
2Kinematics

2.1 Introduction

Mechanics is the science that studies the motion of objects
and can be divided into the following:

1. Kinematics: Describes how objects move in terms of space
and time.

2. Dynamics: Describes the cause of the object’s motion.
3. Statics: Deals with the conditions under which an object

subjected to various forces is in equilibrium.

This chapter is considered with kinematics which answers
manyquestions such as:How long it takes for an apple to reach
the ground when it falls from a tree? What is the maximum
height reached by a baseball when thrown into air? What is
the distance it takes an airplane to take off?

In physics, there are three types of motion: translational,
rotational, and vibrational. A block sliding on a surface is in
translational motion, a (Merry-go-Round) is an example of
rotational motion, and a mass–spring system when stretched
and released is in vibrational motion. From here until Chap. 7,
the object studied will be treated as a particle (i.e., a point
mass with no size). This assumption is possible only if the
object moves in translational motion without rotating and
by neglecting any internal motions that might exist in the
object.

That is, an object can be treated as a particle only if all of
its parts move in exactly the same way.

For example, if aman jumps into a poolwithout rotating by
doing a somersault (freezing his body), he can be treated as a
particle since all particles in his body will move in exactly the
same way. Another example of an object that can be treated
as a particle is the Earth in its motion about the Sun. Since the
dimensions of the Earth are small compared to the dimensions
of its path, it can be considered as a particle. The motion of
an object is described either by equations or by graphs. Both
ways provide information about the motion; however, equa-

tions provide precise information while graphs give greater
insight about the motion.

2.2 Displacement,Velocity, and Acceleration

This section will discuss the concepts of displacement, veloc-
ity, and acceleration in one dimension. These concepts are
essential in analyzing the motion of an object.

2.2.1 Displacement

Consider a car that is treated as a particle moving along the
straight-line path shown in Fig. 2.1. The x-axis of a coordinate
system is used to describe the position of the car with respect
to the origin O, where the points P and Q correspond to the
positions xi at ti and x f at t f , respectively. The position–time
graph of this motion is shown in Fig. 2.2. The displacement
of the truck is a vector quantity defined as the change in its
position during the time interval from ti to t f and is given by

�x = x f − xi

Hence displacement is a quantity that depends only on the
initial and final positions of the object. The direction of the
displacement in one dimension is specified by a plus or minus
sign. It is positive if the particle is moving in the positive x
direction and negative if the particle is moving in the negative
x direction. In two or three dimensions, the displacement is
represented by a vector. The SI unit of the displacement is the
meter (m).

2.2.2 Average Speed

The average speed of an object is a scalar quantity defined as
the total distance traveled divided by the total time:
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Fig. 2.1 A car that is treated as a
particle moving along the
straight-line path

Fig. 2.2 The position time graph of the carõs motion

Average speed = Total distance traveled

Total time

The SI unit of the average speed is meter per second (m/s)
.

2.2.3 Velocity

The average velocity v of an object is a vector quantity defined
in termsof displacement rather than the total distance traveled:

v = �x

�t

v is positive if themotion is in the positive x-direction and neg-
ative if it is in the negative x-direction. On the position–time
graph in Fig. 2.2, v is the slope of the straight line connecting
the points P and Q. The average velocity helps in describing
the overall motion of the particle in a certain time interval. To
describe the motion in more detail, the instantaneous velocity
is defined. This velocity corresponds to the velocity of a parti-
cle at a particular time. That involves allowing�t to approach
zero:

v = lim�t→∞
�x

�t
= dx

dt

Geometrically, the instantaneous velocity of a particle at
a particular time on the position–time curve is the slope (the
tangent) to the position–time curve at that point or instance
(see Fig. 2.3). The SI unit of the velocity is m/s.

Fig. 2.3 Geometrically, the instantaneous velocity of a particle at a
particular time on the position-time curve is the slope (the tangent) to
the position-time curve at that point or instance

2.2.4 Speed

The speed of the particle is defined as the magnitude of its
velocity. Note that speed and average speed are different since
speed is defined in terms of displacement, whereas average
speed is defined in terms of the total distance traveled.

2.2.5 Acceleration

If the particle’s velocity changes with time, it is said to be
accelerating. The average acceleration a of the particle is
defined as the ratio of the change of its velocity �v to the
time interval �t :

a = �v

�t

The SI unit of acceleration is m/s2. The instantaneous
acceleration is defined as

a = lim�t→0

�v

�t
= dv

dt

The average acceleration is the slope of the line joining the
points P andQon the velocity–time graph,whereas the instan-
taneous acceleration is the slope of the curve at a particular
point (see Fig. 2.4). Figure2.5 shows the position, velocity,
and acceleration for a particle simultaneously.

Example 2.1 A car travels along the path shown in Fig. 2.6,
where it is located at xi = 3km at ti = 0, and at x f = 19km
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Fig. 2.4 The average acceleration is the slope of the line joining the
points P and Q on the velocity-time graph, whereas the instantaneous
acceleration is the slope of the curve at a particular point

Fig. 2.5 This figure shows the position, velocity and acceleration as a
function of time of a particle moving in one direction. The particle starts
from rest, accelerates to a certain speed, is maintained at that speed for
some time, then it decelerates back to rest

Fig.2.6 Acarmoving along the curved pathwhere it is located at xi = 3
km at ti = 0, and at x f = 19 km at t f = 0.25 hr

at t f = 0.25h. Find the displacement, average velocity, and
average speed of the car during this time interval if the total
distance traveled is 20km.

Solution 2.1 The displacement of the car is

�x = x f − xi = (19 km) − (3 km) = 16 km

Its average velocity is

v = �x

�t
= x f − xi

t f − ti
= (16 km)

(0.25 h)
= 64 m/s

Average speed = Total distance traveled

Total time

= (2.0 km)

(025 h)
= 80 km/h

Example 2.2 A particle moves along the x-axis according to
the expression x = 2t2.The plot of this equation is shown
in Fig. 2.7. Find : (a) the displacement and average velocity
of the particle during the time interval between t = 1 s and
t = 3 s, ·(b) the instantaneous velocity of the particle as a
function of time and at t = 1 s and t = 3 s.

Solution 2.2 (a)

xi = 2t2i = 2(1)2 = 2 m

x f = 2t2f = 2(3)2 = 18 m

The displacement of the particle is

�x = x f − xi = (18m) − (2 m) = 16 m

The average velocity is

Fig. 2.7 A particle moves along the x-axis according to the expression
x = 2t2
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v = �x

�t
= (16m)

(2 s)
= 8 m/s

(b) The instantaneous velocity is given by

v = dx

dt
= (4t) m/s

at t = 1 s, v = 2 m/s, and at t = 3 s, v = 12 m/s.

Example 2.3 A particle is moving along the x-axis. The
position–time graph of its motion is shown in Fig. 2.8. Find:
(a) the average velocity between a and b, ·(b) the instanta-
neous velocity at the points a, c and d.

Solution 2.3 (a)

vab = �x

�t
= (2 m) − (−1.8 m)

(3 s) − (1 s)
= 1.9 m/s

(b)

va = �x

�t
= 0 − (−2.5 m)

(3 s) − 0
= 0.83 m/s

vc = 0

vd = �x

�t
= 0 − (3 m)

(8.5 s) − (4 s)
= −0.67 m/s

Fig.2.8 The position-time graph of a particle moving along the x-axis

Example 2.4 The acceleration of an object is given by a =
(1−4t) m/s2. If the object has an initial velocity of 3 m/s and
an initial displacement of 2 m, determine (a) its velocity and
displacement at any time; (b) the displacement of the object
when it reaches its maximum speed.

Fig.2.9 Aparticle moving from point P to point Q along a path or curve
C during a time interval �t = t f − tI

Solution 2.4 (a)

v =
∫

adt =
∫

(1 − 4t)dt = t − 2t2 + c1

At t = 0, v = 3 m/s and therefore c1 = 3 m/s. Thus

v = (t − 2t2 + 3) m/s

x =
∫

vdt =
∫

(t − 2t2 + 3)dt = 0.5t2 − 0.66t3 + 3t + c2

At t = 0, x = 2 m and c2 = 2 m. Therefore

x = (0.5t2 − 0.66t3 + 3t + 2) m (2.1)

(b) When the object reaches its maximum speed
dv

dt
= 0 and

hence 1 − 4t = 0, that gives t = 0.25 s. Substituting into
Eq.2.1 gives

x = 1/2(0.25 s)2 − 2/3(0.25 s)3 + 3(0.25 s) + 2 = 2.8 m

2.3 Motion in Three Dimensions

Consider the particle moving from point P to point Q along a
path or curve C during a time interval�t = t f −ti as shown in
Fig. 2.9. To locate the particle at any point the position vector
r = x i+ yj+ zk is used. ri and rf corresponds to the position
vectors of the particle at ti and t f respectively. A position
vector should be drawn from a reference point (usually the
origin of the coordinate system).

The displacement vector is then given by

�r = r f − ri

The average velocity is
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v = �r
�t

= r f − ri
t f − ti

The instantaneous velocity at a particular time is defined as

v = lim�t→0

�r
�t

= dr
dt

As �t approaches zero, �r becomes tangent to the path and
it is replaced by dr. The direction of y is in the direction of dr,
hence, y is always tangent to the path at any point. In terms
of components y is given by

v = dx

dt
i + dy

dt
j + dz

dt
k = vx i + vyj + vzk

The magnitude of the instantaneous velocity is

|v| = |dr
dt

| = v =
√(

dx

dt

)2

+
(
dy

dt

)2

+
(
dz

dt

)2

= ds

dt

where ds is the infinitesimal arc length along the path and
comes from the fact that as �t approaches zero, the dis-
tance traveled by the particle along the path becomes equal to
the vector displacement |�r|. Figure2.10 shows the instan-
taneous velocities along the path. The average acceleration
is

a = �v
�t

= v f − vi
t f − ti

The direction of a is of the same direction as �v. The instan-
taneous acceleration is then

a = lim�t→0

�v
�t

= dv
dt

In terms of components

a = dvx
dt

i + dvy
dt

j + dvz
dt

k = ax i + ayj + azk

Fig. 2.10 The instantaneous velocity vectors along the path

Another way to describe motion in three dimensions is by
using spherical or cylindrical coordinates. In this book, we
will only use rectangular coordinates for three-dimensional
motion.

2.3.1 Normal andTangential Components of
Acceleration

The acceleration describes the change in both the magni-
tude and direction of the velocity. That is, the acceleration
is not necessarily produced due to the change in the magni-
tude of the velocity only. Sometimes, it is produced due to the
change in the direction of the velocity even if its magnitude
is unchanged, and sometimes due to the change in both the
magnitude and direction. Furthermore, the direction of a is
not necessarily in the direction of v. If v is changed in mag-
nitude only (motion along a straight line) then a is parallel to
v if v is increasing, and antiparallel if v is decreasing. If v is
changed in direction only (motion along a curved path with
constant speed), then a is always perpendicular to v at any
point (see Fig. 2.11). Finally, if v is changed in both magni-
tude and direction then a will be directed at some angle to v
as in Fig. 2.12.

In this case, the acceleration can be resolved into paral-
lel and perpendicular components. The parallel component
corresponds to the change in the magnitude of v, while the
perpendicular component corresponds to the change in the
direction of v. These components can be viewed to be directed
along a rectangular coordinate system thatmoveswith the par-
ticle (as it moves in space), where the particle is located at the
origin of this coordinate system. The parallel (or tangential)
component of the acceleration is always tangent to the path
while the perpendicular (or normal) component is normal to
the path at each point as shown in Fig. 2.13.

Figure2.14 shows the direction of the acceleration of a car
moving down a ramp under the influence of gravity.

In terms of unit vectors, let T be the unit vector along the
tangent axis, N is the unit vector along the normal axis (also
called the principal unit normal vector) and B a third unit
vector called the binormal vector defined by B = T × N.
These unit vectors form a frame called the TNB frame, where
it moves with the particle (see Fig. 2.15). Since v is always
tangent to the path we may write

T = v
|v| = dr/dt

|dr/dt | = dr/dt
ds/dt

BecauseT is a unit vectorwe haveT·T = 1, differentiating
this with respect to s gives

T · dT
ds

+ dT
ds

· T = 2T · dT
ds

= 0

or
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Fig. 2.11 If v is changed in
magnitude only (motion along a
straight line) then a is parallel to
v if v is increasing, and
antiparallel if v is decreasing. If v
is changed in direction only
(motion along a curved path with
constant speed) then a is always
perpendicular to v at any point

Fig. 2.12 If v is changed in both magnitude and direction then a will
be directed at some angle to v

Fig. 2.13 The parallel (or tangential) component of the acceleration is
always tangent to the path while the perpendicular (or normal) compo-
nent is normal to the path at each point

T · dT
ds

= 0

Hence, T is perpendicular to dT/ds. Since N is also perpen-
dicular to T, then we have

N = dT/ds

|dT/ds| = 1

k

dT
ds

k is called the curvature of C at a certain point and it has
the value k = |dT/ds|. The quantity R = 1/k is the radius
of curvature at that point. Thus, N = R(dT/ds) . The total

Fig. 2.14 At A the acceleration of a car is in the same direction of
the velocity since the latter changes only in magnitude. As it moves its
velocity is changed in both magnitude and direction. Therefore at B the
direction of the acceleration is at some angle to the velocity. At C the
speed reaches a maximum and therefore the instantaneous change of
speed is zero at this point and the acceleration has only a perpendicular
component. As the car moves up its velocity decreases and changes in
direction also, thus the acceleration has both parallel and perpendicular
components. Finally at E, the acceleration is in the opposite direction of
the velocity since the velocity is decreasing but its direction is the same

Fig. 2.15 The TNB frame moves with the particle

acceleration of the particle in termsof the unit tangentTvector
and the principal unit normal vector N can be written as

a = dv
dt

= d

dt
(vT) = dv

dt
T + v

dT
dt

(2.2)

Furthermore,

dT
dt

= dT
ds

ds

dt
= N

R

ds

dt
= vN

R
(2.3)

Substituting Eq.2.2 into Eq.2.3 gives
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a = dv

dt
T + v2

R
N

Therefore, an = v2/R and at = dv/dt . Note that unlike
d|v|/dt, |dv/dt | corresponds to the change in the magnitude
of the velocity or in its direction or in both (as it represents the
magnitude of the total acceleration vector), whereas d|v|/dt
corresponds to the change in the magnitude only.

Example 2.5 A particle is moving in space according to the
expression

r = (5 cos t i + 5 sin tj + 7tk) m

Find the radius of curvature at any point on the space curve.

Solution 2.5

dr
dt

= (−5 sin t i + 5 cos tj + 7k) m/s

ds

dt
=

∣∣∣∣drdt
∣∣∣∣ =

√
(−5 sin t)2 + (5 cos t)2 + (7)2 = 10 m/s

Hence

T = dr/dt
ds/dt

= (−5 sin t i + 5 cos tj + 7k)

10
= −0.5 sin t i+ 0.5 cos tj+ 0.7k

The radius of curvature is

R = 1

k
= 1

|dT/ds |
dT
ds

= dT
dt

dt

ds
= dT/dt

ds/dt
= −0.5 cos t i − 0.5 sin tj

10
=

−0.05 cos t i − 0.05 sin tj

∣∣∣∣dTds
∣∣∣∣ =

√
(−005 cos t)2 + (−005 sin t)2 = 0.07

R = 1

0.07
= 14.3 m

Example 2.6 A car moves with constant tangential accelera-
tion down a ramp as shown in Fig. 2.16. If it starts from rest
at A and reaches B after 4 s with a speed of 10 m/s, find the
radius of curvature at B if the total acceleration of the car at
that point is 3.2 m/s2.

Solution 2.6 Since the tangential acceleration of the car is
constant, it can be found from

at = vB − vA
t

= (10 m/s) − 0

4 s
= 2.5 m/s2

Fig.2.16 A car moving with a constant tangential acceleration down a
ramp

Since the total acceleration of the car at B is 2 m/s2 then the
normal acceleration is

a2n = a2 − a2t = (3.2 m/s2)2 − (2.5 m/s2)2 = 4 (m/s2)2

an = 2 m/s2

The radius of curvature is

R = v2

an
= (10 m/s)2

(2 m/s2)
= 50 m

2.4 Some Applications

2.4.1 One-Dimensional Motion with Constant
Acceleration

An acceleration that does not change with time is said to be a
constant or uniform acceleration. In that case, the average and
instantaneous accelerations are equal. This type of motion is
more easily analyzed than when the acceleration is varied.
Since the motion is in one dimension, it follows that the y and
z components are zero. That is,

r = x i

�r = (x f − xi )i

Hence, as we’ve mentioned earlier, the direction of the
displacement can be specified with a plus or minus sign, as
well as the directions of the velocity and acceleration. Let us
assume that ti = 0, t f = t, vx f = v, vxi = v0, xi = x0 and
x f = x . Since the acceleration is constant, the velocity will
vary linearly with time, and thus the average velocity can be
expressed as

v = v0 + v

2

a = − = v f − vi
t f − ti

= v − v0
t

v = v0 + at (2.4)
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v = �x

�t
= (v + v0)

2

x − x0 = 1

2
(v + v0)t (2.5)

Furthermore,

x − x0 = 1

2
(v + v0)t = 1

2
(v0 + v0 + at)t

x − x0 = v0t + 1

2
at2 (2.6)

Finally,

x − x0 = 1

2
(v + v0)t = 1

2
(v + v0)

(
v − v0

a

)

v2 = v20 + 2a(x − x0) (2.7)

Equations2.4, 2.5, 2.6, and 2.7 are called the kinematic equa-
tions for motion in a straight line under constant acceleration.
The motion graphs for an object moving with constant accel-
eration in the positive x-direction are shown in Fig. 2.17.

Fig.2.17 The motion graphs for an object moving with constant accel-
eration in the positive x-direction

Example 2.7 A train accelerates uniformly from rest and
travels a distance of 200m in the first 8 s. Determine: (a) the
acceleration of the train; (b) the time it takes the train to reach
a velocity of 70m/s,(c) the distance traveled during that time;
(d) the velocity of the train 5 s later from the time calculated
in (b).

Solution 2.7 (a)

x − x0 = v0t − 1

2
at2

Since v0 = 0, we have

a = 2(x − x0)

t2
= 2(200 m)

(8 s)2
= 6.25 m/s2

(b)
v = v0 + at

v0 = 0 and therefore

t = v

a
= (70 m/s)

(6.25 m/s2)
= 11.2 s

(c)

x − x0 = 1

2
at2 = 1

2
(6.25)(11.2)2 = 392 m

(d)

v = v0 + at = (70 m/s) + (6.25 m/s2)(5 s) = 101.25 m/s

Example 2.8 An airplane accelerates uniformly from rest at
a rate of 3 m/s2 before taking off. If it is to take off at a speed
of 100m/s : (a) how much time is required for it to take off;
(b) what distance will it have traveled before taking off?

Solution 2.8 (a)
v = v0 + at

We have v0 = 0, this gives

t = v

a
= (100 m/s)

(3 m/s2)
= 33.3 s

(b)

x = 1

2
at2 = 1

2
(3 m/s2)(33.3 s)2 = 1.7 × 103 m

Example 2.9 Acarmoving at a constant velocity of 140km/h
passed apolice carmoving at a constant velocity of 80km/h.5s
after the car had passed the police car, the police vehicle
begins to accelerate toward the car at a constant rate of
1.4 × 104 km/h2 (a) How much time will it take the police
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car to catch the other car? (b) What is the distance traveled by
both during that time? (c) How much time has passed from
where the car passed the police car to where it was caught?

Solution 2.9 Let’s assume that x = 0 at where the car passed
the police car and that t = 0 at the instant the police car begins
to accelerate. The velocity of the car is equal to 38.9m/s,
and the initial velocity and acceleration of the police car are
22.2m/s and 1.1m/s2, respectively The police will catch the
car when both their displacements from x = 0 are equal. (a)

From the expression x = x0 + v0t + 1

2
at2, the displacement

of the car at any time is

xc = x0c + v0ct = (194.5 m) + (38.9 m/s)t

The displacement of the police car at any time is

xp = x0p +v0pt + 1

2
apt

2 = (111 m)+ (22.2 m/s)t + 1

2
(1.1 m/s2)t2

The police will catch the car when xc = xp, and therefore if
(194.5 m) + (38.9 m/s)t = (111 m) + (22.2 m/s)t +

1

2
(1.1 m/s2)t2 or

t2 − 30.4t − 151.8 = 0

Thus

t = (30.4) ± √
(304)2 + (4)(1518)

2

That gives t = 34.8 s.
(b)

xp = xc = (111 m) + (22.2 m/s)(34.8 s) + 1

2
(1.1 m/s2)

(34.8 s)2 = 1.55 × 103 m
(c)

t = (5 s) + (34.8 s) = 39.8 s

2.4.2 Free-Falling Objects

Galileo Galilei (1564–1642) was an Italian scientist, who
studied and experimented the acceleration of falling objects.
By dropping various objects from the Leaning Tower of Pisa
(or by releasing objects from inclined planes according to
another story), Galileo discovered that when air resistance is
neglected then all objects would fall with the same constant
acceleration regardless of theirmass or size. This acceleration,
denoted by g, is known as the free-fall acceleration since air
resistance is neglected and the object is assumed to be mov-
ing freely under gravity alone. The direction of the vector g is
downwards toward the earth’s center. However, g varies with

altitude as well as other factors which will be discussed in
Chap.9.

In solving problems involving objects falling near the sur-
face of the earth, g can be assumed to be constant with a value
of 9.8m/s2 and air resistance can be neglected. A free-falling
motion is a motion along a straight line (for example along
the y-axis) where objects may move upwards or downwards.
The kinematics equations of the free-falling motion with con-
stant acceleration can be found from Eqs. (2.4), (2.5), (2.6),
and (2.7) by simply replacing x with y and a with g. If the
positive direction of y is chosen to be upwards, then the accel-
eration is negative (downwards) and is given by (a = −g) .
These substitutions give

v = v0 − gt

y − y0 = 1

2
(v + v0)t

y − y0 = v0t − 1

2
gt2

v2 = v20 − 2g(y − y0)

The displacement and velocity graphs are shown in Fig. 2.18.
Note that it does not matter whether the object is falling or
moving upward, it will experience the same acceleration g
which is directed downwards. Figure2.19 shows the impor-
tant features of a free-falling object that is dropped from rest.

Fig.2.18 The displacement and velocity graph for a free-falling object
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Fig. 2.19 The important features
of a free falling object that is
dropped from rest

Example 2.10 A ball is thrown directly upwards with an ini-
tial velocity of 15m/s. On its way down, it was caught at
a distance of lm below the point from where it was thrown.
Determine (a) the maximum height reached by the ball; (b)
the time it takes the ball to reach that height; (c) the velocity
of the ball when it is caught; (d) the total time elapsed from
where the ball was thrown to where it was caught.

Solution 2.10 (a) First we take y = 0 at the position where
the ball is thrown and positive y to be upwards. At the maxi-
mum height the velocity of the ball is zero,

v2 = v20 − 2g(y − y0)

0 = (15 m/s)2 − 2(9.8 m/s2)hmax

hmax = 11.5 m

(b) Using the expression v = v0 − gt we have

0 = (15 m/s) − (9.8 m/s2)t

t = 1.5 s

(c) When the ball is caught its position is y = −1 m,

v2 = v20 − 2g(y − y0)

taking the initial position of the ball at y = 0, we get

v2 = (15 m/s)2 − 2(9.8 m/s2)((−1 m) − 0)

and
v = −15.6 m/s

or if we take the initial position at y = 11.5 m we have

v2 = 0 − 2(9.8 m/s2)((−l m) − (11.5 m))

and
v = −15.6 m/s.

(d) v = v0 − gt , substituting for v and v0 we have

(−15.6 m/s) = (15 m/s) − (9.8 m/s2)t

t = 3.1 s

Example 2.11 A tennis ball is dropped from a building that is
30 m high. Find (a) its position and velocity 2 s later; (b) the
total time it takes the ball to fall to the ground; (c) its velocity
just before it hits the ground.

Solution 2.11 (a) Taking y0 = 0 and v0 = 0 at t = 0 we
have

y − y0 = v0t − 1

2
gt2

at t = 2 s

y − 0 = 0 − 1

2
(9.8 m/s2)(2s)2 = −19.6 m

v = v0 − gt = 0 − (9.8 m/s2)(2 s) = −19.6 m/s

(b)

y − y0 = v0t − 1

2
gt2

(−30 m) − 0 = 0 − 1

2
(9.8 m/s2)t2

t = 2.5 s

(c)
v = v0 − gt = 0 − (9.8 m/s2)(2.5 s)

v = −24.5 m/s

Example 2.12 A ball is thrown vertically downwards from a
100m high building with an initial speed of 1m/s.3s later a
second ball is thrown.What initial speed must the second ball
have so that the two balls hit the ground at the same time?
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Solution 2.12 The time it takes the first ball to hit the ground
is found from

y − y0 = v0t − 1

2
gt2

0 − (100 m) = (−1 m/s)t1 − 1

2
(9.8 m/s2)t21

t1 = 6.4 s

The second ball must fall the same distance during a time of

t1 − (3 s) = (6.4 s) − (3 s) = 3.4 s

and therefore

y − y0 = v0t − 1

2
gt2

0 − (100m) = v0(3.4 s) − 1

2
(9.8 m/s2)(3.4 s)2

v0 = −12.6 m/s

2.4.3 Motion in Two Dimensions with Constant
Acceleration

The position vector can be written as

r = x i + yj

v = vx i + vyj

a = ax i + ayj

Because a is a constant both ax and ay are constants. There-
fore, the kinematic in Sect. 2.4.1 applies in each direction:

vx = v0x + ax t (2.8)

x = x0 + v0x t + 1

2
ax t

2 (2.9)

vy = v0y + ayt (2.10)

y = y0 + v0yt + 1

2
ayt2 (2.11)

r = x i + yj = (x0 + v0x t + 1

2
ax t

2)i+ (y0 + v0yt + 1

2
ayt

2)j

r = r0 + v0t + 1

2
at2 (2.12)

v = vx i + vyj = (v0x + ax t)i + (v0y + ayt)j

= (v0x i + v0yj) + (ax i + ayj)t

v = v0 + at (2.13)

Example 2.13 If themotionof a particle in a plane is described
by vy = (−8t) m/s and x = (5 − 2t2) m : (a) plot
the y component of the particle as a function of time if at
t = 0, y = 0, ·(b) find the total speed and magnitude of the
acceleration of the particle at t = 2 s.

Solution 2.13 (a)The y-component of position is

y =
∫

vydt =
∫

(−8t)dt = −4t2 + c

since at t = 0, y = 0, then

y = (−4t2) m

The plot of y against t is shown in Fig. 2.20.
(b) The x-components of velocity and acceleration is

vx = dx

dt
= d(5 − 2t2)

dt

vx = (−4t) m/s

Fig. 2.20 The y component of the particle as a function of time
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ax = dvx
dt

= d(−4t)

dt

ax = −4 m/s2

The y-component of acceleration is

ay = dvy
dt

= d(−8t)

dt

or
ay = (−8) m/s2

at t = 2 s, vx = −8 m/s, vy = −16 m/s and the velocity is

v = √
vx + vy =

√
(−8 m/s)2 + (−16 m/s)2 = 17.9 m/s

ax = −4 m/s2

and
ay = (−8) m/s2

Therefore, the acceleration of the particle is constant at any
time and is given by

a = √
ax + ay =

√
(−4 m/s2)2 + (−8 m/s2)2 = 8.9 m/s2

2.4.4 Projectile Motion

Projectilemotion is themotion of an object thrown (projected)
into the air at some angle with respect to the surface of the
earth, such as the motion of a baseball thrown into the air or
an object dropped from a moving airplane. In the simplified
model where air resistance as well as other factors such as
the Earth’s curvature and rotation are neglected, and if the
free-fall acceleration g is assumed constant in magnitude and
direction throughout the motion of the object, then the path
of the projectile is always a parabola that depends on the
magnitude and direction of its initial velocity. Therefore, the
projectile can be considered as a combination of a vertical
motion with a constant acceleration directed downwards and
a horizontalmotionwith zero acceleration (constant velocity).
We can see from Fig. 2.21 that

cos θ0 = v0x/vo

sin θ0 = v0y/vo

At t = 0, we have x0 = y0 = 0 and vi = v0. Because
ay = −g and ax = 0 and by substituting in Eqs. 2.8, 2.9,
2.10, and 2.11 gives

Fig. 2.21 The projectile motion

vx = v0x = v0 cos θ0 = constant (2.14)

vy = vy0 − gt = v0 sin θ0 − gt (2.15)

x = vx0t = (v0 cos θ0)t (2.16)

y = vy0t − 1

2
gt2 = (v0 sin θ0)t − 1

2
gt2 (2.17)

Combining and eliminating t from Eqs. 2.16 and 2.17 we
find that

y = (tan θ0)x −
(

g

2v20 cos
2 θ0

)
x2

(0 < θ0 <
π

2
)

This equation which is of the form y = ax–bx2 (a and b
are constants), is the equation of a parabola. Therefore, when
air resistance is neglected (when using the simplified model
of the system), the trajectory of the projectile is always a
parabola. At any instant, the velocity of the object is tangent
to its trajectory Its magnitude and direction with respect to
the positive x-direction are given by

v =
√
v2x + v2y

and

θ = tan−1 (vy/vx )

respectively The maximum height h of the projectile, as in
Fig. 2.22 , is found at t = t1 by noting that at the peak h, vy =
0. Substituting this in Eq.2.15 gives

v0 sin θ0 = gt1
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Fig. 2.22 The maximum height of a projectile

t1 = v0 sin θ0

g

Substituting t1 into Eq.2.17 we get

ymax = h = (v0 sin θ0)t1 − 1

2
gt21

h = (v0 sin θ0)

(
v0 sin θ0

g

)
− 1

2
g

(
v0 sin θ0

g

)2

h = v20 sin
2 θ0

2g

The maximum range R is at t = 2t1. Substituting t into
Eq.2.16 gives

x = R = (v0 cos θ0)2t1 = (v0 cos θ0)
2v0 sin θ0

g
= 2v20 sin θ0 cos θ0

g

R = v20 sin 2θ0
g

Example 2.14 Abaseball is thrown at angle of 35o to the hor-
izontal with an initial speed of 20m/s. Neglecting air resis-
tance, find: (a) the maximum height reached by the ball; (b)
the time it takes the ball to hit the ground; (c) the range; and
(d) the speed of the ball just before it strikes the ground.

Solution 2.14 (a) The maximum height reached by the ball
is

h = v20 sin
2 θ0

2g
= (20 m/s)2 sin2(35o)

2(9.8 m/s2)
= 6.7 m

(b) The time it takes the ball to hit the ground is

t = 2t1 = 2v0 sin θ0

g
= 2(20 m/s) sin(35o)

(9.8 m/s2)
= 2.34 s

(c) The range is

R = v20 sin 2θ0
g

= (20 m/s)2 sin(70o)

(9.8 m/s2)
= 38.4 m

(d) The x-component of the velocity of the ball just before it
hits the ground is

vx = v0x = v0 cos θ0 = (20 m/s) cos(35o) = 16.4 m/s

The y-component is

vy = v0y −gt = v0 sin θ0−gt = (20 m/s) sin(35o)−(9.8 m/s2)(2.34 s) = −11.5 m/s

Hence, the speed is

v =
√
v2x + v2y =

√
(164 m/s)2 + (−11.5 m/s)2 = 20 m/s

Example 2.15 A boy throws a ball with a constant horizontal
velocity of 1m/s at an altitude of 0.6m. Find the horizontal
distance between the releasing point to the point where the
ball hits the ground.

Solution 2.15 Let the origin of the reference frame be the
releasing point. Since v0y = 0 we have

y = −1

2
gt2

and
x = v0x t

Hence, when the ball reaches the ground, the elapsed time is

t =
√

−2y

g
=

√
−2(0.6 m)

(−9.8 m/s2)
=0.34 s

and
x = (1 m/s)(0.34 s) = 0.34 m

2.4.5 Uniform Circular Motion

A particle moving in a circular path with constant speed is
said to be in uniform circular motion. Themotion of themoon
about earth, and the motion of clothes in a washing machine
are examples of uniform circular motion. In this motion, the
direction of the velocity of the particle is continuously chang-
ing but its magnitude is constant. As we have mentioned in
Sect. 2.3.1, when only the direction of the velocity changes,
the acceleration is then always perpendicular to the velocity
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Fig. 2.23 The directions of y and a change continuously with time but
their magnitudes are constant

at any time. Therefore, we have only the normal component
of the acceleration an = v2/R, and the tangential component
of the acceleration at = dv/dt is zero. In the case of the cir-
cular path the radius of curvature R is constant, denoted by
r , and the normal acceleration is directed along the radius of
the circle

arad = v2

r

The subscript rad is for radial. Thus, this radial or centripetal
acceleration arad is always directed toward the center of
the circle. Therefore, the directions of v and a change con-
tinuously with time but their magnitudes are constant (see
Fig. 2.23). The time required for the particle to complete one
revolution around the circle is called the period of revolution
and is given by

T = 2πr

v

Thus

arad = 4π2r

T 2

Example 2.16 In a fun fair ride, the passengers rotate in a cir-
cle with a constant speed of 3m/s. If the period of revolution
is 1.5 s, find the total acceleration of the passenger.

Solution 2.16 Since the speed of the passenger is constant,
it follows that the passenger’s total acceleration is just the
centripetal acceleration given by

arad = v2

r

The radius of the circular path is

r = vT

2π
= (3 m/s)(1.5 s)

2(3.14)
= 0.7 m

Fig.2.24 The velocity and total acceleration vectors of a particle mov-
ing in a circular path with increasing speed (clockwise) until it reaches
the maximum speed at the bottom, and then slows down as it goes back
up. An example of this motion is in a roller coaster ride in a vertical
circle

arad = v2

r
= (3 m/s)2

(0.7 m)
= 12.86 m/s2

2.4.6 Nonuniform Circular Motion

In nonuniform circular motion, the velocity of the particle
varies in both magnitude and direction. As mentioned in
Sect. 2.3.1, when both the magnitude and direction of the
particle’s velocity change then its acceleration is directed at
some angle to v. Thus, in addition to the normal acceleration
in uniform circular motion that corresponds to the change in
the direction of v, there is a tangential component that cor-
responds to the change in the magnitude of v. Furthermore
arad is not constant since v changes with time. Therefore, the
resultant acceleration is

a = an + at = v2

r
N + d|v|

dt
T

In Chap.8, the concepts of angular velocity and acceleration
and their vector relationship with the normal and tangential
accelerations are introduced. Figure2.24 shows the velocity
and total acceleration vectors of a particlemoving in a circular
path with increasing speed (clockwise) until it reaches the
maximum speed at the bottom, and then slows down as it
goes back up. An example of this motion is in a roller coaster
ride in a vertical circle.

Example 2.17 A car moving on a circular track of a 20m
radius accelerates uniformly from a speed of 30km/h to a
speed of 50km/h in 3 s. Find the total acceleration of the car
at the instant its speed is 40km/s.
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Solution 2.17 Since both the direction and the magnitude of
the car’s velocity change, its total acceleration is the vector
sum of its tangential and radial accelerations. The tangential
acceleration is

at = v − v0
t

= (13.8 m/s) − (8.3 m/s)

(3 s)
= 1.83 m/s2

When v = 40 km/h = 11.1 m/s the radial acceleration is

arad = v2

r
= (11.1 m/s)2

(20 m)
= 6.2 m/s2

And the total acceleration is

a =
√

(1.83 m/s2)2 + (6.2 m/s2)2 = 6.5 m/s2

2.5 RelativeVelocity

In this section, we will see how observers moving relative to
each other obtain different results when measuring the veloc-
ity of a moving body. Suppose two cars are moving besides
each other at the same speed of 120km/h with respect to
earth. In this case, any of the two cars is at rest relative to
the other. According to an observer who is stationary with
respect to earth, each car is moving with a speed of 120km/s.
A second observer, in any of the cars, will see the station-
ary observer moving backwards at a speed of 120km/h. In
addition, if a third car is moving ahead of the two cars at a
speedof 140km/h relative to earth, then its speed relative to an
observer in any of the two cars is 20km/s. Thus, the displace-
ment and velocities may have different values whenmeasured
relative to different observers. Therefore, the description of
motion depends on the observer. By attaching a coordinate
system to an observer together with an appropriate time scale,
he or she are then said to be in a reference frame. In measur-
ing quantities, it is essential to specify the reference frame. In
most situations, the earth (the lab) is used as our frame of ref-
erence. To understand this, consider a particle moving in one
dimension in the positive x-direction. Suppose two observers
want to describe its motion, one is observer S who is station-
ary relative to the ground, and the other is observer S′, who
is moving in the positive x-direction with a constant velocity
relative to the ground (see Fig. 2.25). At any instant, the posi-
tion of the particle relative to S is xPS , and its position relative
to S′ is xPS′ . The relation between these two observations is

xPS = xPS′ + xS′S (2.18)

Therefore, the position of P relative to OS is equal to the
position of P relative to OS′ plus the distance between OS and
OS′ . Differentiating Eq.2.18 with respect to time we get

Fig. 2.25 Observer S is stationary relative to the ground, and observer
S′ is moving in the positive x-direction with a constant velocity relative
to the ground

Fig. 2.26 The velocity of S′ with respect to S(vS′S) is constant in both
magnitude and direction

dxPS
dt

= dxPS′

dt
+ dxS′S

dt

or
vPS = vPS′ + vS′S

We will extend this to three dimensions in the case where
the velocity of S′ with respect to S(vS′S) is constant in both
magnitude and direction (see Fig. 2.26). The position vector
of the particle P relative to S is given by

rPS = rPS′ + rS′S (2.19)

Differentiating this with respect to time gives

vPS = vPS′ + vS′S (2.20)

Equations2.19 and 2.20 are called the Galilean transfor-
mation equations. In addition, for any two frames of reference
S and S we have

vSS′ = −vS′S

Example 2.18 Two motor cyclists A and B are driving along
the same road (SeeFig. 2.27)with speeds 90km/h and50km/s,
respectively.Determine: (a) the velocity ofmotorcyclistA rel-
ative to B and of B relative to A?, · and (b) if the two motor
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cyclists approach each other along two parallel roads, (See
Fig. 2.28), A moving at 80km/s, and B moving at 60 km/s,
what is the velocity of motorcyclist A relative to B and of B
relative to A.

Fig.2.27 Twomotor cyclists A and B driving with speeds 90 km/h and
50 km/s respectively

Fig. 2.28 A is moving at 80 km/s, and B moving at 60 km/s

Solution 2.18 Using the above discussion, consider S as the
Earth’s frame of reference denoted E, S′ as the frame of refer-
ence of motorcyclist B and the point P as the motor cyclist A

(a) The velocity of A relative to B is found from

vAB = vAE − vBE = (90 km/h) − (50 km/h) = 40 km/h

The velocity of B relative to A is

vBA = −40 km/h

(b)

vAB = vAE − vBE = (80 km) − (−60 km/h) = 140 km/h

vBA = −140 km/h

Fig.2.29 A boat is traveling at 8 km/h north relative to the sea’s waves,
and the waves are traveling northeast relative to the earth at a constant
speed of 4 km/h

Example 2.19 A boat is traveling at sea at 8km/h north rel-
ative to the sea’s waves, and the waves are traveling northeast
relative to the earth at a constant speed of 4km/h. What is the
velocity of the boat relative to the earth?

Solution 2.19 UsingFig. 2.26, consider theEarth asS (denoted
E), the waves as S′, and the boat as the point P. As we can see
from Fig. 2.29, the velocity of the boat relative to the earth
is given by vbE = vbw + vwE , where vbw and vwE are the
velocities of the boat relative to the waves and the velocity of
the waves relative to the earth respectively With the east as
the direction of the positive x-axis we get

v(bE)y = v(bw)y + v(wE)y = (8 km/h)+ (4 km/h) sin 45◦ = 10.83 km/h

v(bE)x = v(wE)x = (4 km/h) cos 45◦ = 2.83 km/h

Hence

vbE =
√

(v(bE)x )2 + (v(bE)y )
2 =

√
(10.83 km/h)2 + (2.83 km/h)2 = 11.2 km/h

The direction of vbE is

θ = tan−1 (vbE )y

(vbE )x
= tan−1 (10.83 km/h)

(2.83 km/h)
= 75.35o

2.6 Motion in a Plane Using Polar
Coordinates

Consider a particle moving in the x–y plane. A useful way to
describe the position, velocity, and acceleration of the parti-
cle is by using its polar coordinates (r, θ) . The relationship
between the polar and rectangular coordinates is



2.6 Motion in a Plane Using Polar Coordinates 33

Fig. 2.30 r1 is a unit vector
along the increasing r direction
and θ1 is a unit vector in the
direction of increasing θ

(anticlockwise direction)

x = r cos θ

y = r sin θ

where θ is measured from the positive x- axis. Suppose a par-
ticle is located at (r, θ) . If the particle moves in a straight line
along the r direction, then θ is constant through the motion
of the particle. If the particle moves in a circle, then r is con-
stant. Let r1 be a unit vector along the increasing r direction
and θ1 to be a unit vector in the direction of increasing θ

(anticlockwise direction). From Fig. 2.30, we have

r1 = cos θ i + sin θ j

and
θ1 = − sin θ i + cos θ j

Unlike the rectangular unit vectors, the polar unit vectors are
not fixed in direction. Their direction changes as the particle
moves along some path. Therefore, when finding the velocity
and acceleration of a particle the derivatives of the polar unit
vectorsmust be considered. The position vector of the particle
is given by

r = rr1

To find the velocity in terms of the polar unit vectors let us
differentiate r1 and θ1 with respect to time. That gives

ṙ1 = dr1
dt

= − sin θ
dθ

dt
i + cos θ

dθ

dt
j

= θ1
dθ

dt
= θ̇θ1

θ̇1 = dθ1

dt
= − cos θ

dθ

dt
i − sin θ

dθ

dt
j

= −r1
dθ

dt
= −θ̇r1

The velocity of the particle is given by

v = dr
dt

= d

dt
(rr1) = dr

dt
r1 + r

dr1
dt

= ṙr1 + r ṙ1 = ṙr1 + r θ̇θ1

Hence, the velocity is (Fig. 2.31)

v = ṙr1 + r θ̇θ1 (2.21)

We may write
v = vrr1 + vθθ1

where vr = ṙ and vθ = r θ̇ and v =
√
v2r + v2θ . The total

acceleration is

a = dv
dt

= d

dt
(ṙr1+r θ̇θ1) = r̈r1+ ṙṙ1+ ṙθ̇θ1+r θ̈θ1+r θ̇ θ̇1

= r̈r1 + ṙ(θ̇θ1) + ṙθ̇θ1 + r θ̈θ1 + r θ̇ (−θ̇r1)

a = (r̈ − r θ̇2)r1 + (r θ̈ + 2ṙθ̇ )θ1 (2.22)

or
a = arr1 + aθθ1

where
ar = (r̈ − r θ̇2)
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Fig. 2.31 Unlike the rectangular
unit vectors, the polar unit vectors
are not fixed in direction. Their
direction changes as the particle
moves along some path

and
aθ = (r θ̈ + 2ṙθ̇ )

and

a =
√
a2r + a2θ

Example 2.20 If a particle moves in a plane according to the
expressions θ = 0.3t + 0.2t2 and r = 0.5t + 0.4t2. Find its
velocity and acceleration at t = 2 s

Solution 2.20 At t = 2 s, θ = 0.3t + 0.2t2 = 1.4 rad,
θ̇ = 0.3 + 0.4t = 1.1 rad/s and θ̈ = 0.4 rad/s2. Also
r = 0.5t + 0.4t2 = 2.6 m, ṙ = 0.5 + 0.8t = 2.1 m/s and
r̈ = 0.8 m/s2. Therefore

vr = r = 2.1 m/s

vθ = r θ̇ = (2.6 m)(1.1rad/s) = 2.9 m/s

v =
√
v2r + v2θ =

√
(2.1 m/s)2 + (2.9 m/s)2 = 3.6 m/s

and

ar = r̈ − r θ̇2 = (0.8 m/s2) − (2.6 m)(1.1rad/s)2 = −2.35 m/s2

aθ = r θ̈ +2ṙ θ̇ = (2.6 m)(0.4 rad/s2)+2(2.1 m/s)(1.1 rad/s) = 5.7 m/s2

a =
√
a2r + a2θ =

√
(−2.35 m/s2)2 + (5.7 m/s2)2 = 6.2 m/s2

Fig. 2.32 An object moving in one dimension along the x-axis

Fig.2.33 The position-time graph of a particle moving along the x-axis

Problems

1. A sports car moves around a circular track of radius of
100m. If the car makes one round in 75s, find the car’s
(a) average speed (b) average velocity.

2. An object is moving in one dimension along the x-
axis according to Fig. 2.32. Describe the motion of the
object.
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Fig. 2.34 The speed of a motorcyclist varying with time

Fig. 2.35 A car moves at a constant speed of 40 km/h along curved
path

Fig. 2.36 An aircraft tracked by
a radar coordinates

3. The position–time graph of a particle moving along the
x-axis is shown in Fig. 2.33. Find (a) the average veloc-
ity between a and b(b) the instantaneous velocity at a, b,
and c.

4. A motorist drives along a straight-line road. His speed
varies with time according to Fig. 2.34. Sketch the posi-
tion versus time and acceleration versus time graphs of
the motorist.

5. A particlemoves along the curve defined by x = 5e−t and
y = sin 5t. Find the position, velocity and acceleration
of the particle at any time.

6. A car moves at constant speed of 40km/h along the road
shown in Fig. 2.35. If the radius of curvature at A is 350m
and the total acceleration of the car at B is 1m/s2, find (a)
the total acceleration of the car at A and C(b) the radius
of curvature at B.(Hint: the radius of curvature at C is
infinite).

7. A body with initial speed of 15m/s undergoes a uniform
acceleration of −2m/s2. Find the elapsed time and the
distance it traveled when it reaches a speed of 3m/s.

8. A stone is thrown downwards from a height of 10m. Find
its initial speed if it reaches the ground after l s.

9. A block is thrown horizontally from the top of a cliff
that is 30m high with a speed of 10m/s. Find (a) the
block’s magnitude of displacement from the origin and
its velocity after 1.5 s, (b) the horizontal distance from the
releasing point to where the block hits the ground.(Hint:
the magnitude of displacement from the origin is d =√
x2 + y2).

10. A river has a uniform speed of 0.5m/s due east. If a boat
travels east at a speed of 3m/s relative to the water, find
the time it takes the boat to travel a distance of 1100km
and return to its starting point.

11. An aircraft is tracked by a radar (see Fig. 2.36). If at a
certain instant the radar measurements give r = 7 ×
104 m, r = 1000 m/s, r̈ = 7 m/s2, θ = 45o, θ̇ =
0.6 deg /s, and θ̈ = 0.02 deg /s2. Find the velocity and
acceleration of the airplane at that instant.
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