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Abstract. In this article, we suggest a grid-unfolding of level 1 Menger
polycubes of arbitrary size with L holes along the x-axis, M the y-axis
and N the z-axis. These polycubes can have a high genus, and most
vertices are of degree 6. The unfolding is based mainly on the inner faces
(that do not lie on the outer most envelope) except for some outer faces
that are needed to connect lines or planes in the object. It is worth
noticing that this grid-unfolding algorithm is deterministic and without
refinement.
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1 Introduction

Unfolding a geometric three-dimensional shape consists in providing a two-
dimensional flat non-overlapping and connected representation of it. This prob-
lem is as old as cartography and is still widely open with many potential appli-
cations including puzzle design [1], 3D paper craft [12], manufacturing [14,16]...

Our interest lies in the grid edge-unfolding without refinement of a very spe-
cific class of polyhedra: the level 1 Menger polycube of arbitrary size (a general-
isation of the Menger sponge [11]). A polycube is a set of face-connected voxels
without inner cavity. An edge unfolding is an unfolding along the original edges
of the polyhedron. A grid unfolding of a polycube is an unfolding that consists in
creating a 2D net of all the faces of the polycube (faces that are face-connected
to the complement) in a 2D orthogonal grid. Many grid unfolding algorithms
found in the literature require refinements. A n × m refinement means that a
polycube face is cut into n × m rectangular subfaces. Oftentimes, algorithms
deal with orthogonal polyhedra rather than polycubes. An orthogonal polyhe-
dron is a polyhedron where all the faces are parallel to Cartesian coordinate
planes and can be seen as a generalisation of polycubes.

Edge-unfolding of a general polyhedron is not always possible [8]. There are
several examples of non-convex polyhedra that cannot be edge-unfolded. As for
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convex polyhedra, it is still an open question whether they always admit an
edge unfolding. These last couple of years, the community tried to make some
progress by focusing on various subclasses of orthogonal polyhedra that admit
a grid edge-unfolding without refinement such as orthotubes [2], well-separated
orthotrees [6], orthoterrains [13], H-convex Manhattan towers... [15] For some
other subclasses, the known methods require the grid to be refined further by
adding cutting planes in a constant or linear number of times: for example, 4 × 5
grid-unfolding for Manhattan towers [7], 1× 2 grid-unfolding for orthostacks... [2]

More recently, the community has begun to focus on orthogonal polyhedra of
genus greater than zero. In [10], edge-unfolding of several classes of one-layered
orthogonal polyhedra (one layer of voxels) with cubic holes are considered and
it was shown that several special classes of them admit grid unfoldings. In [4],
authors generalised the work of [10] and offered a grid unfolding method suitable
for a wider class of one layer polyhedra of genus greater than zero using a (2 ×
1)-refinement. In [5], an algorithm for unfolding all orthogonal polyhedra of
genus 1 or 2 is proposed; it extends the idea of [3] to deal with holes, and both
require a linear refinement. In [9], Ho et al. treat two subclasses of orthogonal
polyhedra with arbitrary genus with 2 × 1 refinement. Our Menger polycube is
a subclass of their well-separated orthographs, but our algorithm does not need
any refinement.

The general question whether there always exists a grid unfolding without
refinement for any polycube is an open question. A grid unfolding without refine-
ment means that each polycube voxel face can be unfolded as a square 2D grid
face (a pixel if you prefer). The final 2D net should be connected and it should be
noted that two faces in the net are considered as neighbours iff the original cor-
responding faces in the 3D polyhedra share a common edge. Two 2D grid faces
may be neighbours in the classical 4-connected sense and not be neighbours in
the net.

One way of looking at unfolding problems is to consider 3D vertices. In three
dimensions, a polycube vertex may have a degree from 3 to 7, meaning that
there is a cycle of 3 to 7 faces around a vertex. However, once unfolded, a face
can have a maximum degree of 4. All the faces around a vertex of degree over 4
cannot be placed together on the unfolding. Does the proportion of vertices of
degree greater than 4 limit the unfoldability of a polycube? This question led us
to the level 1 Menger polycube of arbitrary size with L × M × N holes [11]. The
dimensions correspond to the number of holes in a direction: L holes along the
x-axis, M along the y-axis and N along the z-axis. This represents a polycube
with a potentially high genus and almost all the vertices in such a polycube are
of degree 6 except for the 8 corner vertices that are of degree 3, some outer faces
that are of degree 4 and the hole vertices on the outer envelope faces that are of
degree 5.

In this paper we propose a deterministic algorithm for grid unfolding without
refinement (edge unfolding) of level 1 Menger polycubes of arbitrary size. The
idea is to focus on the “inner” faces (those that are not on the outer envelope).
The outer envelope is defined as all the faces that have minimum or maximum
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x, y or z centroid coordinates. The inner faces is where the vertices of degree
6 can be found. Our unfolding method requires the help of some “outer” faces
only at specific places. Once all the inner faces are unfolded with help of some
outer faces, all the other outer faces can then be unfolded very simply.

The paper is organized as follows: Sect. 2 presents some preliminaries as well
as the particular polycubes we are interested in. The unfolding method is then
detailed. We finish the paper with a conclusion and prospects.

2 Unfolding Level 1 Menger Polycubes

2.1 Introducing Level 1 Menger Polycubes of Arbitrary Size

A Menger sponge is a fractal object [11]. In this paper, we only consider the level
1 of this construction: a simple level 1 Menger polycube is made of 20 unit cubes
forming a greater 3 × 3 × 3 cube where the cubes in the centre of each face
are missing as well as the cube in the very centre of the greater cube (Fig. 1a).
This is what we call here a level 1 (1, 1, 1)-Menger polycube. The genus of this
polycube is 5.

A level 1 (L,M,N)-Menger polycube is the Minkowski addition between a
Cartesian (L,M,N) subset of points of (2Z)3 and a structuring element that is
simply the (1, 1, 1)-Menger sponge. This polycube has L holes along the x-axis,
M holes along the y-axis and N holes along the z-axis. Each hole is the size of
one unit cube and is separated from the holes around it by one unit cube. Such a
polycube has a size of (2L+1) × (2M +1) × (2N +1). An example is presented
on Fig. 2a for the level 1 (1, 3, 1)-Menger polycube. This polycube is of genus 13.
The general formulas for a level 1 (L,M,N)-Menger are:

– number of voxels: 1 + 2(L + M + N) + 3(LM + LN + MN) + 4LMN
– number of faces: 6 + 8(L + M + N) + 10(LM + LN + MN) + 12LMN
– number of vertices: 8(1 + L)(1 + M)(1 + N). From which:

• 8 vertices of degree 3;
• 8(L + M + N) vertices of degree 4
• 8(LM + MN + LN) vertices of degree 5
• and 8LMN vertices of degree 6.

– genus: LM + LN + MN + 2LMN .

For instance, a (3, 3, 3)-Menger polycube (see Fig. 6) has a genus of 81, is
composed of 208 voxels, 672 faces with 8 vertices of degree 3, 72 vertices of
degree 4, 216 vertices of degree 5 and 216 vertices of degree 6. The ratio of
vertices of degree 6 to other vertices climbs rapidly. For a (100, 100, 100)-Menger
we have 8 million vertices of degree 6 and 242408 vertices of other degrees (and
a genus of 2030000).

In the following, we start with handling the inner faces of such polycubes.
These faces form a volume that, to unfold, we will divide in simpler structures:
we can unfold a volume if we know how to unfold planes. In the same way, each
plane is divided into lines and each line into crosses.

The outer faces (forming the outer envelope of the polycube) can be unfolded
in a similar way as a simple cube as we will see in Sect. 2.5.
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2.2 Unfolding an Inner Line

We call inner cross (or simply cross) the inner faces of a (1, 1, 1)-Menger poly-
cube, i.e. the faces around the central “hole”. A complete cross has 6 branches
(see Fig. 1a and b). We can merge several crosses to form an inner line: the back
branch of one cross is also the front branch of the next one (see Fig. 2b). An
inner line is defined as the inner faces of a (1,M, 1)-Menger.

We first explain how to unfold a simple cross and then how to go on with
another connected one and finally how to unfold the whole inner line.

Unfolding a Cross: First we start with the simple cross which is the object
obtained with the (1, 1, 1)-Menger polycube (i.e. the Menger sponge) inner faces
(see Fig. 1b).

As we can see on Fig. 1d, unfolding one branch leads to four aligned faces.
In Fig. 1d, “u, b, d, f, l, r” stands for “up, back, down, front, left, right” faces as
they appear visually in Fig. 1b. We can navigate from one branch to the next by
reversing the faces cycle: this way, the unfolding keeps progressing in the same
direction, ensuring the non-overlapping property we seek. On Fig. 1c and d we
propose an order to browse the branches and show the corresponding unfolding.

(a) (1, 1, 1)-Menger
polycube.

(b) A cross: the in-
side of a (1, 1, 1)-
Menger.

(c) The order and
rotating direction to
unfold the branches.

(d) Unfolded inner faces of a (1, 1, 1)-Menger polycube.

Fig. 1. The (1, 1, 1)-Menger polycube. The inner faces of this polycube and their deter-
ministic edge-unfolding.
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Linking Two Crosses: As we can see on Fig. 2b, between two consecutive
crosses, there is a common branch. On the pattern we used to unfold a single
cross, the last and the first branch are opposite to each other. If we apply this
pattern to each cross of the inner line, the first and last branches are the shared
ones. This allows us to simply concatenate the unfoldings by merging the shared
branches (see Fig. 2c).

(a) A Line (1, 3, 1)-Menger
Polycube

(b) The faces of an inner line
Menger. The green cross and the
red cross each share a branch with
the blue cross.

(c) Unfolded Inner Faces of an Inner Line (1, 3, 1)-Menger

Fig. 2. The line (1, 3, 1)-Menger polycube. The inner faces of this polycube and its
deterministic edge-unfolding. (Color figure online)

Unfolding Inner Line Results: We now have all we need to unfold several
crosses in a row: we simply have to concatenate the cross pattern M times to
get a M sized line unfolding.

We can notice (see Fig. 2c) that the unfolding of each cross is on the right and
slightly above the previous one, preventing any two faces from different crosses
to overlap each other. The unfolding of the back branch of a cross is also the
unfolding of the front branch of the next cross (presented by mixed colour on
the figure). It allows linking every consecutive cross together.

2.3 Unfolding an Inner Plane

In the same way we formed a line by merging several crosses, we can now merge
several lines side by side to form the inside of a (L,M, 1)-Menger plane, called
an inner plane for what follows. As previously, some branches will be shared
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between two lines (see Fig. 3a). We will first see how to unfold an inner line
without the side branches and then how to connect the nets of two consecutive
inner lines to finally unfold an inner plane.

Unfolding a Partial Inner Line: Between two consecutive inner lines, each
cross shares a lateral branch with a cross from the other inner line. This time,
the shared branches will not be used to link the unfoldings of the different inner
lines. Since we cannot unfold the same faces twice, we choose to ignore the shared
branches while unfolding the first inner line and unfold them with the following
inner line and so forth until the last.

This means that, when we have M inner lines, each cross of the first M −
1 inner lines will miss the left branch. The crosses of these lines have only 5
branches (see Fig. 3a and b) instead of (these are partial inner lines)6. Therefore
a new pattern is needed. Indeed, the pattern we used in Sect. 2.2 works for an
inner line with crosses that have 6 branches.

A suitable pattern can be found in Fig. 3c. Once again, each two consecutive
crosses from a same partial inner line share the front and back branches (in
orange and red on the figures), and we will be using them to concatenate the
unfoldings. We can see that, this time, the shared branch is not the last branch
of the first cross, but we can nonetheless link the unfoldings of two consecutive
partial crosses without overlap. The top branch is unfolded under the shared
branch and under the next partial cross. We can thus concatenate any number
of 5 branch crosses to create a partial inner line of any length.

Linking Two Lines in an Inner Plane: To link two partial inner lines
together, we use an outer face. Indeed, we chose to unfold in such a way that
the last visited branch of a partial inner line is a branch connected to the outer
envelope of the polycube. We use the outer face as a bridge to reach the cross
to the left of the previous one (see the orange faces on Fig. 3).

In a partial inner line, each cross unfolding is placed on the top of the preced-
ing one. Following the same idea, each partial inner line unfolding is also placed
strictly on top of the preceding one. This way, two different line-unfoldings can-
not overlap. Each partial inner line is visited in a reverse order from the preceding
one; this is why each inner line unfolding mirrors the previous one.

Unfolding Inner Plane Results: A full L × M inner plane is composed
of L − 1 partial inner lines and one complete inner line. We just provided a
way to unfold a partial inner line and the unfolding of an inner line (with 6
branches crosses) is treated in Sect. 2.2. We simply have to link these different
line-unfoldings as previously described to get a full inner plane unfolding.

At each step, the unfolding of the different crosses and lines are placed on
the top of the previous ones. This way we can ensure that there is no unwanted
overlapping.
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(a) A Menger inner plane and, in orange,
the exterior faces used to link two lines.

(b) A cross missing its
side branch

(c) The unfolding of a 5-branch cross inner line. The red branch is used to link this
5-branch cross to the next one (in grey).

(d) The unfolding of an inner (3, 3, 1)-Menger plane. Faces of a same colour are from
the same cross. Orange faces are outer faces.

Fig. 3. The inner faces of a (3, 3, 1)-Menger polycube and their unfolding. (Color figure
online)
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2.4 Unfolding an Inner Volume

We can now merge inner planes to build the inner faces of a (L,M,N)-Menger
polycube volume. As for the previous case, some branches will be shared by
two consecutive inner planes. To unfold a volume, we therefore consider that
the lower planes miss their top branches (see Fig. 4a). This defines partial inner
planes. The top plane is a full inner plane as discussed in Sect. 2.3. Now, we
explain how to unfold the partial inner planes. Then, we explain how to link two
consecutive inner plane-unfoldings together.

Unfolding a Partial Inner Plane: To unfold a partial inner plane (see Fig. 4),
we have to unfold new types of partial inner lines where this time, the top and
left branches are missing. This leads to unfolding crosses having 4 (for the first
lines) or 5 (for the last line) branches.

When considering Fig. 3c, the pattern for 4 branch crosses is the same pattern
as the one with 5 branches except that we drop the blue branch.

The last line of such planes has 5 branches, but this time it is the top branch
that is missing. Globally the idea of the pattern is similar as for the 5 branch
pattern in Sect. 2.3 but the last branch is linked to the “left” of the red branch
instead of the “up” (see Fig. 3c).

Figure 4 presents the faces of a partial inner plane of a Menger polycube.
This plane misses every top branch. In blue and green, we can see two partial
inner lines missing their top and one side branch. The last partial inner line,
that misses only its top branches, is in red. To unfold such a partial inner plane,
we use a face of the outer envelope (in orange) to go from one line to the next
(similarly to what was described previously in Sect. 2.3).

Linking Two Planes: As for the link from an inner line to the next inner line
(see Sect. 2.3), we use an outer face to link a partial inner plane to the above
located inner plane. We exit a partial inner plane using a cross branch connected
to a side of the polycube and re-enter it by the corresponding branch of the cross
located above. The outer face used is coloured in yellow on Fig. 4.

Unfolding an Inner Volume Results: The whole inner volume unfolding
is obtained by adding a full last inner plane to the N − 1 partial inner planes
unfoldings. We can see the unfolding of the inner volume of a (3, 3, 3)-Menger
polycube on Fig. 6. It is the zigzag pattern unfolding on the top of the figure (in
green and blue we have the two partial inner planes and in red, the full inner
plane).

2.5 Unfolding the Remaining Outer Faces

The remaining faces all belong to the outer envelope of the polycube. We will
now see that all of these faces remain connected, can be unfolded in the same
fashion as a simple cube (see the bottom part of Fig. 6) and can be added to the
unfolding of the inner faces without overlap.
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(a) A Partial Inner Plane Missing Every Top
Branches.

(b) The unfolding of a partial plane of a (3, 3, N)-Menger inner volume. The yellow
face will be used to link this partial inner plane to one above it.

Fig. 4. The inner faces of a partial inner plane from a (3, 3, N)-Menger polycube and
their unfolding. (Color figure online)

Connectedness of Outer Faces: While unfolding the inner parts of the poly-
cube we use outer faces to link two inner lines either horizontally (for two con-
secutive inner lines of an inner plane) or vertically (for two inner lines of two
consecutive inner planes). The way we unfold all the inner lines is similar to a
sewing pattern starting on the bottom-front of the polycube, passing through to
exit on the opposite side and coming back through the next inner line either on
the left or on the top of the first one.

The outer faces used to link the inner unfoldings belong only to the front
and the back sides of the polycube, the other four sides are untouched.



466 L. Richaume et al.

Front side

Back side The four other sides

Outer faces unfolding

bridge

Fig. 5. The outer face unfolding in a cube unfolding fashion. The light-blue faces are
used to link 2 lines, and the green faces are used to link 2 planes. (Color figure online)

We can see on Fig. 5 that the unfolding of the outer faces remains connected
even with the missing outer faces (in light blue and green) that were used to
link the inner lines and planes together. Despite having used some outer faces
to unfold the inner part, the outer faces remain connected and can be unfolded
in the same way as a simple cube (see Fig. 6). A last face, coloured in orange,
has been removed to be used as a bridge between the unfolding of the outer and
inner part.

Linking the Outer Unfolding to the Inner Unfolding: When we unfold
the inner faces, the first unfolded branch is placed to have the lowest ordinate
value of the inner faces unfolding. This branch is linked to the outer envelope
of the polycube. During the unfolding process, faces are always added either at
the same level as the previous ones or above. Therefore, the outer faces can be
unfolded under the inner unfolding.

If we keep strictly the unfolding of a cube, we cannot connect the outer
faces to the inner faces. There is no free edge in the unfolded outer faces that
is common with an inner face. To create this common free edge, we move one
of the two faces of the front side of the polycube that are connected to both
the front branch of the starting cross and a face from another outer side of the
polycube. This face makes the bridge between the inner unfolding part and the
outer unfolding part.



Unfolding Menger Polycubes 467

2.6 Final Result

Figure 6 shows the unfolding of a (3, 3, 3)-Menger polycube and gathers all the
previously presented unfolding elements. We can see the unfolding of most of the
outer faces on the bottom. We can see the unfolding results of the inner part: the
zigzag unfolding on the upper part. Each inner line unfolding corresponds to a
linear part. Each zigzag composed of three linear parts belongs to the unfolding
of an inner plane. Each linear part is connected to the next using an outer face
either to connect two inner lines in the same inner plane (orange faces) or to
connect two inner planes (yellow faces). On the front of the (3, 3, 3)-Menger
polycube in Fig. 6, one can see some of the outer faces (in orange and yellow
respectively) that are used to link the inner lines and the inner planes. A similar
set of outer faces is located on the back of the Menger polycube.

Fig. 6. The unfolding of the level 1 (3, 3, 3)-Menger polycube. (Color figure online)

3 Conclusion

In this paper, we have proposed a deterministic method to unfold without refine-
ment high genus polycubes made out of level 1 Menger sponges. This proves
that despite the high rate of 6-degree vertices, there exists a non-overlapping
flat unfolding for such a polycube. It is the first unfolding example of such a
complex polycube object with a high genus without refinement.
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As a short time prospect, we will try to unfold the inner part of the Menger
polycubes without the help of outer faces. The goal is to prove that it is possible
to unfold an object composed only of degree 6 vertices. In the long term, we want
to study if our method can be adapted to other types of high genus polycubes
and maybe come up with a deterministic unfolding for any type of polycube.
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