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Abstract. We present QLAD, an anomaly detection system that is
designed for the high query volume and the specific nature of DNS traffic
at a TLD resolver. QLAD integrates three components that implement
the complete anomaly detection process, ranging from the ingression of
raw traffic data to the visualisation of detected anomalies. With an initial
analysis of query logs from the Belgian ccTLD registry, we showed that
QLAD can archive data compactly, has a low computational cost and
can detect a wide range of anomalies. We found several anomalies that
are of interest to the registry operator, such as domain enumerations and
DoS attacks. Other anomalies were caused by benign applications with
unique traffic patterns. A user interface helps to distinguish these, but
correctly identifying all anomalies remains a difficult and tedious task.
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1 Introduction

The Domain Name System (DNS) is an Internet service that translates domain
names into IP addresses [19]. While the Internet’s infrastructure is based on IP
addresses, domain names are alphanumerical to make them easier to remember.
Every time you use a domain name, a DNS service must translate the name to
the corresponding IP address. For example, the domain name www.example.com
might translate to 198.105.232.4.

At its core, DNS is a distributed and hierarchical database. Each level cor-
responds to a part in the domain name separated by dots and uses so-called
authoritative name servers to provide pointers to the next lower level. At the
top of the DNS hierarchy are 13 root name servers, which contain pointers to
the name servers for all the generic top-level domains (gTLD) such as .com and
.org as well as country-specific top-level domains (ccTLD) such as .uk, .be or .fr.
Each TLD is managed by a registry operator which is responsible for the reg-
istration of new domain names and the resolution of queries for these domains.
The other levels in this hierarchy follow the same principle.

On one hand, these TLD registries are themselves an interesting target for
attackers. Given that most of the communication within the Internet starts with
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several DNS lookups, a successful attack on servers high up in the DNS hierarchy
can have far-reaching consequences. This was illustrated by the Dyn cyberattack
that took place on October 21, 2016. It involved multiple distributed denial-of-
service (DDoS) attacks targeting systems operated by DNS provider Dyn, which
caused major Internet platforms and services to be unavailable to large swathes
of users in Europe and North America [20]. On the other hand, TLD registries
can leverage their unique position high up in the DNS hierarchy to detect threats
against other stakeholders within their zone. Many threats such as phishing
campaigns, spam attacks and Command and Control (C&C) communication
used by botnets can be observed in their DNS traffic.

The TLD registries’ business model relies on a high availability and resilience
of their DNS service, as well as the high reputation and trustworthiness of their
domain. Thus, it is in the registries’ interest to quickly identify attacks targeting
or abusing their infrastructure, and to identify misuse of their domain names.
Nevertheless, threat detection is still mainly a post-hoc task. Most malicious
behaviour is only observed after it has a noticeable impact on the service.

Using the Belgian TLD registry (DNS Belgium) as a use case, we will illus-
trate how proactive and real-time analysis of the continuous stream of DNS query
logs can contribute to the resilience and security of a TLD registry’s service. This
paper will discuss the design and implementation of a query log analysis platform
called QLAD (Query Log Anomaly Detection) that is able to detect attacks and
other suspicious behaviour at a TLD resolver in near real time. QLAD performs
a first set of attack and anomaly detection functions and it offers an interface
for reporting and inspecting the detected anomalies. All code is open source and
available at https://github.com/DNSBelgium/qlad.

To summarize, this paper makes the following contributions: (i) Highlight a
number of data science challenges that we encountered while solving this prob-
lem; (ii) Discuss two statistical anomaly detection algorithms that jointly detect
a wide range of threats in DNS query logs; (iii) Propose an architecture for stor-
age, analysis and presentation of DNS query logs; (iv) Validate the approach on
a real-world data set.

2 Related Work

SIDN Labs, the research unit of the Netherlands’ TLD registry, were the first
to present a complete framework that enables registries to increase the security
and stability of their TLD [11]. However, compared to the approach presented
in this work, they focus on the detection of domain names used in malicious
activities instead of the detection of attacks against the DNS infrastructure.
The operator of the .uk TLD developed Turing [21], a system that appears to
be similar. However, Turing is a commercial solution and there is little publicly
available information about its functionality and technical implementation.

Furthermore, there is scattered prior work on individual components for data
storage, anomaly detection and thread mitigation. Traffic to ccTLD name servers
produces gigabytes of traffic data each day. On the one hand, researchers have

https://github.com/DNSBelgium/qlad
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resorted to Hadoop-based solutions [3,4,16,32] as a way to address the high vol-
ume of data. Such cluster solutions are designed for long-term data storage and
to support interactive queries on the stored data. On the other hand, tools such
as the DNS Statistics Collector (DSC) [9] aggregate the data before archiving,
reducing it to a size which can be stored in a traditional database.

Existing research about detecting the discussed attack vectors in the upper
levels of the DNS hierarchy is limited. Most research focuses on anomaly detec-
tion in recursive resolvers and small authoritative resolvers [1,23,30]. Mostly,
these methods do not scale to the level of a ccTLD. A couple of simple ideas are
applicable at the TLD level, however. These methods are all based on the detec-
tion of changes in the frequency of packets with certain attributes [12,13,33]. For
example, Karasaridis et al. [12] uses cross entropy to detect significant changes
in the distribution of packet sizes. Considerably more research has been done on
the broader scope of network anomaly detection [6]. These methods search for
anomalies in IP or TCP traffic, but some can be applied on DNS traffic too [8].

3 Detecting Anomalies in DNS Server Logs

The core problem which we aim to solve is anomaly detection in a continuous
stream of DNS query logs. We claim that due to the variety of types of anomalies
this problem cannot be solved with a single approach. On the one hand, we need
to analyse individual traffic flows to enable the detection of low-volume anomalies
in the continuous stream of valid traffic. On the other hand, we need to look at
global traffic patterns to detect anomalies that span multiple flows.

In this section, we firstly discuss the challenges posed by the task at hand and
secondly introduce two complementary anomaly detection algorithms by which
we address these challenges, referred to as respectively QLAD-flow and QLAD-
global. Finally, we describe how to integrate these anomaly detection algorithms
in a complete anomaly detection framework.

3.1 Challenges

Analysing DNS server logs to identify anomalies poses a number of significant
and non-trivial data science challenges.

Volume of data. Each server has to process about 1,000 queries per second.
This has two important consequences. First, efficiency and scalability are
crucial: any algorithms used for analysis should have a low computational
cost and should scale well to increasing traffic volumes. Secondly, due to the
high volume of valid traffic, it is easy to mask malicious traffic.

No labelled data. A second challenge is the lack of labelled or clean training
data. We have only access to the raw server logs. It is practically infeasi-
ble to manually label all anomalies in these logs. They are hidden between
thousands of valid queries and one anomaly may correspond to thousands
of unique queries, each valid on their own (e.g., a DoS attack with spoofed
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source IP addresses). Consequently, we can not use any supervised machine
learning algorithms to learn a model for anomalous or valid traffic patterns.
Moreover, any other algorithm should be robust enough to deal with a cer-
tain amount of unidentified anomalies in the training data. Also, evaluating
anomaly detectors is difficult, since we can not compare our results to a
ground truth.

Adversarial setting. There is a wide range of possible attack vectors, which
are under constant evolution. Attackers have often successfully modified their
attack vectors to circumvent new security patches [28] and extensions to the
DNS protocol have introduced new vulnerabilities [2]. A straightforward and
popular approach to solve the problem is the signature-based technique [17],
which defines a separate model (signature) for each popular attack. This
technique requires prior knowledge and new types of attacks can go unde-
tected [17]. Moreover, generating a good signature for an anomaly is diffi-
cult [10]. The signatures should be general enough to capture small variations
on the targeted attack vector, while being specific enough to allow valid traf-
fic. Such models are often easy to mislead with a small change to the attack
method [7].

Nature of DNS traffic. DNS traffic is subject to both periodic and slow vary-
ing trends in terms of the volume, type, origin and content of queries. The
number of user generated DNS queries decreases at night, over the weekend
and during holidays. Administrative queries like SOA type queries are less
affected by these factors. Moreover, apart from trends in the global amount
of traffic, individual domains often have unique traffic patterns. Furthermore,
the unique characteristics of the DNS data flow, such as small in packet size
and little in message amount, make it more difficult to distinguish anomalous
behaviours from normal ones [33].

Packet spoofing. An attacker can easily replace some fields in the DNS queries
by random values. This will make it more difficult to identify anomalies, since
all queries will seem unrelated.

3.2 QLAD-flow

The first algorithm’s goal is to identify low volume anomalies. Therefore, it splits
the traffic into different flows, for example based on the source IP of the DNS
query. The partitioning makes it possible to detect anomalies which are otherwise
hidden in the global flow of traffic. We employ the statistical anomaly detection
approach proposed by Dewaele et al. [8]. We first briefly describe this method
for completeness, and next highlight precisely what is different.

The algorithm analyses a continuous stream of packets within a sliding time-
window of duration T . Each packet is identified by its time of arrival and a set
of packet attributes (i.e., source IP, destination IP, source port and destination
port). First, all packets within a window are hashed to N buckets, using the
packet attributes as hashing keys. Second, for each bucket, the algorithm counts
the number of packets that arrive during a short aggregation period. This is done
for multiple aggregation levels, such that each bucket is transformed to multiple
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series of packet counts. Each of these series is modelled by Gamma distributions
Γα,β . Then, we can estimate the average value and variance for the α and β
parameters for each aggregation level and identify the buckets for which the α
and β values deviate more than a given threshold. Finally, the algorithm repeats
this procedure with different universal hash functions. Each hash function will
result in a different set of anomalous buckets. The intersection of all these buckets
should correspond to the set of all anomalous packets.

The method was originally designed to detect low-intensity anomalies in the
TCP/IP layer [8]. CZ.NIC, the Czech domain registry, implemented and slightly
modified the algorithm for the purpose of DNS traffic monitoring [18]. They
implemented a set of modules, called policies, in order to test various packet
identifiers. Such a policy defines which packet features are used as the hashing
keys for dividing packets into sketches. CZ.NIC designed and implemented1 the
first two policies, we added the third.

1. IP Address Policy [18] uses only the source IP address as the hash key. It
is based on the original algorithm, which uses the whole TCP/IP connection
identifier (source IP, destination IP, source port, destination port) as the
hash key. However, destination address and destination port show little to no
variability in TLD DNS traffic.

2. Query Name Policy [18] is based on application layer data. It extracts
the first domain name from the DNS query and uses it as the hash key.

3. ASN Policy is a generalization of the IP Address Policy. For each source IP,
it first looks up its autonomous system number (ASN). Each network on the
Internet is uniquely defined by such an ASN. Therefore, this policy should
be able to detect anomalies which are linked to a network, rather than an
individual server.

3.3 QLAD-global

QLAD-flow will fail to detect attacks that use random spoofed IP addresses,
since each packet will belong to a different flow. Especially DoS attacks often
use this technique and will therefore remain undetected by QLAD-flow. QLAD-
global tries to address this issue by looking at the global traffic flow.

The method is based on the observation that all common traffic anomalies
cause changes in the distribution of one or more traffic features. In some cases,
feature distributions become more concentrated on a small set of values; for
example the distribution of source IP addresses during a reflection attack on
a couple of servers in the same network. In other cases, feature distributions
become more dispersed; for example when source addresses are spoofed in a DoS
attack, or during a zone enumeration attack when lots of domains are queried
only once. An analysis based on these traffic feature distributions can capture
fine-grained patterns in traffic distributions that simple volume based metrics
cannot identify [15].

1 Project repository can be found at git://git.nic.cz/dns-anomaly/.

https://gitlab.labs.nic.cz/labs/dns-anomaly
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In this paper, we focus on eight traffic features: the number of requests for
each TLD and SLD (second level domain name), the query types, the response
codes, the number of requests by each client, ASN and country, and finally the
response sizes. Obviously, these are not the only fields that could be used to
detect anomalies, but they are general enough to encompass most other fields
and we found that they suffice to detect the most common anomalies.

The distribution of these traffic features is high dimensional, and so is hard
to work with directly. Therefore, we perform anomaly detection on the entropies
of these feature distributions instead. The entropy is defined as:

H(X) = −
n∑

i=1

p(xi) log(p(xi)).

Here, X is a feature that can take values {x1, . . . , xn} and p(xi) is the probability
mass function of outcome xi. Entropy is a measure of the uncertainty associated
with a random variable [24]. Although, in this context, it can be interpreted as
a measure for the degree of concentration or dispersal of a distribution [15].

Besides concentration and dispersal of the underlying distribution, the
entropy also depends on the number of distinct values n. In practice, this means
that entropy tends to increase when the traffic volume increases [15]. This is an
advantage if normal traffic volumes are constant, since it allows the detection
of volume anomalies with entropy measures. However, in our application, traffic
volume is highly periodic, so we mitigate the effect of this phenomenon by nor-
malizing entropy values. Therefore, we divide by log(n) (the maximum entropy),
as proposed by Nychis et al. [22].

Figure 1 illustrates that entropy can be effective for anomaly detection with
a simple example. The left plot shows the distribution between queries for valid
(NOERROR) and non-existent domain names (NXDOMAIN) during 100 suc-
cessive one-minute windows. The right plot shows the entropy values for these
distributions. During two short periods (around minute 90 and around minute
125), the percentage of NXDOMAIN requests increases significantly, i.e., the
distribution of response code values becomes more dispersed. These anomalies
cannot be observed in the global traffic volume, but they stand out clearly on the
right plot. The entropy increases, corresponding to a distributional dispersion
around the NOERROR and NXDOMAIN response codes.

Fig. 1. Two anomalies in the ratio between DNS queries for valid and non-existent
domain names over time (left), viewed in terms of entropy (right). Transforming the dis-
tribution to an entropy time series allows automated detection with standard anomaly
detection techniques.
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For each of the eight traffic features, we compute the entropy of the distribu-
tion in one-minute windows. This reduces the problem of anomaly detection in
DNS traffic to a problem of anomaly detection in (correlated) time series. The
research community has defined a wide range of algorithms to solve this type of
problem [29]. One popular approach compares windows or individual points with
a pre-trained profile of legitimate traffic [5]. Due to the lack of clean training
data, we can not apply this approach to our problem. Alternatively, the subspace
method [15] uses principal component analysis to detect unusual variations in
the correlation between multiple time series. This method gave poor results, due
to the high level of periodicity and unequal effects of this periodicity on each
entropy time series. Therefore, we apply anomaly detection separately on each
time series. There exists algorithms that should be able to learn the periodicity
in these time series, but since the time series are influenced by both the hour
of the day and the day of the week and since the data is contaminated with
anomalies, these algorithms would require data of several weeks to learn a good
model [31].

Despite its simplicity, we found a simple Exponential Moving Average (EMA)
filter to work best. To quantify the range around the EMA that could be consid-
ered normal, we compute the Exponential Moving Standard Deviation (EMS):

EMSt =
√

w ∗ EMS2
t−1 + (1 − w) ∗ (yt − EMAt)2 (1)

An anomaly is reported when |yt − EMAt| > n ∗ EMSt, where n controls the
sensitivity of the alarm to the entropy measurement yt.

4 QLAD Architecture

Our goal is to develop an anomaly detection system that is tuned to the unique
nature of DNS traffic. Ideally, the system has the following characteristics:

Accurate. It should be able to detect suspicious and unexpected behaviour.
This requires being sensitive to a wide range of possible attacks, including
low volume anomalies.

Efficient. It should be able to handle high volumes of traffic and perform its
analysis in near real time.

Unsupervised. It does not need any initial knowledge about the analysed traf-
fic in the form of labelled data or a description of the possible attack vectors.

Provide insight. It should allow the operator to pinpoint the cause of an
anomaly and determine the correct countermeasures.

Extendable. The architecture should enable future growth and improvements
to the system.

The QLAD system was designed with these requirements in mind. Figure 2
displays its modular architecture, which can be divided into three layers: a data
transformation, anomaly detection, and presentation layer. The transformation
layer is a crucial component. Storing the raw pcap files is undesirable because
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they have a large storage cost and are inefficient to query. Therefore, we consid-
ered two alternative solutions for preprocessing and storing these pcap files.

The first solution, based on the DNS Statistics Collector (DSC) [9], trans-
forms the pcap files into time aggregated traffic features such as the number
of queries by query type, the most popular domains queried, and the length of
DNS reply messages. The aggregated data is small enough that it can be directly
stored in a traditional database system. This means that this component can be
deployed easily and at a very low cost in terms of infrastructure. The aggregated
data suffices to detect anomalies, but does not allow a detailed manual analysis.

The alternative, ENTRADA [32], is a big data platform designed to ingest
and quickly analyse large amounts of network data. It was built by SIDN Labs,
the research department of the Dutch domain registry, to enable fast data analy-
sis on the network traffic of their authoritative name servers. ENTRADA is built
entirely on open-source tools, and was open sourced itself in January 2016 [26].
The ENTRADA platform continuously processes pcap files in order to convert
them to Apache Parquet files (a columnar storage format), which are ultimately
stored in a Hadoop cluster (HDFS). Once archived, these files are available for
analysis via Impala2 [25].

Each approach has its own advantages and disadvantages. Effectively, the
choice between both methods is a trade-off between deployment costs and more
extensive data analysis possibilities.

Fig. 2. A global overview of the QLAD system.

2 Impala provides an SQL-like interface to query data stored in a HDFS. See https://
impala.incubator.apache.org/overview.html for more information.

https://impala.incubator.apache.org/overview.html
https://impala.incubator.apache.org/overview.html
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5 Empirical Evaluation

We evaluated QLAD on two days of real-world traffic to one of DNS Belgium’s
servers. The absence of a ground truth makes evaluating anomaly detectors noto-
riously difficult [27]. Since manually identifying all true anomalies in the traffic
is infeasible, it is impossible to determine which anomalies are missed by the
detectors. Hence, we cannot compute metrics like recall. The research commu-
nity takes two approaches to address this problem [14]. A first approach is to
manually inspect each detected anomaly in order to pinpoint its root cause. This
approach fits best with a real-world application of the detector. A second app-
roach injects the data with synthetically generated attacks. This approach has
the advantage that the parameters of an attack (duration, traffic volume, etc.)
can be carefully controlled, which enables sensitivity analysis of the detection
algorithm.

With QLAD we focussed on the detection of a wide range of anomalies. Our
primary interest is to find out which type of real-world anomalies QLAD is able
to detect. Therefore, we use the first approach. An evaluation with the second
approach is left as future work. Specifically, we address the following questions:

Q1: What are the space/time trade-offs between DSC and ENTRADA storage?
Q2: What is the runtime performance of the anomaly detectors?
Q3: Which types of real-world anomalies can QLAD detect?

5.1 Q1: Data Preprocessing and Storage

The traffic used for evaluation originates from one of DNS Belgium’s name
servers, collected between Sunday 12 February and Monday 13 February 2017.
Traffic was captured for 44 h and amounts to 58,345,819 queries or 42 GB of
pcap packet dumps. We processed these logs with both ENTRADA and DSC.
ENTRADA reduces the original logs to 3.8 GB of Parquet files, which is about
9% of the original volume. Note, however, that—given the default replication
factor of three in Hadoop—you still need 11.4 GB of actual storage space. With
DSC, the volume is reduced to 39 MB, which is about 0.09% of the original size.

5.2 Q2: Anomaly Detection Performance

Both QLAD-flow and QLAD-global are computationally very efficient and capa-
ble of analysing real-time traffic. QLAD-flow analyses the complete dataset in
3 m 36 s (source IP policy), 5 m 13 s (query name policy) and 21 m 45 s (ASN pol-
icy).3 We used a window size of 10 min, 8 aggregation levels, 25 hash functions,
a hash table of size 32 and 1.2 as a detection threshold. The same parameters
are used in further experiments. For a more extensive performance analysis with
varying parameters, we refer to Mikle et al. [18].

Using the DSC setup, QLAD-global can analyse the full dataset in 1 m 18 s.
Its performance is mainly determined by the time needed to fetch the data from
3 2.3 GHz dual-core Intel Core i5 processor with 8 GB RAM.
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the MongoDB database. We do not count the time needed to extract the traffic
feature distributions from the query logs.

5.3 Q3: Classification of Detected Anomalies

Table 1 shows the total number of anomalies detected by each anomaly detection
algorithm and our expert’s classification. We tried to group anomalies together as
much as possible. For example, when the same attack is launched from multiple
IP addresses, we count it as only one anomaly. Furthermore, there was a large
overlap between the anomalies detected by each detector. We write the number
of anomalies that are not detected by any other detection method in parentheses.
QLAD-flow with the ASN policy detected a subset of the anomalies detected
with the source IP policy, but no new anomalies.

Table 1. A manual classification of the detected anomalies.

Anomaly type QLAD-flow
(source IP)

QLAD-flow
(query name)

QLAD-global Total

Benign

Caching resolver 12 (10) 2 12

Email marketing 8 (7) 2 (1) 9

Other 1 (1) 2 (2) 3

Malicious

Spam sender 3 (3) 3

Domain enumeration 5 (3) 2 5

Reflection attack 1 1 2

Phishing 1 (1) 1

DoS attack 3 (1) 2 (1) 1 4

Unknown 1 1 1

Total 35 (26) 4 (3) 9 (1) 39

In total, we found 39 unique anomalies, but only a minority of them is inter-
esting for a TLD operator. QLAD-flow pinpoints flows which are statistically
different from the other flows in some time window. Not all of these flows are
malicious; there are some benign applications with unique traffic patterns too.
Although, they are anomalous in some sense, they are not interesting for a TLD
operator. Examples of such applications we found include caching resolvers, email
marketing services, a cloud provider, security appliances and a cryptocurrency
mining pool.

Other anomalies were clearly malicious. We found something that looked
like a reflection attack on Twitter, several domain enumeration attacks, three
servers sending spam and four DoS attacks (although not large enough to have
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a real impact). Furthermore, one server generated bizarre queries for domains
such as www-axa-fr.be and www-keytradebank.be. Since these refer to Belgian
and French banks, these queries where probably generated by a script looking
for unused domain names to be used in phishing.

To conclude, we verified whether any of the IP addresses corresponding to
the anomalies we discovered was reported previously for engaging in malicious
activity.4 Two were reported for engaging in DDoS attacks and two others for
spreading spam. For all four, this corresponds to the anomalies we observed.

6 Conclusions

We presented the design, implementation and evaluation of the QLAD
framework—a proof of concept anomaly detection system for query logs of a
TLD resolver. We showed how existing solutions can be integrated with custom
development, to create a system that is adapted to the particular nature of DNS
traffic at a TLD resolver and that can detect a wide range of anomalies in near
real-time.
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