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1.1 Introduction

Physics is an exciting adventure that is concerned with unrav-
eling the secrets of nature based on observations andmeasure-
ments and also on intuition and imagination. Its beauty lies
in having few fundamental principles being able to reach out
to incorporate many phenomena from the atomic to the cos-
mic scale. It is a science that depends heavily on mathematics
to prove and express theories and laws and is considered to
be the most fundamental of physical sciences. Astronomy,
geology, and chemistry all involve applications of physics’
principles and concepts. Physics doesn’t only provide theo-
ries, but it also provides techniques that are used in every
area of life. Modern physical techniques were the major con-
tributors to the wealth of mankind’s knowledge in the past
century.

A simple law in physics can be used to explain awide range
of complex phenomena that may appear to be not related.
When studying a complex physical system, a simplifiedmodel
of the system is usually used, where the minor effects are
neglected and the main features of the system are concen-
trated upon. For example, when dealing with an object falling
near the earth’s surface, air resistance can be neglected. In
addition, the earth is usually assumed to be spherical and
homogeneous. However, in reality, the earth is an ellipsoid
and is not homogeneous. The difference between the cal-
culations of these different models can be assumed to be
insignificant.

Physics can be divided into two branches namely: classical
physics andmodern physics. This book focuses onmechanics,
which is a branch of classical physics. Other branches of clas-
sical physics are: light and optics, sound, electromagnetism,
and thermodynamics. Mechanics is the science of motion of
objects and is the core of classical physics. On the other hand,
modern branches of physics include theories that have been
developed during the past twentieth century. Two main the-
ories are the theory of relativity and the theory of quantum

mechanics. Modern physics explains many physical phenom-
ena that cannot be explained by classical physics.

1.2 The SI Units

A physical quantity is a quantitative description of a physical
phenomenon. For a precise description, one has tomeasure the
physical quantity and represent this measurement by a num-
ber. Such a measurement is made by comparing the quantity
with a standard; this standard is called a unit. For example,
mass is a physical quantity that refers to the quantity of mat-
ter contained in an object. The unit kilogram is one of the
units used to measure mass and is defined as the mass of a
specific platinum–iridium alloy cylinder, kept at the Interna-
tional Bureau of Weights and Measures. Therefore, when we
say that a block’s mass is 300kg, we mean that it is 300 times
the mass of the cylindrical platinum–iridium alloy. All units
chosen should obey certain properties such as being accurate,
accessible, and should remain stable under varied environ-
mental conditions or time.

In 1960, the International System of units (SI) (formally
known as the Metric System MKS) was established. The
abbreviation is derived from the French phrase “System Inter-
national”. As shown in Table1.1, the SI system consists
of seven base fundamental units, each representing a quan-
tity assumed to be naturally independent. The system also
includes two supplementary units, the radian which is a unit
of the plane angle, and the steradianwhich is a unit of the solid
angle. All other quantities in physics are derived from these
base quantities. For example, mechanical quantities such as
force, velocity, volume, and energy can be derived from the
fundamental quantities length, mass, and time. Furthermore,
the powers of ten are used to represent the larger and smaller
values for a certain physical quantity as listed in Table1.2.
The most recent definitions of the units of length, mass, and
time in the SI system are as follows:
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Table 1.1 The SI system consists of seven base fundamental units, each
representing a quantity assumed to be naturally independent

Quantity Unit name Unit symbol

Length Meter m

Mass Kilogram kg

Time Second s

Temperature Kelvin K

Electric Current Ampere A

Luminous Intensity Candela cd

Amount of Substance mole mol

Table 1.2 Prefixes for Powers of Ten

Factor Prefix Symbol

10−24 yocto y

10−21 zepto z

10−18 atto a

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro μ

10−3 milli m

10−2 centi c

10−1 deci d

101 deka da

102 hecto h

103 kilo k

106 mega M

109 giga G

1012 tera T

1015 peta P

1018 exa E

1021 zetta Z

• TheMeter: The distance that light travels in vacuumduring
a time of 1/299792458s.

• The Kilogram: The mass of a specific platinum–iridium
alloy cylinder, which is kept at the International Bureau of
Weights and Measures.

• The Second: 9192631770 periods of the radiation from
cesium-133 atoms.

1.3 Conversion Factors

There are twoothermajor systemsof units besides theSI units.
The (CGS) system of units which uses the centimeter, gram
and second as its base units, and the (FPS) system of units
which uses the foot, pound, and second as its base units.The

conversion factors between the SI units and other systems of
units of length, mass, and time are

• 1 m = 39.37 in = 3.281 ft = 6.214 × 10−4 mi
• 1 kg = 103 g = 0.0685 slug = 6.02 × 1026 u
• 1 s = 1.667 × 10−2 min = 2.778 × 10−4 h = 3.169 ×

10−8 yr

Example 1.1 If a tree is measured to be 10m long, what is its
length in inches and in feet?

Solution 1.1

10m = (10m)

(
39.37 in

1m

)
= 393.7 in

10m = (10m)

(
3.281 ft

1m

)
= 32.81 ft

Example 1.2 If a volume of a room is 32 m3, what is the
volume in cubic inches?

Solution 1.2

32 m3 = (32m3)

(
39.37 in

1m

)3

= 1.95 × 106 in3

1.4 Dimension Analysis

The symbols used to specify the dimensions of length, mass,
and time are L,MandT, respectively. Dimension analysis is a
method used to check the validity of an equation and to derive
correct expressions. Only the same dimensions can be added
or subtracted, i.e., they obey the rules of algebra. To check
the validity of an equation, the terms on both sides must have
the same dimension. The dimension of a physical quantity is
denoted using brackets [ ]. For example, the dimension of the
volume is [V ] = L3, and that of acceleration is [a] = L/T3.

Example 1.3 Show that the expression v2 = 2ax is dimen-
sionally consistent, where v represents the speed, x repre-
sent the displacement, and a represents the acceleration of
the object.

Solution 1.3
[v2] = L2/T2

[xa] = (L/T2)(L) = L2/T2

Each term in the equation has the same dimension and there-
fore it is dimensionally correct.
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Fig. 1.1 A vector is represented geometrically by an arrow PQ 129
drawn to scale

1.5 Vectors

When exploring physical quantities in nature, it is found that
some quantities can be completely described by giving a num-
ber alongwith its unit, such as themass of an object or the time
between two events. These quantities are called scalar quanti-
ties. It is also found that other quantities are fully described by
giving a number along with its unit in addition to a specified
direction, such as the force on an object. These quantities are
called vector quantities.

Scalar quantities have magnitude but don’t have a direc-
tion and obey the rules of ordinary arithmetic. Some examples
are mass, volume, temperature, energy, pressure, and time
intervals by a letter such as m, t , E. . ., etc. Vector quantities
have both magnitude and direction and obey the rules of vec-
tor algebra. Examples are displacement, force, velocity, and
acceleration. Analytically, a vector is specified by a bold face
letter such asA. This notation (as used in this book) is usually
used in printed material. In handwriting, the designation

−→
A

is used. The magnitude of A is written as |A| or A in print or
as |−→A | in handwriting.

A vector is represented geometrically by an arrow PQ
drawn to scale as shown in Fig. 1.1. The length and direc-
tion of the arrow represent the magnitude and direction of
the vector, respectively, and is independent of the choice of
coordinate system. The point P is called the initial point (tail
of A) and Q is called the terminal point (head of A).

1.6 Vector Algebra

In this section, we will discuss how mathematical operations
are applied to vectors.

1.6.1 Equality of TwoVectors

The two vectors A and B are said to be equal (A = B) only
if they have the samemagnitude and direction, whether or not
their initial points are the same as shown in
Fig. 1.2.

Fig. 1.2 The two vectors A and
B are said to be equal (A = B)
only if they have the same
magnitude and direction

Fig.1.3 To add two vectorsA and B using the geometric method, place
the head of A at the tail of B and draw a vector from the tail of A to the
head of B

Fig. 1.4 Geometric method for summing more than two vectors

1.6.2 Addition

There are two ways to add vectors, geometrically and alge-
braically. Here, we will discuss the geometric method which
is useful for solving problems without using a coordinate sys-
tem. The algebraic method will be discussed later. To add two
vectors A and B using the geometric method, place the head
of A at the tail of B and draw a vector from the tail of A to
the head of B as shown in Fig. 1.3. This method is known as
the triangle method. An extension to sum up more than two
vectors is shown in Fig. 1.4. An alternative procedure of vec-
tor addition using the geometric method is shown in Fig. 1.5.
This is known as the parallelogram method, where C is the
diagonal of a parallelogram with sides A and B. To find C
analytically, Fig. 1.6 shows that

(DG)2 = (DF)2 + (FG)2, (1.1)

and that

DF = DE + EF = A + B cos θ,

Thus, Eq.1.1 becomes

C2 = (A+ B cos θ)2 + (B sin θ)2 = A2 + B2 + 2AB cos θ,
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Fig. 1.5 The parallelogram method of adding two vectors

Fig. 1.6 Finding the magnitude and the direction of C

Fig. 1.7 The total displacement of the jogger is the vector R

or

C =
√
A2 + B2 + 2AB cos θ,

The direction of C is

tan β = GF

DF
= GF

DE + EF
= B sin θ

A + B cos θ
,

Note that only when A and B are parallel, the magnitude
of the resultant vectorC is equal to A+B (unlike the addition
of scalar quantities, the magnitude of the resultant vector C
is not necessarily equal to A + B).

Fig.1.8 The negative vector ofA
is a vector of the same magnitude
of A but in the opposite direction

Example 1.4 A jogger runs from her home a distance of
0.5km due south and then 1km to the west. Find the mag-
nitude and direction of her resultant displacement.

Solution 1.4 From Fig. 1.7, we can see that the magnitude of
the resultant displacement is given by

R =
√

(0.5 km)2 + (1 km)2 = 1.1 m

The direction of R is

θ = tan−1 (0.5 m)

(1 m)
= 26.6o

south of west.

1.6.3 Negative of aVector

The negative vector of A is a vector of the same magnitude
of A but in the opposite direction as shown in Fig. 1.8, and it
is denoted by −A.

1.6.4 The ZeroVector

The zero vector is a vector of zero magnitude and has no
defined direction. It may result from A = B−B = 0 or from
A = cB = 0 if c = 0.

1.6.5 Subtraction of Vectors

The vector A−B is defined as the vector that when added to
B gives usA. Equivalently,A−B can be defined as the vector
A added to vector −B (A + (−B)) as shown in Fig. 1.9.

Fig. 1.9 Subtraction of two
vectors
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1.6.6 Multiplication of aVector by a Scalar

The product of a vector A by a scalar q is a vector qA or
Aq. Its magnitude is q A and its direction is the same as A if
q is positive and opposite to A if q is negative, as shown in
Fig. 1.10.

1.6.7 Some Properties

• A+ B = B+A (Commutative law of addition). This can
be seen in Fig. 1.11.

• (A + B) + C = A + (B + C), as seen from Fig. 1.12
(Associative law of addition).

• A + 0 = A
• A + (−A) = 0

Fig. 1.10 The product of a vector by a scalar

Fig. 1.11 Commutative law of addition

Fig. 1.12 Associative law of
addition

• p(qA) = (pq)A = q(pA) (where p and q are scalars)
(Associative law for multiplication).

• (p + q)A = pA + qA (Distributive law).
• p(A + B) = pA + pB (Distributive law).
• 1A = A, 0A = 0 (Here, the zero vector has the same

direction as A, i.e., it can have any direction), q0 = 0

1.6.8 The Unit Vector

The unit vector is a vector of magnitude equal to 1, and with
the same direction of A. For every A �= 0, a = A/|A| is a
unit vector.

1.6.9 The Scalar (Dot) Product

The scalar product is a scalar quantity defined as A · B =
AB cos θ , where θ is the smaller angle between A and B
(0 ≤ θ ≤ π) (see Fig. 1.13).

1.6.9.1 Some Properties of the Scalar Product
• A · B = B · A (Commutative law of scalar product).
• A · (B + C) = A · B + A · C (Distributive law).
• m(A · B) = (mA) · B = A · (mB) = (A · B)m, where m

is a scalar.

1.6.10 TheVector (Cross) Product

The vector product is a vector quantity defined as C =
A × B (read A cross B) with magnitude equal to |A × B| =
AB sin θ, (0 ≤ θ ≤ π) . The direction of C is found from the
right-hand rule or of advance of a right-handed screw rotated
from A to B as shown in Fig. 1.14. C is perpendicular to the
plane formed by A and B.

1.6.10.1 Some Properties
• A · A = A2, 0 · A = 0
• A × B = −B × A
• A × (B + C) = A × B + A × C (Distributive law).
• (A + B) × C = A × C + B × C

Fig. 1.13 The scalar product of two vectors
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Fig. 1.14 The vector product of two vectors

Fig.1.15 The magnitude of the vector product |A×B| = is the area of
a parallelogram with sides A and B

• q(A × B) = (qA) × B = A × (qB) = (A × B)q, where
q is a scalar.

• |A × B| = The area of a parallelogram that has sides A
and B as shown in Fig. 1.15.

1.7 Coordinate Systems

To specify the location of a point in space, a coordinate sys-
temmust be used. A coordinate system consists of a reference
point called the originO and a set of labeled axes. The positive
direction of an axis is in the direction of increasing numbers,
whereas the negative direction is opposite. Figures1.16 and
1.17 show the rectangular (or Cartesian) coordinate system
and the polar coordinates of a point, respectively The rectan-
gular coordinates x and y are related to the polar coordinates
r and θ by the following relations:

x = r cos θ

y = r sin θ

tan θ = y/x

r =
√
x2 + y2

In three dimensions, the cartesian coordinate system is shown
in Fig. 1.18. Other used coordinate systems in three dimen-
sions are the spherical and cylindrical coordinates (Figs. 1.19
and 1.20).

Fig. 1.16 The rectangular (cartesian) coordinate system

Fig. 1.17 The polar coordinate system

Fig. 1.18 The cartesian coordinate system in three dimensions
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Fig. 1.19 The spherical coordinate system

Fig. 1.20 The cylindrical coordinate system

1.8 Vectors in Terms of Components

In two dimensions, the vector A can be expressed as the sum
of two other vectors A = Ax +Ay , where Ax = A cos θ and
Ay = A sin θ as shown in Fig. 1.21.

Ax and Ay are called the rectangular components, or sim-
ply components ofA in the x and y directions respectively The
magnitude and direction of A are related to its components
through the expressions:

A =
√
A2
x + A2

y

Fig.1.21 In twodimensions, the vectorA can be expressed as the sumof
two other vectors A = Ax +Ay , where Ax = A cos θ and Ay = A sin θ

Fig. 1.22 In three dimensions the magnitude of A is

A =
√
A2
x + A2

y + A2
z

tan θ = Ay/Ax

In three dimensions (see Fig. 1.22), the magnitude of A is
given by

A =
√
A2
x + A2

y + A2
z

with directions given by

cosα = Ax/A, cosβ = Ay/A, cos γ = Az/A

1.8.1 Rectangular Unit Vectors

The rectangular unit vectors i, j, and k are unit vectors defined
to be in the direction of the positive x-, y-, and z-axes,
respectively, of the rectangular coordinate system as shown
in Fig. 1.23. Note that labeling the axes in this way forms a
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Fig. 1.23 The rectangular unit
vectors i, j and k are unit vectors
defined to be in the direction of
the positive x, y, and z axes
respectively

right-handed system. This name derives from the fact that a
right- handed screw rotated through 90o from the x-axis into
the y-axis will advance in the positive z-direction. (Note that
throughout this book the right-handed coordinate system is
used). In terms of unit vectors, vector A can be written as

A = Ax i + Ayj + Azk

1.8.2 Component Method

Suppose we have A = Ax i + Ayj and B = Bx i + Byj

1.8.2.1 Addition
The resultant vector C is given by

C = A + B = (Ax + Bx )i + (Ay + By)j = Cx i + Cyj

Cx = Ax + Bx

Cy = Ay + By

Thus, the magnitude of C is

C =
√
C2
x + C2

y

with a direction

tan θ = Cy

Cx
= Ay + By

Ax + Bx

in three dimensions

C = (Ax+Bx )i+(Ay+By)j = (Az+Bz)k = Cx i+Cyj+Czk

the magnitude of C is

C =
√
C2
x + C2

y + C2
z

And the directions are

Fig. 1.24 The displacements are drawn to scale with the head of A
placed at the tail of B and the head of B placed at the tail of C.The
resultant vectorR is the vector that extends from the tail ofA to the head
of C

cosα = Cx/C, cosβ = Cy/C, cos γ = Cz/C

This component method is easy to use in adding any number
of vectors.

Example 1.5 A truck travels northwest a distance of 30km,
and then 50km at 30o north of east, and finally travels a dis-
tance of 20km due south. Determine both graphically and
analytically the magnitude and direction of the resultant dis-
placement of the truck from its starting point.

Solution 1.5 Graphically, in Fig. 1.24 the displacements are
drawn to scale with the head of A placed at the tail of B and
the head of B placed at the tail of C.The resultant vector R
is the vector that extends from the tail of A to the head of C.
By using graph paper and a protractor, the magnitude of R
is measured to have the value of 34.8km and a direction of
49.8o from the positive x axis. Analytically, from Fig. 1.24,
we have

Ax = A cos 135o = (30 km)(−0.707) = −21.2 km

Ay = A sin 135o = (30 km)(0.707) = 21.2 km

Bx = B cos 30o = (50 km)(0.866) = 43.3 km

By = B sin 30o = (50 km)(0.5) = 25 km

Cx = C cos 270o = (20 km)(0) = 0

Cy = C sin 270o = (20 km)(−1) = −20 km

R = A+B+C = (Ax +Bx +Cx )i+(Ay+By+Cy )j+(Az+Bz+Cz )k = 22.1i+26.2j

Thus, the magnitude of R is given by
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R =
√
R2
x + R2

y =
√

(221 km)2 + (262 km )2 = 34.3 km

and its direction is

θ = tan−1
(
26.2 km

22.1 km

)
= 49.9o

north of east.

1.8.2.2 Subtraction
C = A − B = (Ax − Bx )i + (Ay − By)j + (Az − Bz)k

Themagnitude and direction ofC are as in the case of addition
except that the plus sign is replaced by the minus sign.

1.8.2.3 Scalar Product
A · B = (Ax i + Ayj + Azk) · (Bx i + Byj + Bzk)

Using the definition of scalar product and by applying the
distributive law we get nine terms: since i · i = j · j = k · k, ·
and i · j = j · k = j · k = 0, we get

A · B = Ax Bx + Ay By + Az Bz

The dot product of any vector (for example A) by itself
is

A · A = A2 = A2
x + A2

y + A2
z

1.8.2.4 The Angle BetweenTwoVectors
A · B = AB cos θ = Ax Bx + Ay By + Az Bz

cos θ = Ax Bx + Ay By + Az Bz

AB

Example 1.6 Two vectors A and B are given by A = i +
5j − 7k and B = 6i − 2j + 3k. Find the angle between
them.

Solution 1.6

A · B = AB cosφ = Ax Bx + Ay By + Az Bz

A =
√
A2
x + A2

y + A2
z = √

1 + 25 + 49 = 8.7

B =
√
B2
x + B2

y + B2
z = √

36 + 4 + 9 = 7

cosφ = Ax Bx + Ay By + Az Bz

AB
= 6 − 10 − 21

(8.7)(7)
= −0.4

φ = 113.6o

1.8.2.5 Perpendicular and Parallel Vectors
Nonzero vectors A and B are perpendicular if A · B = 0 or
Ax Bx + Ay By+ Az Bz = 0 and they are parallel ifA×B = 0.
For any two parallel vectorsA andB, we haveA = qB, where
they have the same direction if q > 0, and are in opposite
direction if q < 0. Also we can write

A
B

= q

or
Ax

Bx
= Ay

By
= Az

Bz

1.8.2.6 Vector Product
From the vector product definition, we can see that

i × i = j × j = k × k = 0

i × j = k, j × k = i, k × i = j

j × i = −k, k × j = −i, i × k = −j

If we write the unit vectors around a circle as shown in
Fig. 1.25, then reading counterclockwise gives the positive
products and reading clockwise gives the negative products.
Note that these results are for a right-handed coordinate sys-
tem. We have

A × B = (Ax i + Ayj + Azk) × (Bx i + Byj + Bzk)

using the distributive law and the above relations of unit vec-
tors we get

A×B = (Ay Bz − Az By)i+ (Az Bx − Ax Bz)j+ (Ax By − Ay Bx )k

since a determinant of order 2 is defined as

∣∣∣∣a1 a2
b1 b2

∣∣∣∣ = a1b2 − a2b1

Then, the above expression can be written as

Fig. 1.25 If we write the unit
vectors around a circle, then
reading counter clockwise gives
the positive products and reading
clockwise gives the negative
products
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A × B =
∣∣∣∣ Ay Az

By Bz

∣∣∣∣ i −
∣∣∣∣ Ax Az

Bx Bz

∣∣∣∣ j +
∣∣∣∣ Ax Ay

Bx By

∣∣∣∣k

A determinant of order 3 is

∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣a2 a3
b2 b3

∣∣∣∣ c1 −
∣∣∣∣a1 a3
b1 b3

∣∣∣∣ c2 +
∣∣∣∣a1 a2
b1 b2

∣∣∣∣ c3

Hence, the cross product can be expressed as

A × B =
∣∣∣∣∣∣
i j k
Ax Ay Az
Bx By Bz

∣∣∣∣∣∣ = (Ay Bz − Az By )i + (Az Bx − Ax Bz )j + (Ax By − Ay Bx )k

Note that this is not a determinant since the elements in
the first row are vectors and not scalars, but it is a convenient
way to represent the cross product.

Example 1.7 Two vectorsA and B are given byA = −i+3j
and B = 2i + j. Find: (a) the sum of A and B, ·(b) − B and
3A, ·(c)A · B and A × B.

Solution 1.7 (a)

R = A+B = (Ax+Bx )i+(Ay+By)j = (−1+2)i+(3+1)j = i+4j

Rx = 1

Ry = 4

(b)
−B = −2i − j

3A = −3i + 9j

(c)
A ·B = (−i+3j)(2i+ j) = −i ·2i− i · j+3j ·2i+3j · j =

−2 + 3 = 1

A×B = (−i+3j)× (2i+ j) = −i× j+3j×2i = −k−6k = −7k

Example 1.8 Find a vector ofmagnitude 1 that is perpendicu-
lar to each of the vectorsA = 5i+j−3k andB = 3i+7j−2k.

Solution 1.8 By the definition of the unit vector, we have

c = A × B
|A × B|

where c is a unit vector perpendicular to the plane formed by
A and B. We have

A × B =
∣∣∣∣∣∣
i j k
5 1 −3
3 7 −2

∣∣∣∣∣∣ = 19i + j + 32k

|A × B| =
√

(19)2 + (1)2 + (32)2 = 37.23

C = 19i + j + 32k
37.23

= 0.5i + 0.027j + 0.86k

Example 1.9 Given that A = 2i − 3j − k,B = 3i − j
and C = j − 4k, find (a) A × B (b)(A × B) × C (c) A ·
(B × C).

Solution 1.9 (a)

A × B =
∣∣∣∣∣∣
i j k
2 −3 −1
3 −1 0

∣∣∣∣∣∣ = −i − 3j + 7k

(b)

A × (B × C) =
∣∣∣∣∣∣
i j k
−1 −3 7
0 1 −4

∣∣∣∣∣∣ = 5i − 4j − k

(c)

B × C =
∣∣∣∣∣∣
i j k
3 −1 0
0 1 −4

∣∣∣∣∣∣ = 4i + 12j + 3k

A·(B×C) = (2i−3j−k)·(4i+12j+3k) = 8−36−3 = −31

Example 1.10 Using vectors method, find the area of a tri-
angle if the coordinates of its three vertices are A(2, 1, 3) ,
B(2, 5, 7) , C(−1, 4, 2) .

Solution 1.10

AB = (2 − 2)i + (5 − 1)j + (7 − 3)k = 4j + 4k

AC = (−1 − 2)i + (4 − 1)j + (2 − 3)k = −3i + 3j − k

Area

= 1

2
|AB × AC| = 1

2
|(4j + 4k) × (−3i + 3j − k)| = 1

2
|4(−4i − 3j + 3k)|

= 2
√

(−4)2 + (−3)2 + (3)2 = 11.7
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Fig. 1.26 The triple scalar product is equal to the volume of a par-
allepiped with sides A,B, and C

1.8.2.7 Triple Product
Scalar Triple Product

The triple scalar product is a scalar quantity defined as A ·
(B × C) . This quantity can be represented by a determinant
that involves the components of the vectors,

A · (B × C) =
∣∣∣∣∣∣
Ax Ay Az

Bx By Bz

Cx Cy Cz

∣∣∣∣∣∣
where A = Ax i + Ayj + Azk,B = Bx i + Byj + Bzk, and
C = Cx i+Cyj+Czk.Furthermore, the triple scalar product is
equal to the volume of a parallepipedwith sidesA,B, andC as
shown in Fig. 1.26. Because any edges can be used, the triple
scalar product can be written as A · (B×C) or as A · (C×B)

. These products are positive and negative for a right-handed
coordinate system respectively. Therefore, there are 6 equal
triple scalar products or 12 if you include the terms of the
form (B×C) ·A . A. Three of these six products are positive
and the rest are negative. By expanding the determinant, you
can prove that

A ·(B×C) = B ·(C×A) = C ·(A×B) = −A ·(C×B) =
−B · (A × C) = −C · (B × A)

Vector Triple Product

The triple vector product is a vector quantity defined as A ×
(B × C) . You can prove by expanding this equation that

A × (B × C) = (A · C)B − (A · B)C

Example 1.11 Given thatA = Ax i,B = Bx i+Bzk, andC =
Cyj, show that the identityA×(B×C) = (A ·C)B−(A ·B)C
is correct.

Solution 1.11

(B × C) =
∣∣∣∣∣∣
i j k
Bx 0 Bz

0 Cy 0

∣∣∣∣∣∣ = −BzCy i + BxCyk

A × (B × C) =
∣∣∣∣∣∣
i j k
Ax 0 0
−BzCy 0 BxCy

∣∣∣∣∣∣ = −Ax BxCyj

(A · C)B = 0

−(A · B)C = −(Ax Bx )C = −Ax BxCyj

Hence, the identity is valid.

1.9 Derivatives of Vectors

If A(t) is a vector function of t , where t is a scalar variable
such as

A(t) = Ax (t)i + Ay(t)j + Az(t)k

Then
dA(t)

dt
= d Ax (t)

dt
i + d Ay(t)

dt
j + d Az(t)

dt
k

1.9.1 Some Rules

If A(t) and B(t) are vector functions and φ(t) is a scalar
function then

d

dt
(φA) = φ

dA
dt

+ dφ

dt
A

d

dt
(A · B) = A · dB

dt
+ dA

dt
· B

d

dt
(A × B) = A × dB

dt
+ dA

dt
× B

Example 1.12 Twovectors r1 and r2 are given by r1 = 2t2i+
cos tj + 4k and r2 = sin t i + cos tk, find at t = 0 (a)

d2r1
dt2

and (b)
d(r1 · r2)

dt
.

Solution 1.12 (a)

dr1
dt

= 4t i − sin tj

d2r1
dt2

= 4i − cos tj

At t = 0
d2r1
dt2

= 4i − j
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(b)

d(r1 · r2)
dt

= d{(2t2i + cos tj + 4k)(sin t i + cos tk)}
dt

=

d(2t2 sin t + 4 cos t)

dt
= 4t sin t+2t2 cos t−4 sin t = 4(t−1) sin t+2t2 cos t

At t = 0

d(r1 · r2)
dt

= 0.

1.9.2 Gradient,Divergence, and Curl

If A = A(x, y, z) is a vector function of x, y, and z then
A(x, y, z) is called a vector field. Similarly, the scalar func-
tion φ(x, y, z) is called a scalar field.

1.9.2.1 Del
The vector differential operator del is defined as

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

1.9.2.2 Gradient

∇φ =
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
φ = i

∂φ

∂x
+ j

∂φ

∂y
+ k

∂φ

∂z

The vector ∇φ is called the gradient of φ (written
gradφ).

1.9.2.3 Divergence

∇ · A =
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
· (Ax i + Ayj + Azk)

= ∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

∇ · A is called the divergence of A (written divA).

1.9.2.4 Curl

∇ × A =
(
i

∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
× (Ax i + Ayj + Azk)

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ =
(

∂Az

∂y
− ∂Ay

∂z

)
i+

(
∂Ax

∂z
− ∂Az

∂x

)
j+

(
∂Ay

∂x
− ∂Ax

∂y

)
k

∇ × A is called the curl of A (written curlA).

1.9.2.5 Some Identities
• divcurlA = ∇ · (∇ × A) = 0.
• curlgradφ = ∇ × (∇φ) = 0

.

Example 1.13 A vector field A and a scalar field B are given
by A = 3xyi + (2y2 − x)j and B = 3x2y, Find at the point
(−1,1)(a) ∇ · A (b) ∇ × A (c) ∇B.

Solution 1.13 (a)

∇ · A = ∂Ax

∂x
+ ∂Ay

∂y
= 3y + 4y = 7y

at (−1, 1) , ∇ · A = 7.
(b)

∇ × A =
∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

3xy (2y2 − x) 0

∣∣∣∣∣∣ = (−3x − 1)k

at (−1, 1) , ∇ × A = 2k.

(c)

∇B = ∂B

∂x
i + ∂B

∂y
j + ∂B

∂z
k = 6xyi + 3x2j

at (−1, 1) , ∇B = −6i + 3j.

1.10 Integrals of Vectors

If A(t) = Ax (t)i + Ay(t)j + Az(t)k, where t is a scalar
variable, the indefinite integral is defined as

∫
A(t)dt = i

∫
Ax (t)dt + j

∫
Ay(t)dt + k

∫
A(t)dt

If A(t) = dB(t)/dt , then

∫
A(t)dt =

∫
d

dt
{B(t)}dt = B(t) + C

where C is an arbitrary constant vector. The definite integral
between the limits t = a and t = b is defined as

∫ b

a
A(t)dt =

∫ b

a

d

dt
{B(t)}dt = B(t)+C|ba = B(b)−B(a)

1.10.1 Line Integrals

The line integral refers to an integral along a line or a curve.
This curve may be open or closed. The line integral may
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Fig. 1.27 The line integral

appear in three different forms shown by
∫
c
φdr,

∫
c
A. dr,

and
∫
c
A × dr. The second is the most common one and it

will be used throughout this book. Suppose the position vec-
tor of any point (x, y, z) on the curve C (see Fig. 1.27) that
extends from P(x1, y1, z1) at t1 to Q(x2, y2, z2) at t2 is
given by

r(t) = x(t)i + y(t)j + z(t)k

where t is a scalar variable, and suppose thatA = A(x, y, z) =
Ax i + Ayj+ Azk is a vector field, then the line integral of A
is given by

∫ Q

P
A ·dr =

∫
C
A ·dr =

∫
C
(Axdx + Aydy+ Adz) (1.2)

Note that A · r is the tangential component of A along C. If C
is a simple closed curve (does not intersect with itself) then
the line integral is written as

∮
C
A · dr =

∮
C
(Axdx + Aydy + Adz)

1.10.2 Independence of Path

The line integral in general depends on the path, but some-
times it does not. Instead, it depends only on the coordinates
of the end points of the curve (path) but not on the curve itself.
The line integral in Eq.1.2 is independent of the path, joining
the points P and Q if and only if A = ∇φ, or equivalently
∇ × A = 0. The value of Eq. (1.2) is then given by

∫ Q

P
A·dr =

∫ Q

P
dφ = φ(P)−φ(Q) = φ(x2, y2, z2)−φ(x1, y1, z1)

Note that φ(x, y, z) has continuous partial derivatives. Fur-
thermore, if the line integral of A is independent of the path
then the line integral of A about any closed path is equal to
zero: ∮

C
A · dr = 0

Example 1.14 A force field is given by F = (4xy2 + z2)i +
(4yx2)j + (2xz − 1)k

(a) Show that ∇ × F,
(b) Find a scalar function φ such that F = ∇φ.

Solution 1.14 (a)

∇×F =
∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

(4xy2 + z2) (4yx2) (2xz − 1)

∣∣∣∣∣∣ = (2z−2z)j+(8xy−8xy)k = 0

(b)

F · dr = ∇φ · dr = ∂φ

∂x
dx + ∂φ

∂y
dy + ∂φ

∂z
dz = dφ

dφ = (4xy2 + z2)dx + (4yx2)dy + (2xz − 1)dz

Hence

φ = (2x2y2 + z2x) + (2y2x2) + (z2x − z)

Example 1.15 A vector F is given by F = 3x2yi−(4y+ x)j.

Compute
∫
c
F · dr along each of the following paths:

(a) The straight lines from (0, 0) to (0, 1) and then to (1, 1).
(b) Along the straight line y = x . (c) Along the curve

x = t, y = t2.

Solution 1.15 (a) Along the straight line from (0,0) to (0,1)
we have x = 0, and dx = 0, therefore

∫
C
F · dr =

∫
C
3x2ydx − (4y+ x)dy =

∫ 1

y=0
−4ydy = −2y2|10 = −2

Along the straight line from (0, 1) to (1, 1) we have y =
1, dy = 1, hence

∫
C
F · dr =

∫ 1

x=0
3x2dx = x3|10 = 1

Thus, we have for the total path

∫
C
F · dr = −2 + 1 = −1

(b) Along the straight line y = x , we have dy = dx,
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Fig. 1.28 The line integral along the curve using polar coordinates

∫
C
F · dr =

∫
C
3x2ydx − (4y + x)dy =

∫ 1

x=0
(3x3 − 5x)dx

= 3/4x4 − 5/2x2|10 = −3/2.

(c) Finally along the curve x = t, y = t2, we have dx =
dt, dy = 2tdt , furthermore the points (0, 0) and (1, 1) cor-
responds to t = 0 and t = 1, respectively. Hence

∫
C
F· dr =

∫
C
3x2ydx−(4y+x)dy =

∫ 1

t=0
3t4dt−2t (4t2+t)dt

= 3/5t5 − 2t4 − 2/3t3|10 = −31/15.

Example 1.16 If a vector A is given by A = xyi − x2j, find

the line integral
∫
C
A · dr along the circular arc shown in

Fig. 1.28.

Solution 1.16 By using the polar coordinates, we have x =
cos θ and y = sin θ (since r = 1) , dx = − sin θdθ and
dy = cos θdθ , also x2 + y2 = r2 = 1, therefore we have

∫
c
A · dr =

∫ −π/4

θ=π
− cos θ sin2 θdθ − cos3 dθ =

∫ −π/4

θ=π
− cos θ(sin2 θ + cos2 θ)dθ

=
∫ −π/4

θ=π

− cos θdθ = − sin θ |−π/4
π = 0.71

Fig.1.29 Vectors A,B,C and D

Problems

1. Check if the relation v = √
2GME/RE is dimensionally

correct, where v represents the escape speed of a body,ME

and RE are the mass and radius of the earth, respectively,
and G is the universal gravitational constant.

2. If the speed of a car is 180km/h, find its speed in m/s.
3. How many micrometers are there in an area of 3 km2.

4. Figure1.29 shows vectorsA,B,C, andD. Find graphically
the following vectors (a) A+ 2B−C(b)2(A−B) +C−
2D(c) show that (A + B) + C = A + (B + C) .

5. A car travels a distance of 1km due east and then a distance
of 0.5km north of east. Find the magnitude and direction
of the resultant displacement of the car using the algebraic
method.

6. Prove that A · (B + C) = A · B + A · C.
7. A parallelogram has sides A and B. Prove that its area is

equal to |A × B|.
8. If A = 2i − 3j + 4k and B = i + 5j − 2k, find (a) A −

2B(b)A× B (c)A · B (d) the length of A and the length of
B(e) the angle between A and B(f) the scalar projection of
A on B and the scalar projection of B on A.

9. Show that A is perpendicular to B if |A + B| = |A − B|.
10. Given that A = 2i + j + k,B = i + 3j − 5k and C =

6i + 3j + 3k, determine which vectors are perpendicular
and which are parallel.

11. Use the vectorsA = cos θ i+sin θ j andB = cosφi−sin φj
to prove that cos(θ + φ) = cos θ cosφ − sin θ sin φ.

12. IfA = 5x2yi+ yzj−3x2z2k,B = 7y3zi−2zxj+ xz2yk
andφ(x, y, z) = 2z2y, find at (−1,1,1)(a)∂(φA)/∂x(b)∂2

(A × B)/∂z∂y(c)∇φ(d)∇ × (φA) .
13. Evaluate ∇ × (r2r) where r = x i + yj − zk and r = |r|.
14. If r = A cosωt i+A sinωtj, show that d2r/dt2+ω2r = 0.
15. A force field is given by F = −kx i − kyj, find (a) ∇ × F

(b) a scalar field φ such that F = ∇φ(c) Calculate the
line integral along the straight lines from (0, 0) to (1, 0) to
(1, 1) and from (0, 0) to (0, 1) to (1, 1). Is the line integral
independent of path?
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