
10Oscillatory Motion

10.1 Oscillatory Motion

A motion repeating itself is referred to as periodic or oscil-
latory motion. An object in such motion oscillates about an
equilibrium position due to a restoring force or torque. Such
force or torque tends to restore (return) the system toward its
equilibrium position no matter in which direction the system
is displaced. This motion is important to study many phe-
nomena including electromagnetic waves, alternating current
circuits, and molecules. For a vibration to occur, two quanti-
ties are necessary to be present—stiffness and inertia.

10.2 FreeVibrations

When a system vibrates, a restoring force must be present.
In addition to that force, there is always a retarding or damp-
ing force such as friction. If the effect of the damping force
is small and can be neglected, then the motion is classified
as free and undamped motion. Otherwise, the motion is clas-
sified as free damped motion. In both cases, the motion is
known as free vibration since no forces other than the restor-
ing and damping forces exist during vibration. If a driving
force that does positive work on the system exists, the motion
is classified as forced vibration.

This forcemaybe applied externally to the systemor some-
times is produced within the system. In this chapter, the case
in which a restoring force is directly proportional to the dis-
placement is considered. The resulting motion is then known
as a harmonic vibration and the system is said to be linear. If
the restoring force depends on the displacement in some other
way, the resulting motion is known as anharmonic vibration
and the system is said to be nonlinear.

10.3 Free UndampedVibrations

This kind of motion is known as the simple harmonic motion.
Next, we will examine examples of such motion in physics.

10.3.1 Mass Attached to a Spring

Consider a block ofmassm attached to a light spring of spring
constant k that is fixed at the other end (see Fig. 10.1). Suppose
that the system lies on a frictionless horizontal surface. For
small displacements, the restoring force acting on the block
by the spring is given by Hook’s law

Fs = −kx

As we’ve mentioned in Sect. 4.1, if the block is displaced
slightly to the right (for example to x = A), the restoring
spring force will accelerate the block to the left transferring
its potential energy into kinetic energy As the block reaches
its equilibrium position x = 0, all of its potential energy will
be transformed into kinetic energy and it will overshoot to the
other side. Again, as it moves left, the spring force deceler-
ates the block to the right, transferring its kinetic energy into
potential energy until all of its energy is potential at x = −A
where it comes to rest. At that point, it accelerates back to
x = 0 and regains all of its kinetic energy where it over-
shoots again to x = A. Therefore, stiffness restores the mass
where inertia is responsible for the mass to overshoot. From
Newton’s second law we, have

ma = −kx

or

m
d2x

dt2
+ kx = 0

or
d2x

dt2
+ ω2

nx = 0 (10.1)

where ωn = √
k/m is called the natural angular frequency

of the system. The general solution of this equation is of the
form

x(t) = A1 cosωnt + A2 sinωnt (10.2)
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Fig.10.1 Ablock ofmassm attached to a light spring of spring constant
k that is fixed at the other end

Fig. 10.2 Plot of x versus t for a simple harmonic oscillator

where A1 and A2 are arbitrary constants that can be found
from the initial conditions. Therefore, there aremany possible
motions with the same angular frequency ωn. By multiplying

and dividing Eq. 10.2 by
√
A2
1 + A2

2, you can show that the
solution may be written as

x(t) = A cos(ωnt − φ) (10.3)

where A =
√
A2
1 + A2

2 is called the amplitude of motion and

φ = tan−1 A2/A1 is called the phase constant. In general, φ is
chosen such that 0 ≤ φ ≤ π.A and φ can be determined from
the initial conditions, i.e., from the values of the displace-
ment and velocity when the motion starts. The mass therefore
oscillates between A and−A. The quantity (ωnt−φ) is called
the phase angle. If this angle is increased by 2π , all physical
quantities such as the displacement, velocity, and accelera-
tion repeat themselves. The plot of x versus t is shown in
Fig. 10.2. If A is fixed and φ is changed the motion will be
the same except that the same physical quantities will appear
either earlier or later than the preceding motion.

10.3.1.1 The Period and Frequency of Motion
The period of motion is the time required for one complete
cycle or oscillation. Since the phase angle is changed by 2π
after one complete cycle, we have for themass–spring system,

ωnt + 2π = ωn(t + T )

or

T = 2π

ωn
= 2π

√
m

k

The frequency is defined as the number of complete cycles
per unit time

fn = 1

T
= ωn

2π

This frequency is called the natural frequency of the motion.
The unit of the frequency is cycles/s or hertz (Hz).

10.3.1.2 The Phase Difference
The phase constant φ is important when comparing two or
more oscillations of the same frequency Suppose a certain
vibration has φ = 0, this means that at t = 0 the displacement
is maximum x = A. If a second vibration has also φ = 0, then
the two vibrations are said to be in phase (see Fig. 10.3 part a).
Otherwise, the two vibrations are out of phase. If the phase
constant of the second vibration is φ > 0, then the second
vibration is leading the first vibration in phase by φ. If φ < 0,
then the second vibration is lagging the first by φ. If φ = ±π ,
the two vibrations are said to be in antiphase with each other
(see Fig. 10.3 part b).

10.3.1.3 TheVelocity and Acceleration
The velocity of the mass is

v(t) = dx

dt
= −ωnA sin(ωnt − φ) (10.4)

This can also be written as

v(t) = ωnA cos

(
ωnt − φ + π

2

)
(10.5)

The acceleration of the mass is

a(t) = dv

dt
= −ω2

nA cos(ωnt − φ) (10.6)

Fig. 10.3 a Two simple harmonic motions of the same frequency and
same phase constant π = 0 but differing in amplitude. b Two simple
harmonic motions of the same frequency and amplitude but differing in
phase by φ = ±π
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Fig. 10.4 The displacement, velocity and acceleration versus time

or

a(t) = dv

dt
= ω2

nA cos(ωnt − φ + π) (10.7)

Hence, the velocity and acceleration also vary harmonically
with timewith amplitudesωnA andω2

nA, respectively, but they
all have the same angular frequency From Eqs. 10.5 and 10.7
you can see that the velocity leads the displacement by π/2 or
90.Theaccelerationontheotherhandleads thevelocitybyπ/2
and the displacement by π or 180. Figure 10.4 shows the dis-
placement, velocity, and acceleration versus time.

10.3.1.4 Boundary Conditions
Boundary conditions are used to find A and φ for a specific
vibration. Suppose that the vibration is measured when the
stopwatch is set to zero, i.e., at t = 0 and that at that instant the
mass is released from rest at a distance of x = A1 from its equi-
librium position. Substituting these conditions into Eqs. 10.3
and 10.4, we have

x = A cosφ = A1 (10.8)

v = v0 = −ωnA sin φ (10.9)

Dividing Eq. 10.9 by Eq. 10.8 gives

tan φ = −v0
ωnA1

Squaring and adding Eqs. 10.9 and 10.8 gives

A2
1 +

(
v0
ωn

)2

= A2 cos2 φ + A2 sin2 φ

or

A =
√
A2
1 +

(
v0
ωn

)2

Example 10.1 Anobject oscillates in simple harmonicmotion
according to the expression x = (3m) cos(π t + π/3). Find
(a) the amplitude, phase constant, period, and frequency of
motion; (b) the displacement, velocity, and acceleration of
the object at t = 0.5s(c) the time when the object first reach
x = −1.5 m.

Solution 10.1 (a)
A = 3m

φ = π

3

T = 2π

ωn
= (2π)

π
= 2 s

and

fn = 1

T
= 1

(2s)
= 0.5 Hz

(b) At t = 0.5 s

x = (3 m) cos

(
π(0.5 s) + π

3

)
= −2.6 m

v = −(3π m/s) sin

(
π t + π

3

)

At t = 0.5 s

v = (−3π m/s) sin

(
π(0.5 s) + π

3

)
= −4.7 m/s

a = (−3π2 m/s2) cos

(
π t + π

3

)

at t = 0.5 s

a = (−3π2 m/s2) cos

(
π(0.5 s) + π

3

)
= 25.6 m/s2

(c) at x = −1.5 m

(−1.5 m) = (3 m) cos

(
π t + π

3

)
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or

2π

3
= π t + π

3

that gives t = 0.3 s.

Example 10.2 A9 kg object is moving along the x-axis under
the influence of a force given by F = (−3x) N. Find (a) the
equation of motion; (b) the displacement of the mass at any
time if at t = 0, x = 5 m and v = 0.

Solution 10.2 (a)

F = −3x = ma = m
d2x

dt2

hence,
d2x

dt2
+ 3x = 0

(b) The general solution of this equation is

x = A cos
√
3t + B sin

√
3t

Since at t = 0, x = 5 m, then A = 5 m and

x = (5m) cos
√
3t + B sin

√
3t

also we have at t = 0, dx/dt = 0, or

−5
√
3 sin

√
3t + √

3B cos
√
3t = 0

and therefore B = 0. Thus,

x = (5m) cos
√
3t

Example 10.3 A 0.3 kg block is attached to a spring of force
constant 20 N/m on a frictionless horizontal surface. If the
initial displacement and velocity of the system is 0.02 m and
0.2 m/s, respectively, find the period, amplitude, and phase
constant of motion.

Solution 10.3

ωn =
√

k

m
=

√
(20 N/m)

(0.3 kg)
= 8.2 rad/s

A =
√
A21 +

(
v0
ωn

)2
=

√
(0.02 m)2 +

(
(0.2 m/s)

(82 rad/s)

)2
= 0.03 m

tan φ = −v0
ωnA1

= −(0.2 m/.s)

(8.2 rad/s)(0.03 m)
= −0.8

φ = −38.7◦

Fig. 10.5 A particle of mass m is dropped in a straight tunnel that is
drilled through the earth and which passes through the center of earth

Example 10.4 A particle of mass m is dropped in a straight
tunnel that is drilled through the earth and which passes
through the center of earth as shown in Fig. 10.5. Show that
the motion of the particle is simple harmonic motion and find
its period.

Solution 10.4 Assuming that the earth is a perfect sphere of
uniform density and since the particle is inside the earth, then
from Sect. 9.2, the gravitational force exerted on the particle
by the earth is

F = −
(
GmME

R3
E

)
r = −kr

Because this force is directly proportional to the displacement
and is opposite to it, then the particle will move in simple
harmonic motion about the center of the earth. The equation
of motion is

dr2

dt2
+

(
GME

R3
E

)
r = 0

hence,

ωn =
√

GME

R3E
=

√
(6.67 × 10−11 Nm2/kg2)(5.98 × 1024 kg)

(6.37 × l06 m)3
= 1.24 × 10−3 rad/s

T = 2π

ωn
= 2(3.14)

(1.24 × 10−3 rad/s)
= 5055.4 s = 84.25 min

Example 10.5 A 0.4 kg block is connected to two springs
of force constants k1 = 20 N/m and k2 = 50 N/m as in
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Fig. 10.6 A block connected to two springs

Fig. 10.7 A second block on top of a block connected to a spring

Fig. 10.6. Find (a) the total force acting on the block; (b) the
period of motion.

Solution 10.5 The force that each spring exerts on the block
acts in the opposite direction of the displacement, therefore
we have

∑
F = −k1x − k2x = −(k1 + k2)x = −(70 N/m)x

Thus the two springs can be considered as one spring of a
force constant of (k1 + k2). The period of motion is therefore

T = 2π

√
m

k1 + k2
= 2(3.14)

√
(0.4 kg)

(70 N/m)
= 0.5 s

Example 10.6 A 6 kg block is connected to a light spring of
force constant of 300N/mon a frictionless horizontal surface.
On top of it a second block of mass of 2 kg is placed. If the
coefficient of static friction between the two blocks is 0.4 (see
Fig. 10.7), find the maximum amplitude the system can have
when it is in simple harmonic motion such that there is no
slipping between the blocks.

Solution 10.6 The maximum acceleration of the lower block
is amax = ω2

nA. In order for the upper block not to slip,
the force of static friction between the two blocks must pro-
duce the same acceleration as the lower block. The maxi-
mum statistical frictional force that can be exerted on the
upper block is μsmg and hence, the maximum acceleration
that the force of static friction can produce is μsg. Therefore,
μsg = amax = ω2

nA. Since

ωn =
√

k

(m + M )

we have

A = μsg

ω2
n

= μsg(m + M )

k
= (0.4)(9.8 m/s2)(8 kg)

(300 N/m)
= 0.1 m

Fig. 10.8 A particle in uniform circular motion

10.3.2 Simple Harmonic Motion and Uniform
Circular Motion

Consider a circle of radius A centered at the x and y axes as
shown in Fig. 10.8. Let A be the position vector of a particle P
rotating with a constant angular speedωn in the anticlockwise
direction. The particle is thus in uniform circularmotion. Sup-
pose P starts the rotation at t = 0 at an angle of φ measured
from the positive x-axis. At any time, the angular position of
the particle is given by (ωnt+φ), therefore the vector position
of the particle at any time is

A = xi + yj = A cos(ωnt + φ)i + A sin(ωnt + φ)j

Hence,
x = A cos(ωnt + φ)

and
y = A sin(ωnt + φ)

That is, as P moves in uniform circular motion, its projec-
tion P′ on the x-axis moves in simple harmonic motion where
the radius of the circle is equal to the amplitude of motion.
The projection of P along the y-axis also undergoes simple
harmonic motion. Thus, uniform circular motion may be con-
sidered as a combination of the simple harmonic motions of
the projections of P on each axis. These two simple harmonic
motions have equal amplitudes and angular frequencies but
are in quadraturewith each other (they differ in phase byπ/2).
The linear tangential velocity of the particle in this uniform
circular motion is given by

v = Aωn

The x component of the velocity is from Fig. 10.9 given by

vx = −ωnA sin(ωnt + φ)
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Fig. 10.9 The velocity components of the particle

Fig. 10.10 The acceleration components of the particle

The acceleration of the particle in uniform circular motion is
just the radial (centripetal) acceleration that is given by

a = v2

A
= Aω2

n

The x components of the acceleration (see Fig. 10.10) is

ax = −ω2
nA cos(ωnt + φ)

Hence as you can see, the displacement, velocity, and acceler-
ation of the projection of P onto the x (or y axis) are the same
as that of a simple harmonic motion. From this, we conclude
that the simple harmonic motion can be represented as the
projection of uniform circular motion along a diameter of the
circle.

10.3.3 Energy of a Simple Harmonic Oscillator

Since in a simple harmonic oscillator, there aren’t any dis-
sipative forces, the total mechanical energy of the system is
conserved and is equal to the sum of its kinetic and potential
energies, that is

E = K +U

K = 1

2
mv2 = 1

2
mω2

nA
2 sin2(ωnt + φ)

U = 1

2
kx2 = 1

2
kA2 cos2(ωnt + φ)

Thus,

E = 1

2
kA2[sin2(ωnt + φ) + cos2(ωnt + φ)]

or

E = 1

2
kA2 = constant

The equation ofmotion of a simple harmonic oscillator can
be obtained from the total mechanical energy of the system
as follows:

E = 1

2
mẋ2 + 1

2
kx2 = 1

2
kA2 (10.10)

dE

dt
= mẋẍ + kxẋ = 0

or
mẍ + kx = 0

Hence
ẍ + ω2

nx = 0

where ωn = √
k/m. As the mass moves, its kinetic energy is

transformed into potential energy and vice versa. Figure 10.11
shows the kinetic energy and potential energy of the system
as a function of time and as a function of the displacement
respectively Note that the variation of U and K with time is
at twice the angular frequency of the variation of x, v, and a
with time. This is because the potential energy is converted to
kinetic energy twice in each cycle. The velocity of the simple
harmonic oscillator can be obtained from the total energy of
the system. From Eq. 10.10, we have

v = ±
√

k

m
(A2 − x2)

Hence, the maximum speed is at x = 0 and is zero at
x = ±A which are called the turning points as discussed
in Chap. chap444.

Example 10.7 A 0.3 kg mass is attached to a light spring. If
the total energy of the system is 0.025 J and the amplitude of
motion is 5 cm, find the period and frequency of motion.

Solution 10.7

E = (0.025 J) = 1

2
kA2 = 1

2
k(0.05 m)2
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Fig. 10.11 As the mass moves, its kinetic energy is transformed into
potential energy and vice versa

hence
k = 20 N/m

The period of motion is therefore

T = 2π

√
m

k
= 2(3.14)

√
(0.3 kg)

(20 N/m)
= 0.8 s

and the frequency is

fn = 1

T
= 1

(0.8 s)
= 1.25 Hz

Example 10.8 A 0.2 kg block is attached to a light spring of
force constant of 11 N/m on a horizontal frictionless surface.
If the block is displaced a distance of 8 cm from its equilibrium
position, find (a) the amplitude, the angular frequency, the
period and the frequency ofmotionwhen the block is released;
(b) the maximum force exerted on the block; (c) the total
mechanical energy of the system; (d) the maximum speed
and maximum acceleration of the block; (e) the velocity of
the block when its displacement is 2 cm; (f) the acceleration
of the block when its displacement is 3 cm.

Solution 10.8 (a)
A = 8 cm

ωn =
√

k

m
=

√
(11 N/m)

(0.2 kg)
= 7.4 rad/s

T = 2π

ωn
= 2(3.14)

(7.4 rad/s)
= 0.85 s

fn = 1

T
= 1

(0.85 s)
= 1.2 Hz

(b)
|F | = kA = (11N/m)(0.08m) = 0.9N

(c)

E = 1

2
kA2 = 1

2
(11 N/m)(0.08 m)2 = 0.035 J

(d)

vmax = ωnA = (7.4 rad/s)(0.08 m) = 0.6 m/s

amax = ω2
nA = (7.4 rad/s)2(0.08 m) = 4.4 m/s2

(e)

v = ±
√

k

m
(A2 − x2) =

√
(11 N/m)

(0.2 kg)
((0.08 m)2 − (0.02 m)2) = 1.8 m/s

(f)

a = −ω2
nx = −(7.4 rad/s)2(0.03 m) = −1.6 m/s2

Example 10.9 An object connected to a spring is in simple
harmonic motion on a frictionless surface. If the object’s dis-
placement when (2vmax/3) is ±0.015 m, find the amplitude
of motion.

Solution 10.9

1

2
kA2 = 1

2
mv2 + 1

2
kx2 = 1

2
m
4ω2

nA
2

9
+ 1

2
kx2

therefore

A2 = 9

5
x2 = 9

5
(0.015 m)2

A = 0.02 m

Example 10.10 A solid cylinder is connected to a light spring
as in Fig. 10.12. If the cylinder rolls without slipping along
the surface, show that the motion of the cylinder is simple
harmonic motion and find its frequency.

Solution 10.10 At any instant the total mechanical energy is

E = 1

2
kx2 + 1

2
Icmω2 + 1

2
Mv2cm = 1

2
kx2 + 1

2
Icm

v2cm
R2

+ 1

2
Mv2cm
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Fig. 10.12 A solid cylinder connected to a light spring

= 1

2
kx2 + 1

2

(
1

2
MR2

)
v2cm
R2 + 1

2
Mv2cm

Since the total mechanical energy is conserved

dE

dt
= kvcmx + 1

2
Mvcmacm + Mvcmacm = 0

kvcmx = −3

2
Mvcmacm

or

acm = −2

3

k

M
x

d2x

dt2
+ 2

3

k

M
x = 0

this equation is of a simple harmonic motion with

ωn =
√
2

3

k

M

10.3.4 The Simple Pendulum

The simple pendulum is an example of an angular vibration in
which the restoring effect is due to a restoring torque.A simple
pendulum consists of a mass (called the bob) suspended by
a light string of length L that is fixed at the other end (see
Fig. 10.13). If the mass is pulled to the right or left from
its equilibrium position and released, then the pendulum will
swing in a vertical plane about an axis passing through O. The
resulting motion is then a periodic or oscillatory motion. The
restoring torque is due to gravity and is given by

τ = −(mg sin θ)L

The minus sign indicates that the torque is a restoring torque,
since it always tends to decrease θ . The moment of inertia of
the bob about an axis passing through O is

I = mL2

Fig. 10.13 The simple pendulum

From Newton’s second law in angular form, we have

τ = Iα = I θ̈

Hence,
−mg sin θL = mL2θ̈

or

θ̈ +
(
g

L

)
sin θ = 0 (10.11)

This equation does not represent a harmonic motion. That is
because the torque is not directly proportional to the angu-
lar displacement. Thus, the system is nonlinear. However
for small angular displacements, we have sin θ ≈ θ(since
sin θ = θ − θ3/3! + θ5/5! . . .) and Eq. 10.11 becomes

θ̈ +
(
g

L

)
θ = 0

or
θ̈ + ω2

nθ = 0 (10.12)

where ωn = √
g/L. Hence for small angular displacements,

the motion is a simple harmonic motion. The solution of
Eq. 10.12 is of the form

θ = θm cos(ωnt − φ)

where θm is the maximum angular displacement and φ is
the phase constant. The plot of this equation is shown in
Fig. 10.14. The period of the simple pendulum is therefore
given by

T = 2π

ωn
= 2π

√
L

g
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Fig. 10.14 The displacement versus time of a simple pendulum

10.3.4.1 Energy
The kinetic energy of the simple pendulum is

K = 1

2
mv2 = 1

2
mL2ω2

n = 1

2
mLθ̇2

Taking the reference point of potential energy of the system
to be zero when the bob is at the bottom, we have

U = MgL(1 − cos θ)

The total energy is therefore given by

E = K +U = 1

2
ML2θ̇2 + MgL(1 − cos θ)

For small θ , we have cos θ ≈ 1− θ2

2
since cos θ = 1−θ2/2!+

θ4/4! . . .) thus

E = 1

2
ML2θ̇2 + 1

2
MgLθ2

Since
θ̇ = −θmωn sin(ωnt − φ)

we have

E = 1

2
ML2θ2mω2

n sin
2(ωnt − φ) + 1

2
MgLθ2m cos2(ωnt − φ)

or

E = 1

2
MgLθ2m

Therefore, the total energyof the system is constant. Figure 10.15
shows the variation of the kinetic and potential energies with
the displacement.

The equation of motion may also be obtained from energy
as follows:

dE

dt
= ML2θ̇ θ̈ + MgLθ θ̇ = 0

or

Fig. 10.15 The total energy of a simple pendulum

θ̈ +
(
g

L

)
θ = 0

Example 10.11 A simple pendulum is 0.5 m long. Find its
period at the surface of Mars and compare it to its period at
the earth’s surface.

Solution 10.11 At Mars’s surface, the gravitational acceler-
ation is

gM = GMM

R2M
= (6.67 × 10−11 Nmathrmm2/kg2)(6.42 × 1023 kg)

(3.37 × l06 m)2
= 3.8 m/s2

The period at Mars is therefore

TM = 2π

√
L

gM
= 2(3.14)

√
(0.5 m)

(3.8 m/s2)
= 2.3 s

At the earth’s surface,

TE = 2π

√
L

gE
= 2(3.14)

√
(0.5 m)

(9.8 m/s2)
= 1.4 s

Thus, TM = 1.6TE .

Example 10.12 A simple pendulum of length of 2 m is dis-
placed through an angle of 12◦ and released. Find (a) the
angular frequency of motion; (b) the maximum angular speed
and maximum angular acceleration.

Solution 10.12 (a) The amplitude of motion is

θmax = (12◦)
(

2π rad

360◦ deg

)
= 0.21 rad

The angular frequency is

ωn =
√
g

L
=

√
(9.8 m/s2)

(2 m)
= 2.2 rad/s

(b) The maximum angular speed is
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θ̇max = ωnA = (2.2 rad/s)(0.21 rad) = 0.5 rad/s

The maximum angular acceleration is

θ̈max = ω2
nA = (2.2 rad/s)2(0.21 rad) = 1 rad/s2

Example 10.13 A simple pendulum 1.4 m in length is dis-
placed through an angle of 10◦ and released. Find the velocity
of the bob when it reaches the bottom.

Solution 10.13

θ = (10◦)
(

2π rad

360◦ deg

)
= 0.17 rad

Taking the potential energy to be zero at the bottom, we
have

mgL(1 − cos θ) = 1

2
mv2

Since θ is small, cos θ ≈ 1 − θ2/2 and therefore

mgL
θ2

2
= 1

2
mv2

and

v = √
gLθ =

√
(9.8 m/s2)(14 m)(0.17 rad) = 0.63m/s

10.3.5 The Physical Pendulum

The physical pendulum is a rigid body that oscillates about an
axis passing through a point in the body other than its center
of mass (the center of mass is assumed to be located at the
center of gravity). Figure 10.16 shows a rigid body pivoted at
point O that is at a distance d from the center of mass. The
equilibrium position of the body is when its center of mass is
directly below the pivotO. If the body is displaced either to the
right or left from the equilibrium position, a restoring torque

Fig. 10.16 The physical pendulum

due to gravity will act on it. As a result, the body will oscillate
in a vertical plane where the axis of rotation is perpendicular
to the page. The restoring torque is given by

τ = −Mgd sin θ

where M is the mass of the body and d is the moment arm
of the tangential component of the weight (Mg sin θ). From
Newton’s second law, we have

τ = Iα

−Mgd sin θ = I θ̈

For small angular displacements sin θ ≈ θ and hence

θ̈ +
(
Mgd

I

)
θ = 0

or
θ̈ + ω2

nθ = 0

This equation is of a simple harmonic motion with an angular
frequency of

ωn =
√
Mgd

I

and a period of motion of

T = 2π

ωn
= 2π

√
I

M gd

Thus,

I = T 2Mgd

4π2

Therefore, the moment of inertia of a body can be found by
measuring its period when it is in simple harmonic motion
as a physical pendulum. Note that, the simple pendulum is
a special case of the physical pendulum since for a simple
pendulum of mass m, the moment of inertia is

I = md2

and thus, the angular frequency is

ωn =
√
mgd

md2 =
√
g

d

This angular frequency is of a simple pendulum where d rep-
resents the length of the string.
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Fig.10.17 A uniform rod suspended at one end oscillated with a small
amplitude

Example 10.14 A uniform rod of length of 0.6 m that is sus-
pended at one end oscillates with a small amplitude as in
Fig. 10.17. Find the frequency of motion.

Solution 10.14

fn = 1

2π

√
Mgd

I
= 1

2π

√
Mg(L/2)

(1/3)ML2
= 1

2π

√
3g

2L
= 1

2(3.14)

√
3(9.8m/s2)

2(0.6m)
= 0.8Hz

Example 10.15 A uniform square plate of length a is pivoted
at one of its corners and oscillates in a vertical plane as in
Fig. 10.18. Find the period ofmotion if the amplitude is small.

Solution 10.15 The moment of inertia of a uniform rectan-
gular plate about its center of mass is

Icm = 1

12
M (a2 + b2)

Thus for a uniform square plate, we have

Icm = 1

6
Ma2

From the parallel axis theorem, the moment of inertia of the
plate about an axis that is parallel to the center of mass axis

Fig. 10.18 A uniform square plate pivoted at one of its corners and
oscillates in a vertical plane

and passing through one corner (D = √
2a) is

I = Icm + MD2 = 1

6
Ma2 + 2Ma2 = 13

6
Ma2

and hence

T = 2π

√
I

M gd
= 2π

√
(13/6)Ma2

Mg
√
2a

= 2π
√
1.5

a

g

10.3.6 TheTorsional Pendulum

The torsional pendulum consists of a rigid body suspended by
a wire from its center of mass where the other end of the wire
is fixed as shown in Fig. 10.19. The body is in equilibrium if
the wire is untwisted. If the body is rotated through an angle
θ it will oscillate about its equilibrium position (the line OP)
due to a restoring torque exerted by the twisted wire on the
body. This torque is found to be directly proportional to the
angular displacement of the body. That is

τ = −kθ

where k is called the torsional constant. Its value depends
on the property of the wire. Note that this equation is the
rotational analogue of Hook’s law in linear form (F = −kx).
From Newton’s second law, we have

τ = Iα

or
−kθ = I θ̈

That gives

θ̈ +
(
k

I

)
θ = 0

or
θ̈ + ω2

nθ = 0

Fig. 10.19 The torsional
pendulum
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Fig. 10.20 A uniform solid
sphere suspended at its midpoint
by a light string

where ωn = √
k/I and the period is T = 2π

√
I/k.

Example 10.16 A uniform solid sphere of mass of 4.7 kg and
radius of 5 cm is suspended at its midpoint by a light string
(see Fig. 10.20) where it oscillates as a torsional pendulum.
If the period of motion is 3.5 s, find the torsion constant.

Solution 10.16

T = 2π

√
I

k

for a uniform solid sphere

Icm = 2

5
MR2 = 2

5
(4.7 kg)(0.05 m)2 = 4.7 × 10−3 kgm2

hence,

k = 4π2Icm
T

= 4(3.14)2(4.7 × 10−3 kgm2)

(3.5 s)
= 0.05 kgm2/s2

10.4 Damped FreeVibrations

In this section, we will discuss the case in which the effect
of damping that is due to a nonconservative force cannot be
neglected. An example of such a force in mechanical systems
is the force of friction. In this case, the mechanical energy of
the system will be lost, the amplitude of motion will decrease
to zero, and the oscillation dies out eventually. Here, we will
discuss damping due to friction in the simplest case, where the
frictional force is proportional to the first power of the velocity
of the oscillating body. An example of such a frictional force
is the force that an object experience when moving in a fluid
with a low speed and is given by

FD = −bv

Fig. 10.21 A mass-spring system with damping

where b is a positive constant called the damping coefficient.
Its SI units is N(m s−1) = kg s−1. The negative sign shows
that the direction of the force is always opposite to the velocity.
Now consider the spring–mass system as shown in Fig. 10.21,
the cylinder shown in the figure contains a viscous fluid and
a piston moving in it. Such device is known as the viscous
damper. The net force on the oscillating body is

∑
F = Fs + FD = −kx − bv

hence
mẍ + bẋ + kx = 0

or
ẍ + γ ẋ + ω2

nx = 0 (10.13)

where γ = b/m and ωn = √
k/m. The units of γ is s−1.

This equation is a second order linear differential equation of
constant coefficients. We may assume a solution of the form

x = Ceλt

Substituting this solution into Eq. 10.13 gives the character-
istic (auxiliary) equation given by

λ2 + γ λ + ω2
n = 0

The roots of this equation are given by

λ1 = −γ

2
+

√(
γ 2

4
− ω2

n

)

and

λ2 = −γ

2
−

√(
γ 2

4
− ω2

n

)

From superposition, the general solution is given by

x = C1e
λ1t + C2e

λ2t (10.14)

Three possible solutions arise depending on whether the sign
of the bracket (γ 2/4 − ω2

n) is positive, negative or zero, i.e.,
depending on the size of the damping force. The roots λ1 and
λ2 are either distinct real roots, equal real roots or a conjugate
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complex roots. Therefore, there are three possible motions of
the system.

10.4.1 Light Damping (Under-Damped)
(γ < 2ωn)

If γ < 2ωn the resulting roots are complex roots given by

λ1 = −γ

2
+ iωD

and
λ2 = −γ

2
− iωD

where

ωD =
(

ω2
n − γ 2

4

)1/2

Hence, Eq. 10.14 may be written as

x =
[
C1e

iωDt + C2e
−iωDt

]
e

−γ
2 t

Since e±ix = cos x ± i sin x we have

x = [C1(cosωDt+ i sinωDt)+C2(cosωDt− i sinωDt)]e
−γ
2 t

= [(C1 + C2) cosωDt + i(C1 − C2) sinωDt]e
−γ
2 t

= [A1 cosωDt + A2 sinωDt]e
−γ
2 t (10.15)

where A1 = C1 + C2 and A2 = i(C1 − C2). As mentioned
earlier Eq. 10.15 can be written as

x = A cos(ωDt − φ)e
−γ
2 t (10.16)

where A is the initial amplitude of motion. Ae
−γ
2 t is called the

amplitude of motion and φ is the phase constant and ωD is the
angular frequency of the dampedmotion. This equation shows
that the system oscillates in a decreasing harmonic motion
where the amplitude of motion decreases exponentially with
time until eventually the oscillation dies out (see Fig. 10.22).
The dashed lines in Fig. 10.22 are called the envelope of the
oscillation curve. The period of motion in light damping is
therefore given by

τD = 2π

ωD
= 2π√

ω2
n − γ 2

4

If b = 0 and thus γ = 0 the period ofmotion is reduced to that
of a simple harmonic oscillator. If γ � ωD, the situation is
referred to as very light damping and ωD ≈ ωn. Furthermore

Fig. 10.22 In A lightly damped oscillator, the system oscillates in a
decreasing harmonic motion where the amplitude of motion decreases
exponentially with time until eventually the oscillation dies out

if there are two amplitudes Aa and Ab separated by the period
of motion, then their ratio is given by

Aa

Ab
= Ae− γ

2 t1

Ae− γ
2 (t1+τD)

= e
γ
2 τD

A quantity known as the logarithmic decrement is defined
as

δ = ln

(
Aa

Ab

)
= γ

2
τD

Example 10.17 An 8 kg block is attached to a light spring
and a light viscous damper. If at t = 0, x = 0.12 m and v =
0, find (a) the displacement at any time; (b) the logarithmic
decrement. (k = 30 N/m, b = 20 N s/m).

Solution 10.17 (a)

ωn =
√

k

m
=

√
(30 N/m)

(8 kg)
= 1.9 rad/s

γ = b

m
= (20 N s/m)

(8 kg)
= 2.5 s−1

and

ωD =
(

ω2
n−

γ 2

4

)1/2
= ((1.9 rad/s)2−(2.5 Ns/m kg)24)1/2 = 1.43 rad/s

since γ < 2ωn, the damping is light. The displacement as a
function of time is given by

x = A cos(ωDt − φ)e
−γ
2 t

or
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x = A cos(1.43t − φ)e−1.25t

since at t = 0, x = 0.12 m, then

(0.12 m) = A cosφ (10.17)

the velocity of the block at any time is

ẋ = −1.43A sin(1.43t − φ)e−1.25t − 1.25A cos(1.43t − φ)e−1.25t

at t = 0, v = 0 and thus

0 = −1.43A sin φ − 1.25A cosφ (10.18)

Solving Eqs. 10.17 and 10.18 for A and φ gives φ = −0.7
rad and A = 0.17 m. Therefore,

x = 0.17 cos(1.43t − 0.7)e−1.25t

(b)

τD = 2π

ωD
= 2π

(1.43 rad/s)
= 4.4 s

δ = γ

2
τD = (1.25 s−1)(4.4 s) = 5.5

10.4.2 Critically DampedMotion (γ = 2ωn)

If γ = 2ωn, then the roots are equal real roots

λ1 = λ2 = −γ

2
= −ωn

In that case, themotiondecayswithout oscillation (seeFig. 10.23)
and the general solution of Eq. 10.13 is

x = (C1 + C2ωnt)e
−ωnt

C1 and C2 are found from boundary conditions. If at t =
0, x = A, and v = 0, then

x(0) = C1 = A

and
v(0) = ωnC2 − ωnC1 = 0

or
C1 = C2 = A

That gives
x = A(1 + ωnt)e

−ωnt

Fig. 10.23 In a critically damped motion, the motion decays without
oscillation

10.4.3 Over DampedMotion (Heavy Damping)
(γ > 2ωn)

If γ > 2ωn, the roots are distinct real roots given by

λ1 = −γ

2
+

√(
γ 2

4
− ω2

n

)

and

λ2 = −γ

2
−

√(
γ 2

4
− ω2

n

)

The general solution is given by

x = C1e
λ1t + C2e

λ2t

or
x = (C1e

αt + C2e
−αt)e− γ

2 t

where

α =
√(

γ 2

4
− ω2

n

)

C1 andC2 are found from boundary conditions. As critical
damping, the resulting motion here is nonperiodic but the
system returns to its equilibrium position at large values of t
unlike critical damping (see Fig. 10.24).

Fig. 10.24 As critical damping, the resulting motion here is non-
periodic but the system returns to its equilibrium position at large values
of t unlike critical damping
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Example 10.18 In Example 10.17, find the range of values of
the damping coefficient for the system to be: (a) over damped;
(b) critically damped.

Solution 10.18 (a) over damped if γ > 2ωn, i.e., if γ >

3.8s−1(b) critically damped if γ = 3.8s−1.

10.4.4 Energy Decay

In damped free vibrations, the total mechanical energy is not
constant since the damping force opposes the motion and dis-
sipates the energy of the system. Now, consider the mass–
spring system, the total mechanical energy of the system is

E = K +U = 1

2
mẋ2 + 1

2
kx2

The rate of change of energy is

dE

dt
= (mẍ + kx)ẋ

For damped vibrations in which the damping force is directly
proportional to the velocity, we have

mẍ + kx = −bẋ

Hence,
dE

dt
= −bẋ2 ≤ 0

Thus, the energy decreases with time in any damped motion
and the rate in which it decreases is not uniform.

10.5 ForcedVibrations

In the previous sections, only free vibrations have been con-
sidered (i.e., vibrations in which only a restoring and damping
force act within the system during motion). This section con-
siders the case in which an external driving force is applied
to the vibrator. This force is given as a function of time and
we have

mẍ + bẋ + kx = F(t) (10.19)

Here, we will consider the case in which the force is a simple
periodic force given by

F(t) = F0 cosωt (10.20)

whereF0 is the amplitude andω is the driving frequency. This
force does positive work on the system to balance the energy
loss due to damping. Substituting Eq. 10.20 into Eq. 10.19
gives

mẍ + bẋ + kx = F0 cosωt (10.21)

or

ẍ + γ ẋ + ω2
nx = F0 cosωt

m

Let us assume that the solution of Eq. 10.19 is given by

x = C1 cosωt + C2 sinωt

then, we have

ẋ = −ωC1 sinωt + ωC2 cosωt

and
ẍ = −ω2C1 cosωt − ω2C2 sinωt

Substituting into Eq. 10.19 gives

(−ω2C1 cosωt − ω2C2 sinωt) + γ (−ωC1 sinωt + ωC2 cosωt)

+ ω2
n(C1 cosωt + C2 sinωt) = F0 cosωt

m

That gives

−ω2C1 + γωC2 + ω2
nC1 = F0

m

and
−ω2C2 − γωC1 + ω2

nC2 = 0

Solving for C1 and C2 gives

C1 = (F0/m)(ω2
n − ω2)

(ω2 − ω2
n)

2 + γ 2ω2

and

C2 = (F0/m)γω

(ω2 − ω2
n)

2 + γ 2ω2

Hence,

x = (F0/m)[(ω2
n − ω2) cosωt + γω sinωt]

(ω2 − ω2
n)

2 + γ 2ω2

The term in brackets is of the form A1 cosωt + A2 sinωt and
thus it can be written as A′ cos(ωt − φ) where

A′ =
√
A2
1 + A2

2

i.e.,
A′ = ((ω2

n − ω2)2 + γ 2ω2)
1
2

and

φ = tan−1 A2

A1
= tan−1 γω

(ω2 − ω2
n)
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where 0 ≤ φ ≤ π . Hence,

x = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

cos(ωt − φ) (10.22)

If the driving force is applied for a long time compared with
the time that the damped vibration dies out, then the system
will eventually vibrate at the same frequency of the deriving
force. Therefore, the general solution of Eq. 10.13 is called
the transient solution since it approaches zero in a relativity
short time whereas Eq. 10.21 is called the steady-state solu-
tion where the system oscillates with the same frequency as
the deriving force. Therefore, the amplitude of a steady-state
vibration is

A = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

When the deriving frequency ω approaches the natural fre-
quency of the systemωD, the amplitude of the resulting forced
oscillation will increase. This is known as resonance. If the
damping is very light, the amplitude reaches its peak when
the deriving frequency is nearly equal to the natural frequency
ωn. As the damping becomes heavier, the maximum ampli-
tude shifts to lower frequencies (see Fig. 10.25). In the case
where there is no damping at all (b = 0), the amplitude of
resonance is infinite at ω = ωn.

Example 10.19 In Example 10.17, if a driving force of the
form F(t) = 5 cos 4t is applied to the system, find the steady-
state displacement as a function of time.

Solution 10.19

A = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

= (5/8)√
((4)2 − (1.9)2)2 + (2.5)2(4)2

= 0.04 m

Fig. 10.25 When the deriving frequency ω approaches the natural fre-
quency of the systemωD, the amplitude of the resulting forced oscillation
will increase. This is known as resonance. If the damping is very light
the amplitude reaches its peak when the deriving frequency is nearly
equal to the natural frequency ωn. As the damping becomes heavier, the
maximum amplitude shifts to lower frequencies

φ = tan−1 γω

(ω2 − ω2
n)

= tan−1 (2.5)(4)

((4)2 − (1.9)2)
= 0.8◦

Hence,
x = 0.04 cos(4t − 0.8)

Therefore, the forced vibration has the same frequency as the
deriving force but lag in phase by 0.8◦

Example 10.20 In Example (10.17), find the steady-state dis-
placement as a function of time if there is no damping.

Solution 10.20 The amplitude of the forced oscillation when
the angular frequency ω of the deriving force is varied.

A = (F0/m)√
(ω2 − ω2

n)
2 + γ 2ω2

= (5/8)√
((4)2 − (1.9)2)2

= 0.05 m

x = 0.05 cos 4t, φ = 0.

Problems

1. A 2 kg block is fastened to a spring of force constant
98 N/m on a horizontal frictionless surface. If the block
is released a distance of 6 cm from its equilibrium posi-
tion, find (a) the angular frequency, the frequency and the
period of the resulting motion, (b) the time it takes the
block to first reach x = −5 cm and its velocity at that
time, (c) the maximum speed and maximum acceleration
of the oscillating block, (d) the total mechanical energy
of the oscillator.

Fig. 10.26 A uniform solid
cylinder of radius R and massM
rolls without slipping on a track
of radius 4R

Fig. 10.27 A damped oscillator
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2. A 10 kg block is attached to a light spring of force con-
stant 200 N/m on a smooth horizontal surface. Find the
amplitude of motion if at x = 0.06 m the velocity of the
block is v = 0.5 m/s.

3. A particle rotate counterclockwise in a circle of radius 0.2
m with a constant angular speed of 2 rad/s. If at t = 0 the
x-coordinate of the particle is 0.14 m, find the displace-
ment, velocity and acceleration of the particle at any time.

4. If a simple pendulum has a period of 2 s, find its period
when its length is increased by 20%.

5. A simple pendulum of length lm andmass of 0.4 kg oscil-
lates in a region where g = 9.8 m/s2. If the amplitude of
oscillation is 10◦, find (a) the angular displacement, angu-
lar velocity and angular acceleration of the pendulum as
a function of time.

6. A uniform solid cylinder of radius R and mass M rolls
without slipping on a track of radius 4R as shown in
Fig. 10.26. Find the period of oscillation when the cylin-
der is displaced slightly from its equilibrium position.

7. A planer body of mass 3 kg oscillates as a physical pen-
dulum. If the period of oscillation is 3 s and if the pivot
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(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any
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Commons license and indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder.

Fig. 10.28 A forced oscillator

point is at 0.2 m from the center of mass, find the moment
of inertia of the body.

8. A uniform hollow cylinder of radius R and mass M is
suspended at itsmidpoint from awire and form a torsional
pendulum. If the period of motion is T , find the torsion
constant.

9. For the system shown in Fig. 10.27, determine the dis-
placement of the block at any time if at t = 0, x = 0 and
v = 0. (k = 200 N/m, b = 200 N s/m).

10. For the system shown in Fig. 10.28, find the steady-state
displacement as a function of time.
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