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Abstract. There is a continuous effort to develop the theory and meth-
ods for computing digital distance functions, and to lower the rotational
dependency of distance functions. Working on the digital space, e.g., on
the square grid, digital distance functions are defined by minimal cost-
paths, which can be processed (back-tracked etc.) without any errors or
approximations. Recently, digital distance functions defined by weight
sequences, which is a concept allowing multiple types of weighted steps
combined with neighborhood sequences, were developed. With appropri-
ate weight sequences, the distance between points on the perimeter of a
square and the center of the square (i.e., for squares of a given size the
weight sequence can be easily computed) are exactly the Euclidean dis-
tance for these distances based on weight sequences. However, distances
based on weight sequences may not fulfill the triangular inequality. In
this paper, continuing the research, we provide a sufficient condition for
weight sequences to provide metric distance. Further, we present an algo-
rithm to compute the distance transform based on these distances. Opti-
mization results are also shown for the approximation of the Euclidean
distance inside the given square.

Keywords: Digital distances · Weight sequences ·
Distance transforms · Neighborhood sequences · Chamfer distances ·
Combined distances · Approximation of the Euclidean distance

1 Introduction

In the digital geometry setting, it is very natural to define distance functions
by minimal cost paths. Recently a new digital (i.e., path based) distance func-
tion has been investigated which provides the perfect Euclidean distance (from
the Origin) for all the points having the same fixed number of steps in the cor-
responding shortest path from the Origin [11,12]. This new distance function,
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which is called distance by weight sequence, is obtained as a kind of mixture of
the two well known digital distance approaches, namely of the distances based
on neighborhood sequences [5,8,10,19] and of the chamfer distances, also known
as weighted distances [1].

Discrete and digital distances may have some non-usual properties, e.g., they
may not be metric. A function that is positive definite, symmetric and for which
the triangular inequality holds is called a metric. The concept of metricity is an
important property of distance functions. In our previous paper [12] we presented
a very restricted sufficient condition for a weight sequence distance to be a metric.
In Sect. 3 in this paper, we present a less restrictive condition for metricity.

Digital distances are well applicable in digital image processing. Given a
distance function, a distance transform is a transform where each element in a set
is assigned the distance to the closest (as given by the distance function) element
in a complementary set. The result of a distance transform is called a distance
map. This tool is often used in image processing and computer graphics [6]. In
Sect. 4, we present a distance transform algorithm, which utilizes an auxiliary
data structure to keep track of the number of steps of the minimal cost path at
each point.

One of the ‘goodness’ measures of digital distances used in practice is related
to their rotational dependency and how well they approximate the Euclidean
distance. The most basic path-based distance functions, such as the city block
and chessboard distances, have very high rotational dependency. In our previous
paper [12] (which builds on [17]), we presented a formula for weight sequences
that gives the exact Euclidean distance values on the border of a square, for
arbitrary size of the square. This property is independent of the order of the
weights in the weight sequence, and permutation optimization of the weights by
a genetic algorithm is presented in Sect. 5.

2 Definitions, Preliminaries

In this section, first, we recall some basic concepts and fix our notations.
We denote the set of integers by Z and the set of non-negative integers by

N. Consequently the points of the digital two dimensional (square) grid are
represented by Z

2. The set of positive real numbers is denoted by R
+.

In this paper, we consider grid points with integer coordinates. Of course,
in image processing, each grid point is associated with a picture element, pixel.
In a city block (resp. chessboard) distance, distinct points with unit difference
in at most one (resp. two) of the coordinates have unit distance. Here, we use
the notion of 1- and 2-neighbors in the following sense: Two grid points P1 =
(x1, y1), P2 = (x2, y2) ∈ Z

2 are ρ-neighbors, ρ ∈ {1, 2}, if

|x1 − x2| + |y1 − y2| ≤ ρ and (1)
max {|x1 − x2|, |y1 − y2|} = 1.

The points are strict ρ-neighbors if the equality in (1) is attained. Two points
are adjacent if they are ρ-neighbors for some ρ ∈ {1, 2}.
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We also recall the notion of path. A path in a grid is a sequence of adjacent
grid points. A path Π = (P0, P1, . . . , Pn) is a path of n steps where for all
i ∈ {1, 2, . . . , n}, Pi−1 and Pi are adjacent. The path Π connects P0 and Pn. We
may also say that the path starts from P0 and arrives to Pn, i.e., they are its
start point and endpoint, respectively.

In this paper, we use the general concept of weight (or chamfer) sequences
(from [11,12]), instead of neighborhood sequences [5,8–10] or chamfer distances
[1]. This general description is as follows:

Definition 1 (weight-sequence distance). Let m ∈ N, m ≥ 0 be the number
of the used weights, and let S = {1,∞} ∪ {w3, . . . , wm} be the weight set includ-
ing 1, the sign ∞ and the used weights (wi ∈ R, wi > 1 for all i ∈ {3, . . . , m}).

A weight sequence is W = (c(i))∞
i=1, where c(i) ∈ S, for all i ∈ N.

Let P,Q ∈ Z
2, then the weight of the path Π = (P = P0, P1, . . . , Pm = Q) is

the sum of the weights of its steps, where the weight of the j-th step is specified as{
c(j), if the j-th step is a step to a strict 2-neighbor;
1, otherwise.
The W -distance d(P,Q;W ) of P and Q, is then, defined as the weight of the

minimal weighted path connecting P and Q.

In fact, all city block paths are valid for d(P,Q;W ) and have the same weight
as in the city block distance. This implies that d(P,Q;W ) is upper-bounded by
the city block distance. When the ∞ sign used in W for some step i (c(i) =
∞), it denotes an arbitrary large weight that prevents paths with a strict 2-
neighbor at step i to be minimal. When computing a W -distance one can vary the
features of neighborhood sequences and chamfer distances: the cost of a move to a
1-neighbor is 1 in every step, and the cost of a move to a strict 2-neighbor
(diagonal step) is given by the actual element c(j) of the weight sequence.

In [12] it was shown that for any weight sequence W , if Π is a minimal
W -path between P,Q ∈ Z

2, then it does not contain any steps to strict 2-
neighbors by any weight wi > 2.

The way the set S is defined, m different neighborhood relations (possible
steps by various weights) are allowed in our paths:

– a traditional 1-step is a step between 1-neighbors with unit weights, the sign
∞ denotes these steps in W (practically, strict 2-steps are not allowed);

– a traditional 2-step is a step between 2-neighbors with unit weights, they are
denoted by value 1 in W ;

and if m > 2, then, by the used weights w3, . . . , wm the further steps are as
follows:

– weighted 2-steps: the steps between 1-neighbors with unit weights, and
between strict 2-neighbors with weight wk (where 3 ≤ k ≤ m) with c(i) = wk

for some i in W .
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Note that the weight sequence W can contain m values, “weights”, according to
a predefined set S, i.e. W = (c(i))∞

i=1 where c(i) ∈ S.
When written in a formal way, the sum of the weights along the path is:

n∑
i=1

δi, where δi =

{
c(i), if Pi−1 and Pi are strict 2-neighbors;
1, otherwise.

When the weight sequence W is fixed, the term W -path is used for paths
having finite cost as defined by the weight sequence W .

We recall that greedy algorithms cannot be used to provide shortest paths.
If a smaller weight appears after a larger weight in W , it may be needed in the
shortest path instead of the previous larger one, depending on both the weight
sequence and on the difference of the coordinate values of the points.

Now we recall the formula for computing the distance between any two grid
points. The formula is used for finding optimal parameters in Sect. 5. Before the
theorem we define a technical notation which will also be helpful later on.

Definition 2. Let a weight sequence W = (c(i))∞
i=1 (based on a weight set S =

{1,∞, w3, . . . , wm}) be given. Let m,n ∈ N such that n ≥ m. Then I(n,m)
contains the indices of the smallest m weight values among the first n elements
of W , i.e., among (c(1), . . . , c(n)).

Theorem 1. Let the weight sequence W = (c(i))∞
i=1 (based on a weight set

S = {1,∞, w3, . . . , wm}) and the point P (x, y) ∈ Z
2, where x ≥ y ≥ 0, be given.

Then the W -distance of P from the Origin 0 is given by

d(0, (x, y);W ) = min
f∈{0..y}

⎧⎨
⎩x + y − 2f +

∑
i∈I(x+y−f,f)

c(i)

⎫⎬
⎭ . (2)

Since the roles of the x- and y-coordinates are similar, and our distance
function is translation invariant, one can compute the W -distance of any pair of
points of Z2 by the previous formula.

Remark 1. As a special case, the weight sequence W = (1)∞
i=1 defines the chess-

board distance, since steps to 2-neighbors are always allowed with unit cost. The
weight sequence W = (2)∞

i=1 defines the city block distance, since, in this case,
in any path one needs to pay the weight of two city block steps for a diagonal
steps if the path contains any diagonal steps. Equivalently, minimal cost paths
can be obtained using only steps to 1-neighbors.

3 Metricity Properties

One important property of digital distances is that of metricity. A metric is
a distance function which satisfies the metric properties: positive definiteness,
symmetry, and the triangular inequality. Formally:
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A distance function d is a metric if it satisfies the following three properties:

– d(P,Q) ≥ 0 for any point pair P,Q, moreover d(P,Q) = 0 if and only if
P = Q. (positive definiteness)

– d(P,Q) = d(Q,P ) for any point pair P,Q. (symmetry)
– d(P,Q) + d(Q,R) ≥ d(P,R) for any three points P,Q,R. (triangular

inequality)

It is easy to find a weight sequence such that the distance generated by the
sequence does not satisfy the metric conditions. The first two properties, namely,
the positive definiteness and the symmetry are always satisfied for distances
defined by weight sequences on the square grid (it is clear by the definitions and
the formula 2 shown in the previous section). However, the triangular inequality
is problematic in some cases.

In [12] it was proven that if the weight sequence W contains the weights in a
non-increasing order, then the generated distance function is a metric. However,
with this restriction the number of the possible weight sequences is very limited.
Now, we show a more general sufficient condition for a weight sequence to define
a metric. First, we define the shifted sequences of a weight sequence (in a kind
of analogous way as similar concept was defined and used for the neighborhood
sequences in, e.g., [8]).

Definition 3. The k-shifted sequence of a weight sequence W = (c(i))∞
i=1 is

the sequence that obtained from W by starting from its k-th element, i.e.,
W k = (c(i))∞

i=k.

It is easy to see that W = W 1, while for k > 1, W k is obtained from W by
erasing its first k − 1 elements.

Theorem 2. Let the weight sequence W = (c(i))∞
i=1 be given. If W has the

property that for every n,m, k ∈ N (m ≤ n)∑
i∈I(n,m)

c(i) ≥
∑

i∈Ik(n,m)

c(i) (3)

(where, according to Definition 2, I(n,m) and Ik(n,m) are the sets containing
the indices of the m smallest weights/elements among the first n elements of W
and W k, respectively, thus |I(n,m)| = |Ik(n,m)| = m is their cardinality), then
W defines a metric.

Proof. It is clear that all W -distances are symmetric and positive definite,
thus we work only with the triangular inequality. Let us assume, by contrary,
that there are three points P,Q,R ∈ Z

2 such that d(P,Q;W ) + d(Q,R;W ) <
d(P,R;W ). Let the path ΠP,Q be the path from P to Q with the least weight,
i.e., the path which is defining the distance d(P,Q;W ). Further, let ΠQ,R be
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the path from Q to R that defines the distance d(Q,R;W ). Then let us con-
sider the path ΠP,R from P to R which is exactly the concatenation of the path
ΠP,Q and the steps of the path ΠQ,R. We notice that since the weights may
not be the same in the prefix of W and in its subsequence used from Q to R,
it is generally, not true that the obtained path ΠP,R has the sum of the weight
d(P,Q;W ) + d(Q,R;W ). However, if the condition of the theorem is fulfilled,
let us choose the numbers n,m and k as follows. Let n be the number of the
steps of ΠQ,R. Set m as the number of its diagonal steps, finally put k as 1 more
than the number of the steps of the path ΠP,Q. Considering the steps of ΠQ,R,
in the left hand side of the inequality d(P,Q;W )+d(Q,R;W ) < d(P,R;W ) the
W -distances are used, while, considering the right hand side, we have a W -path,
such that its first part (between P and Q) has exactly the weight d(P,Q;W ),
and its second part (from Q to R) has the weight that is based on the weight
sequence W k. Then, we state that, by the condition

∑
i∈I(n,m)

c(i) ≥ ∑
i∈Ik(n,m)

c(i),

there is a path Π ′
Q,R such that its W k weight is not more than d(Q,R;W ).

However, in this case, concatenating ΠP,Q and Π ′
Q,R we have a W -path from

P to Q such that its weight is not more than d(P,Q;W ) + d(Q,R;W ). That is
contradicting to our indirect assumption, thus, the triangular inequality must
hold, if the condition of the theorem is fulfilled by the sequence W .

What is remained to show, that if
∑

i∈I(n,m)

c(i) ≥ ∑
i∈Ik(n,m)

c(i), then there

is a path Π ′
Q,R such that its W k weight is not more than d(Q,R;W ). Let us

assume, by contrary, that d(Q,R;W k) > d(Q,R;W ), i.e., there exist no such
path Π ′

Q,R. Then applying the formula for the distance, actually, d(Q,R;W ) =
n − m +

∑
i∈I(n,m)

c(i). By the condition of the theorem there is also a W k-path

with n steps between Q and R having m diagonal steps with cost n − m +∑
i∈Ik(n,m)

c(i). However, since
∑

i∈I(n,m)

c(i) ≥ ∑
i∈Ik(n,m)

c(i), the cost of this path

is not more than d(Q,R;W ). Therefore, d(P,Q;W k) cannot be larger than
d(P,Q;W ), path Π ′

Q,R must exist with the desired property. ��
The following examples illustrate metricity of distance functions based on some
specific weight sequences.

Example 1. Let the weight sequence contain additional weights {1.5, 1.8} and
consider the periodic weight sequence W = (1.8, 1.5, 1.8, 1.5...). One can easily
see that W fulfills the condition of Theorem2, thus it defines a metric.

Example 2. Let the weight set be {1.5, 1.55, 1.6, 1.75}. Further, let W =
(1.75, 1.5, 1.6, 1.5, 1.55, 1.5, 1.5, 1.5, ...) with c(i) = 1.5 for all i > 6. Again, it is
easy to check that the triangular inequality holds and that the given W -distance
is a metric.
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Notice that in both of our examples the weights in the sequence are not
ordered in non increasing way, thus the condition presented in [12] cannot be
applied to prove the metricity of the corresponding distances.

Finally, to show that the triangular inequality may fail in some cases, let us
consider the next example:

Example 3. Let W = (1.2, 1.5, 1, ...). Then the W -distances of the points (0, 0),
(1, 1) and (2, 2) are computed:

d((0, 0), (1, 1);W ) = 1.2
d((1, 1), (2, 2);W ) = 1.2
d((0, 0), (2, 2);W ) = 1.2 + 1.5 = 2.7.

Therefore, the triangular inequality fails for this W -distance.

4 Distance Transform (DT)

The DT is a mapping from the image domain, a subset of the grid, to the
range of the distance function. In a DT, each object grid point is assigned the
distance from its closest background grid point. A modified version of a wave-
front propagation algorithm can be used.

Now the formal definition of an image is given.

Definition 4. The image domain is a finite subset of Z2 denoted by I. We call
the function F : I −→ Rd an image, where Rd is the range of the distance
function d.

An object is a subset X ⊂ I and the background is X = I \ X. We assume that
X,X �= ∅. We denote the distance map for path-based distances with DMd,
where the subscript d indicates what distance function is used.

Definition 5. The distance map DMd generated by the distance function
d(·, ·;W ) of an object X ⊂ I is the mapping

DMd : I → Rd defined by

P → d
(
X,P ;W

)
, where

d
(
X,P ;W

)
= min

Q∈X
{d (Q,P ;W )} .

In the case of W -distances with two weights, a minor modification of the
Dijkstra algorithm (and with the same time complexity) can be used, see [18] and
Theorem 4.1 in [15]. However, for multiple weights, this is not necessarily true.
For W -distances, the used weights are also important and they are determined
by the number of steps of the minimal cost-path (not by the cost). Therefore, in
the general case of multiple weights presented here, we need to store this value



Distance Transform Based on Weight Sequences 69

also when propagating distance information. We define the auxiliary transform
DMs that holds the number of steps of the minimal cost path at each point, see
Algorithm 1.

Note that we need to store not only the best distance values at the points,
but the best values that are computed by various number of steps. Therefore,
for each point P a set S(P ) of pairs of values of the form (DMd,DMs) are
stored, i.e., the weight DMd of the shortest path among the ones containing
exactly DMs number of steps, with pairwise different DMs. After the run of the
algorithm for each point the minimal DMd gives the result.

Algorithm 1 shows how the distance map can be computed based on an
extended optimal search (Dijkstra algorithm) and using the data structure
described above. At the initialization the object points are the only points that
are reached and it is done by 0 steps and with 0 cost. Then the border points
of the object are listed in an increasing order by the minimal cost path already
known for them. Actually every point in the priority queue has 0 cost, but the
queue will be updated by involving other points to where paths are already found.
The while loop chooses (one of the) point(s) with minimal cost from the queue
since it is sure that we have the minimal cost path to this point already. Then
in the loop the data of all adjacent points of the chosen point are updated by
computing the cost of the new paths through the chosen point (having last step
from the chosen point to the actual adjacent point). Therefore, the algorithm
holds the optimal distance attained at each point (as the usual algorithm), but
this is done for each path length from the shortest ones till the ones obtained
by only steps to 1-neighbors. So, if there are paths of different lengths ending
up at the same point, distance information for each of the different path lengths
are stored.

The algorithm may look more complex than similar algorithms for the other
distances and this is due to the fact that greedy shortest path algorithm does
not work in the general case. However, by using the weights in non-decreasing
order, the greedy shortest paths algorithms work, and thus, for every point Q of
the grid one need to remember only for the value obtained with the path length
when the point Q is pushed into the queue.

5 Approximation of the Euclidean Distance

In this section, we apply a genetic algorithm to permute a weight sequence
that gives the exact Euclidean distance values on the border of a square. The
comparison to the Euclidean distance is carried out with absolute and relative
mean and maximum values of the absolute difference between the Euclidean and
weight sequence distance.

The following Lemma, which is from our previous paper [12], will be used for
defining the fitness function in the genetic algorithm optimization.
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Algorithm 1. Computing DM for W -distances given by a weight sequence W .

Input: W and an object X ⊂ Z
2.

Output: The distance map DMd.
Initialization: Let S(P ) ← {(0, 0)} for grid points P ∈ X. Let
DMd(P ) = min{DMd | (DMd, DMs) ∈ S(P )}. Initialize L, a priority queue of
points P sorted by increasing DMd(P ), with the set of grid points P ∈ X
adjacent to X.
while L is not empty do

Pop P from L;
foreach Q ∈ I: Q,P are strict 2-neighbors do

foreach pair (DMd, DMs) ∈ S(P ) do
if c(DMs + 1) ≤ 2 then

if there is an element (DM ′
d, DMs + 1) ∈ S(Q) then

if DM ′
d > DMd + c(DMs + 1) then

Replace (DM ′
d, DMs + 1) by

(DMd + c(DMs + 1), DMs + 1) in S(Q)

else
Add (DMd + c(DMs + 1), DMs + 1) to S(Q)

if DMd(Q) > min{DM ′
d | (DM ′

d, DM ′
s) ∈ S(Q)} then

Let DMd(Q) = min{DM ′
d | (DM ′

d, DM ′
s) ∈ S(Q)}

Insert Q in the priority queue L ordered by increasing DMd

foreach Q ∈ I: Q,P are 1-neighbors do
foreach pair (DMd, DMs) ∈ S(P ) do

if there is an element (DM ′
d, DMs + 1) ∈ S(Q) then

if DM ′
d > DMd + 1 then

Replace (DM ′
d, DMs + 1) by (DMd + 1, DMs + 1) in S(Q)

else
Add (DMd + 1, DMs + 1) to S(Q)

if DMd(Q) > min{DM ′
d | (DM ′

d, DM ′
s) ∈ S(Q)} then

Let DMd(Q) = min{DM ′
d | (DM ′

d, DM ′
s) ∈ S(Q)}

Insert Q in the priority queue L ordered by increasing DMd

Lemma 1. If the weight sequence W is non-decreasing and all elements in W
are smaller than or equal to 2, then the distance value in Eq. (2) is given by

d(0, (x, y);W ) = x − y +
y∑

i=1

c(i)

The following Theorem, from [12], states that the W -distance with r different
weights (as given in the Theorem) can give the exact Euclidean distance values
on the border points of a square of side length 2r − 1.

Theorem 3. Given an integer x > 0, the Euclidean distance values from (0, 0)
to each point of the set {(x, y) ∈ Z2, 0 ≤ y ≤ x} is given without errors by the
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weight sequence W = (c(i))∞
i=1 with c(i) =

(
1 +

√
x2 + i2 − √

x2 + (i − 1)2
)
for

1 ≤ i ≤ x.

Note that the distance values on the border of the square of side 2r − 1
are independent of the order of the weights r weights in the sequence given in
Theorem 3. In [12], we presented a greedy algorithm for ordering the weights in
the weight sequence. Here, we extend the optimization by a global optimization,
where the optimal permutation of the r weights are sought in order to minimize

– the absolute mean error,

2
r · (r + 1)

∑
r≥x≥y≥0

|dE(x, y) − d(x, y;W )| (4)

– the relative mean error

2
r · (r + 1)

∑
r≥x≥y≥0

|dE(x, y) − d(x, y;W )|
dE(x, y)

(5)

– the absolute maximum error,

max
r≥x≥y≥0

|dE(x, y) − d(x, y;W )| (6)

– the relative maximum error

max
r≥x≥y≥0

|dE(x, y) − d(x, y;W )|
dE(x, y)

(7)

In the experiments, a weight sequence of length 40 was calculated by The-
orem 3. The weight sequence is c(i) =

(
1 +

√
402 + i2 − √

402 + (i − 1)2
)

,

i = 1..40. The weights were permuted by a genetic algorithm [7] with the fitness
functions (4), (5), (6), and (7). The fitness functions are efficiently computed
by Lemma 1. The crossover is a flip of a section (with random start and end
point) of the weight sequence, the mutation swaps to random elements of the
weight sequence. The optimization is run with a population size of 60 and the
maximum number of generations was set to 1000.

The optimal permutations are found below and illustrations of the difference
between the so-obtained distance functions and the Euclidean distance are found
in Fig. 1.

The obtained optimal permutations are (the indices of the weights c(i) are
shown for brevity):

– the absolute mean error (4)
36, 1, 32, 16, 22, 11, 23, 35, 7, 25, 10, 26, 12, 40, 4, 30, 18, 27, 5, 37, 14, 19,
38, 3, 28, 13, 24, 9, 29, 15, 39, 2, 31, 17, 33, 8, 20, 34, 6, 21

– the relative mean error (5)
19, 7, 37, 28, 2, 32, 22, 16, 10, 31, 14, 27, 4, 39, 21, 12, 26, 6, 40, 15, 30, 3,
35, 17, 20, 8, 34, 13, 24, 29, 1, 36, 18, 11, 38, 9, 25, 23, 5, 33
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– the absolute maximum error (6)
14, 37, 18, 6, 32, 26, 1, 21, 38, 16, 25, 3, 30, 27, 11, 15, 29, 8, 40, 10, 35, 12,
28, 17, 5, 24, 36, 2, 20, 23, 33, 4, 19, 39, 7, 34, 13, 31, 9, 22

– the relative maximum error (7)
19, 13, 36, 4, 40, 26, 1, 16, 21, 14, 27, 8, 25, 7, 34, 35, 15, 23, 29, 2, 31, 3, 18,
38, 20, 10, 12, 33, 24, 9, 37, 11, 28, 39, 5, 22, 30, 6, 32, 17
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Fig. 1. Illustration of the point-wise difference between the Euclidean distance and
the weight sequence distance with a permutation of the weights obtained by a genetic
algorithm. The fitness functions used are Absolute mean difference (a), Relative mean
difference (b), Absolute max difference (c), and Relative max difference (d). All dis-
tances are computed from a single central source point.

6 Conclusions and Discussion

This paper extends the work presented in [12], and further develops the frame-
work for distances based on weight sequences, that is digital path-based distance
functions defined as minimal cost paths on the square grid.

By the results in this paper, a digital and completely error-free distance
function with very low rotational dependency, together with an algorithm that
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can be used to compute distance transforms, Algorithm1, are presented. Effi-
cient algorithms for computing distance transforms are necessary for real-world
applications, where computation time often is a bottle-neck. Due to the very
low rotational dependency the proposed digital distance function can be used
instead of, for example, the Euclidean distance transform. The Euclidean dis-
tance transform can be computed efficiently by state-of-the-art methods, but
Euclidean distance transform computation has some drawbacks: (i) the vector-
propagation method inevitably produces errors for some pixel configurations
[4,13], (ii) fast-marching methods are based on coarse approximations of the
Eikonal equation, and thus give only approximate distance values [14], (iii) sep-
arable algorithms are not suited for constrained distance transform computation
[2,3]. See also [15,16].

This paper presents a less restrictive condition for metricity, compared to
what was presented in [12]. This less restrictive condition will be important
when further developing the theory for these distance functions.

In addition, this paper presents an optimization procedure based on a genetic
algorithm. Note that the genetic algorithm can be run with several different
parameters, and the ones used in the manuscript are standard parameters with
slight fine-tuning based on experimental evaluation. The optimization is not
deterministic and there are no guarantees that the obtained local optimum is a
global one, but the process was reasonably stable when executed several times.
The low rotational dependency obtained by the optimization procedure is key
in many real-world problems.

In our future work, we will analyze Algorithm1 in depth, including both
proof of correctness and space and time complexity. We also leave it as an open
problem whether the condition of Theorem2 is also a necessary condition to
define metric distances.

The proposed distance function has great potential in many image process-
ing algorithms where distance transforms with low rotational dependency is
required.
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