sphere
rotating about an axis tangent to
the sphere

(d)

W = 1

2
Iω2 − 1

2
Iω2

0 = 1

2
(0.2 kgm2)((6.5 rad/s)2 − (5 rad/s)2) = 1.72 J

Example 7.22 A uniform solid sphere of radius of 5 cm and
mass of 4.7 kg is rotating about an axis that is tangent to the
sphere (see Fig. 7.27). If its angular acceleration is given by
α = (4t) rad/s2 and if at t = 0, ω0 = 0, find the angular
momentum of the sphere and the applied torque as a function
of time.

Solution 7.22

ω =
∫

αdt =
∫

4tdt = 2t2 + c

since at t = 0, ω0 = 0 then c = 0 and

ω = (2t2) rad/s

The moment of inertia of the sphere is

I = 2

5
MR2 + MR2 = 7

5
MR2 = 7

5
(4.7 kg)(0.05 m)2 = 0.016 kgm2

and

L = Iω = (0.016 kgm2)((2t2) rad/s) = (0.03t2) kgm2/s

τ = dL

dt
= (0.06t)Nm

Example 7.23 In Example 7.8 find the angular momentum in
each case.

Solution 7.23 (a)

L = Izω = (0.014 kgm2)(5 rad/s) = 0.07 kgm2/s

(b)

L = Iyω = (0.01 kgm2)(5 rad/s) = 0.05 kgm2/s

(c)

L = Ixω = (4 × 10−3 kgm2)(5 rad/s) = 0.02 kgm2/s

Example 7.24 A uniform solid sphere of radius of 0.2 m is
rotating about its central axis with an angular speed of 5 rad/s.
If an impulsive force that has an average value of 100 N acts
at the rim of the sphere at the center level for a short time of
2 ms:(a) find the angular impulse of the force; (b) the final
angular speed of the sphere.

Solution 7.24 (a)

�L =
∫ t2

t1
τdt = τave�t = FRt = (100 N)(0.2 m)(2 ×

10−3 s) = 0.04 kgm2/s
(b)

�L = I(ωf − ωi)

(0.04 kgm2/s) = (0.2 kgm2)(ωf − (5 rad/s))

That gives ωf = 5.2 rad/s.

Example 7.25 Aman stands on a platform that is free to rotate
without friction about a vertical axis as in Fig. 7.28. If the sys-
tem is initially rotating with an angular speed of 0.3 rev/s: (a)
find the final angular speed of the system if the man draws the
weights in; (b) find the increase in the kinetic energy of the
system and its source. (Ii = 15 kgm2 And If = 3 kgm2).

Solution 7.25 Because the resultant external torque on the
system is zero, it follows that the total angular momentum of
the system is conserved. That is

Li = Lf

Iiωi = If ωf

hence

ωf = Ii
If

ωi = (15 kgm2/s)

(3 kgm2/s)
(0.3 rev/s) = 1.5 rev/s

(b)

ωi =
(
0.3

rev

s

)(
2π rad

1 rev

)
= 1.9 rad/s
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Fig. 7.28 A man stands on a
platform that is free to rotate
without friction about a vertical
axis

ωf =
(
1.5

rev

s

)(
2π rad

1 rev

)
= 9.4 rad/s

Ki = 1

2
Iiω

2
i = 1

2
(15 kgm2)(1.9 rad/s)2 = 27 J

Kf = 1

2
If ω

2
f = 1

2
(3 kgm2)(9.4 rad/s)2 = 132.5 J

This increase in the kinetic energy is because the man does
work when he moves the dumbbells inwards.

Example 7.26 A uniform disc of moment of inertia of 0.1
kg m2 is rotating without friction with an angular speed of 3
rad/s about an axle passing through its center of mass as in
Fig. 7.29. When another disc of moment of inertia of 0.05 kg
m2 that is initially at rest is dropped on the first, the two will
eventually rotate with the same angular speed due to friction
between them. Determine (a) the final angular speed; (b) the
change in the kinetic energy of the system.

Solution 7.26 (a) Since the net external torque acting on the
system is zero, it follows that the total angular momentum of
the system is conserved, i.e.,

Li = Lf

or
I1ω1 = (I1 + I2)ω

hence

Fig.7.29 A uniform disc rotating without friction. Another disc that is
initially at rest is dropped on the first, the two will eventually rotate with
the same angular speed due to friction between them

ω = I1ω1

(I1 + I2)
= (0.1 kgm2)(3 rad/s)

(0.15 kgm2)
= 2 rad/s

(b)

Ki = 1

2
I1ω

2
1 = 1

2
(0.1 kgm2)(3 rad/s)2 = 0.45 J

Kf = 1

2
(I1 + I2)ω

2 = 1

2
(0.15 kgm2)(2 rad/s)2 = 0.3 J

This decrease in kinetic energy is due to the internal noncon-
servative (frictional) force that acts within the system.

Problems

1. A wheel is initially rotating at 60 rad/s in the clockwise
direction. If a counterclockwise torque acts on the wheel
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producing a counterclockwise angular acceleration α =
2t rad/s2, find the time required for the wheel to reverse
its direction of motion.

2. If the angular position of a point on a rotating wheel is
given by θ = 2t + 5t2 rad, find the angular speed and
angular acceleration of the point at t = 2 s.

3. A wheel of radius of 0.5 m rotates from rest at a constant
angular acceleration of 2.5 rad/s2. At t = 2 s Find (a)
the angular speed of the wheel (b) the angle in radians
through which the wheel rotates (c) the tangential and
radial acceleration of a point at the rim of the wheel.

4. Find the angular speed in radians per second of the earth
about (a) its axis (b) the sun.

5. An L-shaped bar rotates counterclockwise with an angu-
lar acceleration of ω (see Fig. 7.30). Find (in vector form)
the linear velocity and acceleration of the point P on the
bar.

6. Four masses are connected by light rigid rods as in
Fig. 7.31. Calculate the moment of inertia of the system
about (a) the x-axis (b) the y-axis (c) the z-axis.

7. Find the moment of inertia of a uniform solid sphere of
radius R and mass M about an axis passing through its
center of mass.

Fig. 7.30 An L-shaped bar rotating counterclockwise

Fig. 7.31 Four masses connected by light rigid rods

Fig. 7.32 An elliptical quadrant

Fig. 7.33 A uniform rod of
length L and massM is pivoted at
O. A projectile of mass m moving
at velocity v collides with the rod
and sticks to it

8. Find the moment of inertia of an elliptical quadrant about
the y-axis (see Fig. 7.32).

9. A 5 kg uniform solid cylinder of radius 0.2 m rotate
about its center of mass axis with an angular speed of
10 rev/min. Find (a) its rotational kinetic energy (b) its
angular momentum.

10. A wheel of mass of 20 kg and radius of 0.75 m is initially
rotating at 120 rev/min. If its angular speed is increased to
300 rev/min in 20 s, find (a) the work done on the wheel
(b) the average power delivered to the wheel.

11. A wheel of mass 10 kg and radius 0.4 m accelerates uni-
formly from rest to an angular speed of 800 rev/min in 20
s. Find (a) the torque applied to the wheel (b) the work
done on the wheel (c) the work done using the work–
energy theorem.

12. A uniform rod of length L and mass M is pivoted at O
(see Fig. 7.33). If a projectile of massmmoving at veloc-
ity v collide with the rod and stick to it, find the angular
momentum of the system immediately before and imme-
diately after the collision.

13. A disc of radius 2.2 m and mass of 120 kg rotate about
a frictionless vertical axle that passes through its center.
A man of mass 65 kg walks slowly from the rim of the
disc towards the center. Find the angular speed of the disc
when the man is at a distance of 0.7 m from the center
if its angular speed when the man starts walking is 1.6
rad/s.
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