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Abstract. In this paper we are proposing a new way to compute a dis-
crete bisector function, which is an important tool for analyzing and
filtering Euclidean skeletons. From a continuous point of view, a point
that belongs to the medial axis is the center of a maximal ball that hits
the background in more than one point. The maximal angle between
those points is expected to be high for most of the object points and
corresponds to the bisector angle. This logic is not really applicable in
the discrete space since in some configurations we miss some background
points leading sometimes to small bisector angles. In this work we use
annuli to find the background points in order to compute the bisector
angle. The main advantage of this approach is the possibility to change
the thickness and therefore to be more flexible while computing the bisec-
tor angle.

Keywords: Bisector function · Euclidean distance transform ·
Skeleton · Digital geometry · Digital annulus

1 Introduction

The medial axis is a shape representation tool that has been used in a wide
variety of applications like pattern recognition, robotic motion planning [23],
skinning for animation [14] and other domains as well. The notion of medial axis
was originally proposed by Blum in 1967 [7] where it was defined as the set of
points where different fire fronts meet.

In the continuous Euclidean space two definitions can be used to describe
the medial axis [8]:

(a) the medial axis is formed by the center of balls included in the shape and
not included in any other ball in the shape
(b) the medial axis consists of points that have more than one nearest points
on the boundary of the shape.

In the state of art many methods were used to filter medial axis from some
undesirable or spurious points or some branches [4,5,8,10,16]. Among those
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methods, we considered the method that uses filtering based on the bisector
function [10].

The bisector function was introduced by Talbot and Vincent [22] where they
generalize a notion proposed by Meyer [18]. Informally the bisector function
associates to each point p of an object, the maximal angle formed by p and the
points of the background that are nearest to p (Fig. 1 gives an example of the
bisector function at two distinct point x and y). The first algorithms proposed
to compute bisector function used vectors obtained from the distance transform
[12]. One vector indicates the location of the closest background point. The main
drawback of such algorithms [15,22] is that points from a same distance may be
ignored. In [11] authors proposed a new definition and algorithm to compute
a discrete bisector function which was revisited and improved in [10] based on
the use of Voronoi diagram of a shape. Authors noticed that the projection of
the point is not sufficient due to some configurations in the discrete space and
extended the notion of projection of a point to the extended projection (see
Sect. 2).

Fig. 1. Example of the bisector
function. β is the angle at point
x and α the angle at point y.

This paper contains one major contribution
which is a new way to compute the bisector func-
tion based on an annulus and an algorithm to
compute such bisector function based on digi-
tal annulus generation algorithm [2,3]. We are
mainly interested in this work at points having
a high bisector angles since points belonging to
a skeleton or important points of the medial axis
are supposed to be center of a maximal ball that
must hit the background in more than one point.
Different filtering results are conducted on the
bisector function and showed that as the filter-
ing increases important point of the medial axis
are detected. This article presents the method in

2D however it should be stated that this work can be extended to 3D and higher
dimensions.

The paper is organized as follows: in Sect. 2 we provides some basic notions
and definitions. In Sect. 3 we details our method of bisector function based on
annulus, present the algorithm and provide some experimental results. The final
sections state some conclusion and perspectives.

2 Basic Notions and Definitions

In this section we present some basic notions and definitions. Let us denote by
Z the set of integers, by N the set of non-negative integers and by E the discrete
plane Z

2. A point x in E is defined by (x1, x2). Let x, y ∈ E be two points, we
denote by d2(x, y) the squared Euclidean distance between x and y. Let Y ⊂ E,
we denote by d2(x, Y ) the square of the Euclidean distance between x and the
set Y , that is d2(x, Y ) = min

{
d2(x, y); y ∈ Y

}
. Let X ⊂ E (the object), we
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denote by D2
X the map from E to N which associates, to each point x of E,

the value D2
X(x) = d2(x,X), where X denotes the complementary of X (the

background). The map D2
X is called the squared Euclidean distance map of X.

Let x ∈ E, r ∈ N, we denote by Br(x) the ball of (squared) radius r centered on
x, defined by Br(x) =

{
y ∈ E, d2(x, y) < r

}
. Note that the value D2

X(x) is the
radius of a ball centered on the point x ∈ X and not included in any other ball
centered on x and included in X.

The considered discrete neighborhood N4 is defined as follows :

N4(x) = {y ∈ E; |y1 − x1| + |y2 − x2| ≤ 1}
Let X be a non empty subset of E and let x ∈ X, the projection of x on

X [10], denoted by ΠX(x) =
{
y ∈ X,∀z ∈ X, d(y, x) ≤ d(z, x)

}
. For example,

in Fig. 2, ΠX(x) = {a, b} and ΠX(y) = {c}.
Let X be a non empty subset of E and let x ∈ X, the extended projection

of x on X [10], denoted by Πe
X

(x) is the union of the sets ΠX(y), for all y ∈ N4(x)
such that d2(y,X) ≤ d2(x,X).

Fig. 2. An object X (represented by the ellipse) and its medial axis. The projection
of the point x is {a, b} and the projection of the point y is {c}. The ball centered on y
is included in another ball (the dashed ball) and thus y does not belong to the medial
axis of X.

3 Bisector Function Based on Digital Annulus

In this section we detail our method for computing the bisector function using
an annulus, describe the algorithm used and present the results.

3.1 Digital Annulus

A digital annulus A(C, r, w) is defined by an offset of thickness ω on a 2D regular
square grid [2,3]:

A(C, r, ω) =
{
(i, j) ∈ Z

2 : r2 ≤ (i − Cx)2 + (j − Cy)2 < (r + ω)2
}

(1)

Where C(Cx, Cy) ∈ R
2 is the center and r+ ω

2 ∈ R is the radius. In this work
we refer to r as the inner radius.

In this work C(Cx, Cy) ∈ Z
2 since we are considering integer coordinates of

the image as X. We also need to include the equality from both sides of (2)
for practical reasons. This gives us the equation of an annulus of thickness ω
represented by the following equation:

Aw(C, r, ω) =
{
(i, j) ∈ Z

2 : r2 ≤ (i − Cx)2 + (j − Cy)2 ≤ (r + ω)2
}

(2)
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3.2 Bisector Function: New Definition and Exact Algorithm

Definition 1. Annulus projection : Let X be a non empty subset of E and let
x ∈ X, the annulus projection of x on X, is given by:

AΠω
X

(x) =
{

y ∈ X,D2
X(x) ≤ d2(x, y) ≤ (DX(x) + ω)2

}
(3)

where ω is the thickness of the annulus and DX(x), as stated in Sect. 2, is the
value of the distance map at point x. (See Fig. 3c).

Now we can propose a definition of the bisector function.

Definition 2. Bisector angle and bisector function: Let X ⊂ E, and let x ∈ X.
The bisector angle, denoted by ϕω

X(x) of x in X, denoted is the maximal unsigned
angle between the vectors −→xy, −→xz, for all y, z in AΠw

X
(x). The bisector function

of X, denoted by ϕω
X , is the function which associates to each point x of X, its

bisector angle in X.

The last step to obtain the bisector angle is the computation of the maximum
unsigned angle between all the pairs of vectors −→xy,−→xz for all y, z in AΠω

X
(x). As

stated in [10,11] this problem reduces to the problem of finding the maximum
diameter of a convex polygon in 2D which has been solved in [21] by a linear
time algorithm.

Figure 3a shows an original set X, Fig. 3b shows the extended projection
[10,11] of the point x encircled in black on X; the resulting points are encircled
in dashed red. Figure 3c shows an example of the annulus projection of the point

a) b)

c)

Fig. 3. (a) A set X. (b) Distance transform D2
X of X. A point x encircled in black and

its extended projection [10], points encircled in red; the bisector angle θX(x) at point
x is π (c) Annulus projection of x on X, AΠω

X
(x) represented by the points encircled

in dashed red; the bisector angle ϕω
X at x is also π. (Color figure online)
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b)a) c)

d) e) f)

Fig. 4. a, b and c show three original images of an ellipse, a flower and a square with
their medial axis colored blue. d, e and f show the bisector functions ϕω

X obtained using
an annulus of width ω = 1. (Color figure online)

x (encircled in black) on X using a thickness ω = 1; the resulting points are
encircled in dashed red.

Figure 4a, b and c show three original images of an ellipse, a flower and a
square extracted form the digital library DGtal [1] with their medial axis colored
blue computed using the exact euclidean medial axis algorithm of [19]. Figure 4d,
e and f show the bisector function ϕω

X computed using a thickness ω of 1.

Algorithm 1. Annulus projec-
tion AΠω

X
(x)

input : D2
X , x and w

output: Annulus projection of a point
x(x1, x2), on X

1 begin
2 w∗=IntegerPart[w];
3 AΠx=Ø;
4 r=DX (x);
5 if w <= 1 then
6 AΠx=AΠx

⋃

Annulus(D2
X ,r,x,w);

7 else
8 for i = 0; i <w*; i = i + 1 do
9 AΠx=AΠx

⋃

Annulus(D2
X ,r + i,x,1);

10 wnew=w-w∗;
11 if wnew > 0 then
12 AΠx=AΠx

⋃

Annulus(D2
X ,r+w∗,x,wnew);

13 return AΠx;

Algorithm 2. Annulus(D2
X ,r,x,w)

input : D2
X , r, x and w

output: Points of a digital Annulus that
belong to X

1 begin
2 da = Ø;
3 Initialize xd = 0,

upper = 2 ∗ r ∗ w + w ∗ w, yd = �r�,
Δ = xd ∗ xd ∗ yd ∗ yd − r2;

4 while yd ≥ xd do
5 if Δ ≥ 0 and Δ ≤ upper then
6 v = eightsymmetry(xd, yd);
7 foreach z ∈ v do

8 if D2
X (x + z) = 0 then

9 da = da
⋃{x + z};

10 if Δ <= 2 ∗ (r − xd) then
11 Δ = Δ + 2 ∗ xd + 1;
12 xd = xd + 1;
13 else
14 if Δ ≥ 2 ∗ yd − 1 then
15 Δ = Δ − 2 ∗ yd + 1;
16 yd = yd − 1;
17 else
18 Δ = Δ+2∗(xd−yd+1);
19 xd = xd + 1;
20 yd = yd − 1;

21 return da;
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=0.5 =0.8 =1.0 =1.3

=1.8 =2.0 =2.3 =2.5

Fig. 5. The result of different filtering angle ϕω
F applied on the bisector function ϕω

X of
the flower of Fig. 4b the filtering value is ϕω

F in radians. We can notice that when ϕω
F

is too small we have noisy contour that disappear when ϕω
F increases.

3.3 Algorithm

This section presents two different algorithms that allow to compute the bisector
function based on annuli. The algorithms to compute the bisector function are
based on the information of the distance map generated by a distance map
algorithm [13,17,20]. Let us first start by the naive algorithm that is obvious
but has a high time complexity and then present a second algorithm based on
a slightly modified digital annulus generation algorithm adapted to our annuli
definition with a “‘≤”’ on both side of the equation as stated in Sect. 3.1.

Naive Algorithm. The naive algorithm consists in taking for every point
x(x1, x2) of the set X a square window of size (DX(x) − ω,DX(x) + ω), cen-
tered at the point x and computing AΠω

X
(x) which means all the points of X

that are inside the annulus Aω(C,DX(x), ω). This algorithm has a high time
complexity that depends directly on the size of the annulus.

Algorithm Based on Incremental Digital Annulus Generation. We can
decrease the time complexity by looking only into points inside the annulus using
the incremental digital annulus generation algorithm detailed in [2,3]. It should
be noted that in our case we use double equality from both side of the equa-
tion and therefore the algorithm of [2,3] should be slightly adapted to our case;
also the thickness can vary however this is not a problem since one can think of
generating digital annulus one after another when the thickness increases. For
example for thickness ω = 2.7 and inner radius r we must generate points inside
digital annulus of inner radius r and ω = 1, then those inside digital annulus
of inner radius r + 1 and ω = 1 (Lines 7 and 8 of Algorithm 1) and then those
inside annulus of inner radius r + 2 and w = 0.7 (Lines 9–11 of Algorithm 1).
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=1.8, w=0.75 =1.8, w=0.75=1.8, w=0.75

=1.8, 1.25

=1.8, w=1.0 =1.8, w=1.0=1.8, 1.0

=1.8, 1.25 =1.8, 1.25

Fig. 6. The result of fixing the filtering angle ϕω
F to 1.8 and varying the thickness from

ω = 0.75, ω = 1, ω = 1.25. As we can see that a width ω = 0.75 is not sufficient to
compute a correct angle and some important information are missed.

Fig. 7. (a) The result of [10,11] with an angle θF = 1.3. (b) our approach with ϕω
F = 1.3

and ω = 1.

Algorithm 1 shows the detailed algorithm for computing annulus projection of a
point x on X the inner radius of the digital annulus at point x is determined by
D2

X(x). As we can see when w is less or equal to 1 one annulus is generated and
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Algorithm 2 is called only once. When w increases, Algorithm 2 may be called
many times depending on the integer part of w denoted by w∗. Algorithm 2
details the digital annulus generation of [2,3] adapted to our application. The
starting point of the algorithm is the point (xd, yd)=(0,�r	), the algorithm gen-
erates all points inside annulus of radius 1 and that belong to X, however when
w is less than 1 only points inside annulus thickness and belonging to X are
added (Lines 5–9). One can also benefit from the symmetry condition of digital
annulus and generate points only in the first octant and then apply the eight
symmetry (Line 6 of Algorithm 2 eightsymmetry) to points to generate points
in other octants.

3.4 Results and Discussion

This section details the results obtained using our algorithm. We tested different
filterings based on the bisector angle ϕω

X and studied also the effect of changing
the width of the annulus. The original images used for the testing are shown in
Fig. 4 a, b and c.

For experiments, let us denote by ϕω
F the filtering angle applied on the bisec-

tor function ϕω
X which consists in setting to black all points x ∈ X having an

angle ϕω
X(x) less than ϕω

F (the display of the images takes into account the value
of the angles). Let us denote also by θF the filtering angle applied on the bisector
function of [10,11].

Figure 5 shows the effect of the filtering applied on the bisector function of
the flower for different ϕω

F and a fixed annulus width ω = 1.0. We can see in this
image that for small angles we have some noisy contours and as ϕω

F increases,
this noisy effect disappear. For every image the angle is increased to see the
filtering effect. When the angle is too high we lose some important information
that we would like to preserve. It should be noted also that one could imagine
to omit points with small distances to have only the points inside the image and
not close to boundary however for our experiments we kept all the points and
didn’t omit any point.

Figure 6 shows the effect of changing the thickness while fixing ϕω
F to 1.8

applied on the three images of ellipse, flower and square. The three thickness
considered are 0.75, 1.0 and 1.25. We can see that a small thickness, less than 1,
is not sufficient for most of the images since we lose some important information
or branches. When the thickness increases we could capture more points which
give us some nice branches.

Figure 7a and b shows a comparison of the result of [10,11] with the annulus
approach proposed in this paper. The filtering angle θF and ϕω

F are equal to
1.3 and the annulus thickness is fixed to 1. We can notice that our approach
produced some noisy contours compared to [10,11]. When θF and ϕω

F increases
to 2.0 while keeping the same thickness of 1, we can notice that noise almost
disappears as shown in Fig. 8.

Figure 8a shows the result of [10,11] with an angle θF = 2.0 and Fig. 8b
and c shows our result for ϕω

F = 2.0 and a thickness of respectively ω = 1 and
ω = 1.25. We can see that as the filtering angle increases we have better result



A Discrete Bisector Function Based on Annulus 477

Fig. 8. (a) The result of [10,11] with an angle θF = 2.0. (b) our approach with ϕω
F = 2.0

and ω = 1. (c) our approach with ϕω
F = 2.0 and ω = 1.25.

than [10,11] and increasing the thickness can compensate for some information
loss. Figure 9 shows the same result as Fig. 8 but with θF = 2.3 and ϕω

F = 2.3.
Figure 10b and c shows a comparison of our approach with the approach of

[10,11] with filtering angle of 2.0 applied on Fig. 10a extracted from [1]. The
points detected after filtering are the red ones and constitute a subset of the
medial axis points; blue points represent the other points of the medial axis.
Figure 11 shows the results of applying our method for filtering only medial axis
points. The bisector function is thus applied only on the medial axis points. Blue
points are points of the medial axis that are removed and red points are points
kept.

3.5 Complexity and Extensions

In Sect. 3.3 we have proposed an incremental algorithm for digital annulus gen-
eration, that is less complex than the naive algorithm. The proposed algorithm
is not linear in time: for each point x of the image, we are considering an annulus
whose number of points is linear to the distance map DX(x). Let us state that the
thickness does not have a large influence on the complexity since it is expected
to fluctuate between 0.5 to 2 so the range is limited and this changes the overall
complexity only by a constant factor. As for higher dimensions the generation of
a digital hypersphere is well known and is dimensions dependent, we expect the
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Fig. 9. (a) The result of [10,11] with an angle θF = 2.3. (b) our approach with ϕω
F = 2.3

and ω = 1. (c) our approach with ϕω
F = 2.3 and ω = 1.25.

Fig. 10. (a) original image (b) results of [10,11] with an angle θF = 2.0 (c) our approach
with ϕω

F = 2.0 and ω = 1. The points detected after filtering are the red ones; blue
points represent medial axis points of the image. (Color figure online)

approach to be feasible for moderate image size. We would like also to state the
possibility to improve the time complexity of the algorithm when the filtering
angle is known in advance. This idea remains theoretical; more tests are needed
to prove its results and convergence. The idea is to memorize for each point x of
the object the closest background point when computing the distance map. Once
this information is memorized, filtering the image according to a known bisector
angle ϕw

X can be done while looking only at a small subsection of the annulus
and neglecting the other parts making thus the computation quasi linear.
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Fig. 11. Applying our method only on the medial axis points: red points are points
kept and blue points are points removed. (Color figure online)

4 Conclusion

We introduced a way to compute the discrete bisector function based on an
annulus. This approach shows some promising results for filtering skeletons. The
results were most promising when the angles become bigger. This method can
be extended to 3D and higher dimensions since both the notion of bisector
function as well as digital annulus are defined in arbitrary dimensions. One of
the perspectives of this work is to use homotopic thinning process and compute
skeleton in 2D and higher dimension based on the bisector function information.
It should be noted also that filtering using only the angle criteria is most of the
time not sufficient [6] and some works combining angle and distance criteria such
as [8,9] would be also a future perspective of this work.
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