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Abstract. Euclidean circle approximation on the square grid is an
important problem in digital geometry. Recently several schemes have
been proposed for approximation of Euclidean circles based on Neigh-
bourhood Sequences, which correspond to repeated application of the
von Neumann and Moore neighbourhoods on a square grid. In this paper
we study polygon approximations of the Euclidean circles on the square
grid with Broadcasting Sequences which can be seen as a generalization
of Neighbourhood Sequences. The polygons generated by Broadcasting
Sequences are the Minkowski sums of digital disks defined by a given
set of broadcasting radii. We propose a polynomial time algorithm that
can generate Broadcasting Sequences which are providing flexible and
accurate approximation of Euclidean circles.

1 Introduction

In the area of digital image processing the Distance Transform (DT) com-
putation is computationally expensive if it is based on explicit calculation of
Euclidean distances. In order to overcome this problem, other distance metrics
(such as Manhattan, Chessboard, Neighbourhood, Chamfer, Broadcasting) have
been proposed to calculate the distance considering only small neighbourhoods.
The transforms that apply these metrics can be seen as an approximation of
Euclidean distance with considerably less complex algorithms and which is suit-
able for parallel implementation on cellular processor arrays. In this context
approximation of Euclidean distance leads to the problem of Euclidean circle
approximation on regular grids [1–3]. Polygonal approximation is one of the effi-
cient approaches to approximate a circle in a discrete domain [4]. The main
objective is to approximate a given circle by a polygonal chain satisfying cer-
tain optimality criteria, such as minimising global approximation or restricting
local error in some predefined threshold. Moreover, such approximations usually
require to reduce storage spaces that needed to represent a shape of some circle
as well as to improve the extraction and properties of required features from a
given set of digital curves [5]. The simpler and more efficient approximations has
been constructed then more likely it can fit to a larger class of applied problems.
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Several schemes have been proposed for an approximation of circles based
on Neighbourhood Sequences, which is an application of the von Neumann and
Moore neighbourhoods on the square lattice [6–8], triangular [9] or hexagon
lattices [2]. In case of the neighbourhood sequences the best approximation for a
circle on the square lattice is the regular octagon and the problem of generating
such shape by neighbourhood sequences has been analysed in [10]. The main
downsides for a circle approximation by this approach are high error rate and
low expansibility due to restricted polygonal shapes.

This paper provides another methodology, using broadcasting automata as
a tool, to implement polygonal approximation. Broadcasting Automata can be
defined on some form of grid or lattice structure and have a simple computational
primitives comparative to finite state automata with the ability to receive and
send messages both from and to those automata which are within its transmission
radius [11]. In this work, we only consider the square grid structure, but due to
flexibility of the model similar broadcasting processes can be defined on other
lattices or other distance measured methods. However in connection with simple
agregation functions it can be used to generate more complex non-convex shapes,
the approximation of Lp metric or even arbitrary patterns, see [11].

Originally the broadcasting automata has been studied in the context of the
distributed algorithms and pattern formation problems. Each state in the grid or
lattice is regarded as a cell, which only has limited sensor range and restricted
common knowledge such as positions [12]. Therefore, all those cells within a
certain transmission radius, receive the message from the sender. As a result, the
communication between cells works like a Multi Agent System, which increases
the robustness and ability to tackle failures and abnormal conditions [13]. In
analogy to the neighbourhood sequences the similar broadcasting sequences can
be defined and in the case of 2D grid it covers classical Moore and Von Neumann
neighbourhoods as well as other neighbourhoods corresponding to digital disks.

By changing broadcasting radii we are changing sizes and shapes of transmis-
sion polygons on a grid (i.e. digital disks) [12]. Obviously using larger number
of radii corresponds to transmission polygons with larger number of line seg-
ments which in its turn leads to better approximation of the circles. So along
this line we are focusing on the problem of finding the best approximation of
the Euclidean circles for a given fixed set of transmission radii. Following recent
results from [12] about the composition properties of their Minkowski sum and
methods for efficient description of the polygons by the chain codes we design an
algorithm to find a Broadcasting Sequence that provides polygon approximation
of Euclidean circles. The error rate between polygon and circle has been used
as criterion to evaluate efficiency. We provide the analysis of the time complex-
ity for the proposed algorithm and experimental results to compare generated
approximations with optimal solution for a given set of radii and the distance
to the Euclidean circles.
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2 Approximation with Neighbourhood Sequences

The circle approximation using neighbourhood sequences on a square grid has
been studied in [10]. The neighbourhood sequences can generate octagon and
the more regular octagon can be generated the better approximation can be
achieved. The area of a polygon is defined by the Eq. (1) in [10]

S = a2 + 2
√

2ab + b2, (1)

where a and b are side-lengths of the sequence-generated octagon. So the best
approximation can be achieved when the side-lengths are the same, i.e. when
a = b. In this case, the area of the ideal polygon is equal to Spolygon = (2 +
2
√

2)a2. The relationship between a and the radius of circumscribed circle R

is represented by the equation a =
√

2 − √
2R. In that case, the area of the

circumscribed circle is Scircumscribed = πR2 = (1 +
√
2
2 )πa2. To evaluate the

approximation between polygon and the circumscribed circle the following Error
Rate (ER) defined by Eq. (2) has been used in [10]

ER = 1 − Spolygon

Scircumscribed
. (2)

It is obvious that the better approximation corresponds to lower error rate
and the error rate of neighbourhood sequences approximation is about 9.97% as
shown in [10]. The objective for this paper is to provide more accurate polygonal
approximation and to design an algorithm for its construction.

3 Broadcasting Sequences

As the alternative to the neighbourhood sequences we consider the problem of
approximation of Euclidean circles by polygons generated by a set of neighbour-
hoods which correspond to a finite set of digital disks. Such sequences are known
as Broadcasting sequences [11]. They are naturally generalizing neighbourhood
sequences and enriching the model by a variety of generated polygons. However
finding the optimal approximation of Euclidean circles by broadcasting sequences
for a given finite set of digital disks is quite nontrivial computational problem,
since it is hard to provide simple canonical forms corresponding to the optimal
solutions for a set of digital disks.

In this section we introduce basic concepts of broadcasting sequences and
digitized circles, which will be used as neighbourhoods for approximation of
Euclidean circles. Originally broadcasting automata model has been defined in
[11,12] as a network of finite automata on the integer grid. The mechanism for
communication between automata is message passing. The messages generated
by an automaton (sender) transfer to its transmission neighbourhood (receiver),
which is a subset of its neighbors within the transmission range. Messages are
generated and transferred instantaneously at a discrete time step, regarding
as synchronous steps [12]. In this paper we study the concept of transmission
neighbourhoods in the context of the Euclidean circle approximation problem.
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Definition 1. The Euclidean distance between two cells c1 and c2 on a square
grid with integer coordinates (x1, y1) and (x2, y2) is defined as

d(c1, c2) =
√

(x1 − x2)2 + (y1 − y2)2.

Definition 2. The square transmission radius r, which is used to quan-
tify the transmission range, is the square of the max cell distance of the sender
and its receivers. The Broadcasting Neighbourhood of the cell c0 on the dis-
tance

√
r is defined as a set {c|d(c, c0)2 ≤ r} which we also call as primitive

transmission polygon (PTP).

Varying the transmission radius we construct different digital disks, i.e. different
sizes and shapes of PTP. We also use a notion of the square radius to identify
a PTP for simplicity to stay with integer numbers. Let us illustrate a variety of
PTPs corresponding to different square transmission radii on Fig. 1 [11].

Fig. 1. Examples of PTPs with square transmission radii in order R =
{1, 2, 4, 5, 8, 9, 10, 13, 16}

Definition 3. A Broadcasting sequence is a sequence of radii

R = {r1, r2, r3...rn},
where ri is a square transmission radius and n is the number of elements in the
sequence. The polygon generated by broadcasting sequence is the Minkowski sum
of all primitive transmission polygons (digital disks) with radii from R.1

In order to represent symmetrical polygons generated by broadcasting
sequences we use the chain code [14]. The polygon is divided into eight octants
(Fig. 2) and it is sufficient and necessary to depict the first octant of a polygon
because the rest of the part is “mirrored” from the first octant [11].

Fig. 2. Eight octants of digital polygons

1 Minkowski sum gives the same polygon for different order of the composition as it
is commutative operation.
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Definition 4 [11]. A chain code for a digitized circle in the first octant is a
word in {0, 1}∗ where 0 is positive motion along the x-axis, 1 is positive motion
along the x-axis and negative motion along the y-axis. The 9th image in Fig. 1
is an example of chain code “101”.

It has been proven in [11] that the edges of primitive transmission polygon
in the first octant can be represented by chain code the formal definition of the
line segments has been introduced to describe the sides of these polygons.

Definition 5 [11]. Line segments, sub-word of chain code, represent a straight
edge of a circle in one of the following forms: 0∗, (10n)∗,(10n)(10n+1)∗,
(10n)∗(10n+1). For example, the line segments of 9th polygon in Fig. 1 are:
{10, 1}.

Definition 6 [11]. A gradient, G(s), of a line segment s, is G(s) = |s|1
|s| , where

the function |s|1 returns the number of 1’s in the chain code and |s| is the length
of s. It is also called tangent of line segment. For example, the gradient of line
segment “1000” is 0.25.

It was shown in [11] that for these polygons, the gradients of line segments in the
first octant are strictly increasing and the following composition theorem holds:

Theorem 1 [11]. Composition theorem: Given two chain codes u and v
which contain line segment lu1 lu2 ...lut and lv1 l

v
2 ...l

v
t′ with strictly increasing gradi-

ents, the chain code of a composition of u and v can be constructed by combining
line segments of u and v, then ordering them by increasing gradient. The compo-
sition of two chain codes u and v is commutative and corresponds to the chain
code of Minkowski sum of digital disks in the first octant.

Definition 7. A length, L(s), of a line segment s, is L(s) = |s|√1 + G(s)2,
where |s| is the length of line segment s, G(s) is the gradient of s.

4 Polygon Approximation of Circle

In this paper we design the algorithm to find a polygon approximation of a
circle using broadcasting sequences. Single primitive transmission polygons may
have a very high error rate for circle approximation and clearly polygons with
more segments can achieve better approximation rate circle. Following Theorem 1
it is clear that the composition of multiple PTPs contains more types of line
segments, which results in a better approximation for circle. However when the
total number of radii is fixed the main question is to find the right ratios of radii
that should be used together for the best approximation of a circle.

The problem of finding the best approximation of Euclidean circle can
be formulated as follows: Given a set of square transmission radii {r1, r2, . . . , rm}
and the maximal length of broadcasting sequence h find a broadcasting sequence

R = {r1...r1, r2...r2, . . . , rm...rm},
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where |R| ≤ h such that the polygon generated by a sequence R (i.e. Minkowski
sum of digital disks with radii from R) has the smaller error rate in relation to
Euclidean circle.

In order to solve the above problem we represent polygons in the vector form,
look for the ideal polygon based on the line segments and finally approximate
the ideal polygon by given PTPs. So the algorithm contains three parts: vector
system setup, ideal polygon and broadcasting sequence construction.

4.1 Vector System Setup

The vector system is used to represent polygons by line segments. Each line
segment in a polygon has two associated values: the gradient and the length.
These line segments can form a polygon by strict increasing gradients in the
first octant. In that case, gradient set records gradients of line segments and
length vector records lengths of corresponding line segments.

Definition 8. Gradient set, GV (p) = {g1, g2, ...gn}, of the polygon p, denotes
a list of gradients of line segments of p. For convenience, gradients in the set are
in ascending order (gi < gi+1).

Definition 9. Length vector, LV (p) = [l1, l2, ...ln], of the polygon p, denotes
a list of length of line segments of p. The elements of the same index in GV (p)
and LV (p) indicate the gradient and length of one line segment respectively.

In order to operate with several polygons we will introduce extensive length
vector. It represents a length vector of p in the context of larger gradient set of
p0, where GV (p) is the subset of GV (p0).

Definition 10. Extensive length vector, LV (p, p0) = [l1, l2, ...ln], of the poly-
gon p, denotes a list of length of line segments of p corresponding to GV (p0) and
if some g exist in GV (p0) but not in GV (p), the corresponding element in this
vector is 0. The size of this vector is the same as GV (p0).

Later we use p0 to represent the objective polygon and PTPs={p1, p2...pm}
represents all PTPs according to R. Since the objective polygon is generated
by the given PTPs, gradient set of objective polygon is identified as GV (p0) =⋃m

i=1 GV (pi). In that case, the gradient set of each PTP is the subset of GV (p0).

Definition 11. Length matrix of a list of PTPs = (p1, p2 . . . pm) is
LM(PTPs, p0) = [LV (p1, p0)T , LV (p2, p0)T . . . LV (pm, p0)T ], which is a matrix
of lengths of line segments of PTPs corresponding to GV (p0). The size of this
matrix is the product of the size of PTPs and the size of GV (p0).

Example: Let us consider a set of PTPs P = {p1, p2, p3} with corresponding
radii {r1 = 16, r2 = 18, r3 = 25}. Let p0 be the objective polygon, then the Gra-
dient set of p1, p2 p3 and p0 will be defined as GV (p1) = { 1

2 , 1}, GV (p2) = {0, 1
2},

GV (p3) = { 1
3 , 1} and GV (p0) = {0, 1

3 , 1
2 , 1}. The Extensive Length vectors of
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PTPs in this case are: LV (p1, p0) = {0, 0,
√

5,
√

2}, LV (p2, p0) = {2, 0,
√

5, 0}
and LV (p3, p0) = {0,

√
10, 0,

√
2} and the Length matrix is:

LM(P, p0) =

⎡

⎢
⎢
⎣

0 2 0
0 0

√
10√

5
√

5 0√
2 0

√
2

⎤

⎥
⎥
⎦ .

Thus the length matrix X = LM(PTPs,GV (p0)) represents PTPs and the
length vector Y = LV (p0) represents the length vector of objective polygon. We
use the notion of the Parikh vector to combine these two objects X and Y .

Definition 12 [15]. Let
∑

= {a1, a2...ak} be an alphabet. The Parikh vector
of a word w is defined as the function p(w) = (|w|a1 , |w|a2 , |w|a3 ...|w|ak

), where
|w|ai

denotes the number of occurrences of the letter ai in the word w.

In other words, the elements in Parikh vector are the number of occurrences
of corresponding radii that appear in the broadcasting sequence. Finally, the
relationship of length vector of objective polygon Y, the length matrix of PTPs
X and the Parikh vector P can be defined as Eq. (3).

XP = Y (3)

The value of X can be derived from PTPs, however the values of Y and P
are unknown. In Subsect. 4.2 we show how to find the value of Y and in the
Subsect. 4.3 we will calculate P from X and Y .

4.2 Ideal Polygon Construction

Let us start with finding the length vector of the ideal polygon Y according to
the gradient set GV (p0), which contains all gradients of line segments that PTPs
provide. Since the polygon is an inscribed polygon with max area, each vertex
of polygon should be on the circle with the same distance to the center of circle
and the polygon occupies the circle as large proposition as possible. To calculate
the area of polygon, the polygon is divided into isosceles triangles whose point
angles are the center of the circle and the base edges are the edges of polygon.
In that case, the area of polygon is the sum of areas of all triangles, see Fig. 3.
In addition, since the gradients of edges are fixed, there are constraints (Eq. (4))
among point angles and base angles, i.e θi and αi, where θi is known as outer
angle of polygon and αi is as the inner angle of a divided triangle of the polygon,
both shown on Fig. 3:

2π − 2θi − αi − αi+1 = 0 (4)

Due to the symmetry of constructed polygons, we only need to count up
triangles in the first octant, which occupies 1

8 of the total polygon. However,
due to the double line segments, the triangles with gradient of 0 or 1 only half
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Fig. 3. Triangle division of polygon

occupy the first octant. In that case, when calculating the area, the area should
be half for these triangles. The area function of a polygon in the first octant can
be defined as Eq. (5) and the objective is to find the maximum of SP .

SP (α) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2R2

∑n
1 sin αi no double line segment

1
2R2(

∑n
2 sin αi + 1

2 sin α1) G(α1) = 0, G(αn) �= 1
1
2R2(

∑n−1
1 sin αi + 1

2 sin αn) G(α1) �= 0, G(αn) = 1
1
2R2(

∑n−1
2 sin αi + 1

2 (sin α1 + sin αn) G(α1) = 0, G(αn) = 1

(5)

From the criterion equation, since the circumscribed circle is fixed, it is clear
that the larger area the polygon corresponds to the lower error rate of an approx-
imation. Therefore, we need to find the maxima of this function subject to equal-
ity constraints. We use Lagrange Multiplier method, which is the proper math-
ematical optimization technique to find the solutions of the function. Therefore,
for constraints, we define scalars λ1, λ2...λn−1 and an auxiliary function shown
in Eq. (6), then we solve the Equation set (7). There are 2n − 1 equations and
2n − 1 variables, which are solvable.

F = SP (α) +
n−1∑

i=1

λi(2π − 2θi − αi − αi+1) (6)

F (α;λ) =

{
∇SP (α) − ∑n−1

k=1 λk∇(2π − 2θi − αi − αi+1) = 0
2π − 2θi − αi − αi+1 = 0

(7)

Since the above equations are not linear, we utilized Newton-Raphson method
to solve the equation set, which is the method of finding successively better
approximations to the roots of a real-valued function. All variables are combined
in a vector x = [α;λ]. The iterative equation can be defined as Eq. (8)

x(k+1) = x(k) − J−1(x(k))SP (x(k)) (8)

where x(k) is previous point, x(k+1) is the derivative point, SP is the column
vector of equations at x(k) and J is Jacobian matrix of SP at x(k), a matrix of
all first-order partial derivatives of SP .
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We create an iterative algorithm to implement this method. In the algorithm,
we define the max iterative time max itr and deviation range err range. The
algorithm repeats until deviation between calculated function and objective val-
ues is smaller than the deviation range. The founded x is result of equation set
and k is total iterative step. If the iterative time overtakes the predefined value
max itr, the algorithm returns no results.

Consequently, the resulted vector x = [α;λ] of Newton-Raphson method
contains the sine values of ideal angles of triangles in the first octant. Based on
the equation li = 2R sin αi, the ratio of lengths of line segment is the same as
ratio of sine values of inner angles since that all divided triangles are isosceles
with equal side length R. In addition, only the shape of polygon is considered.
Therefore, the relative lengths of line segments should be adopted.

4.3 Broadcasting Sequence Construction

In this section we will show how to calculate P and find the broadcasting
sequence which can be close to the ideal polygon. In the Sect. 4.1 we show that
the ideal result of Parikh vector should satisfies to the Eq. 3, however, for length
matrix X, we still need to consider several cases:

1. If the number of rows is smaller than the number of columns, which means
the number of PTPs is larger than the number of gradient types, the result
of P is not unique and infinite.

2. If the number of rows equal to the number of columns, which means the
number of PTPs is the same as the number of gradient types, the result of P
is unique.

3. If the number of rows is larger than the number of columns, which means the
number of PTPs is larger than the number of gradient types, the result of P
is not exist.

For the first case, we can define some elements of P in the admissible domain
until the number of undefined elements is equal to the number of columns. Then
the result of P is unique and computable. For the second case, P is derived
directly by the Eq. (9)

P = X−1Y. (9)

For the third case, assuming that there is no P that satisfy the equation,
we aim to find the best fitting that minimizes the deviation. The Least Square
Fitting is the most common method which solves the Eq. (10)

S(P ) = arg sin(‖XP − Y ‖)2. (10)

We also need to assume that all elements in P must be positive. In that
case, a constraint is added in the equation and another extensive Least Square
Fitting method— Non-negative least squares (NNLS) with the constraint x > 0
for equation. This method is based on the observation that only a small subset
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of constraints is usually active at the solution [16], which is given by Lawson and
Hanson [17]. The basic principle uses iterative method to calculate the equation
until Kuhn-Tucker conditions are satisfied. Currently, MathWorks [18] provides
the function for the algorithm NNLS, which is called to “lsqnonneg”. Therefore,
the Eq. (11) can be used directly for a given X and Y

P = (XTX)−1XTY. (11)

After generating P we can derive the broadcasting sequence. In the broad-
casting sequence, the number of radii is the values of corresponding elements in
P . Note that the absolute values of elements in P are not important. The main
focus are the relative values among elements. The values of elements in P can be
shrunk by same proposition according to the accuracy requirements. Consider-
ing that the number of elements in broadcasting sequence should be integers, all
elements in P shrink and approximate an integer within the requirement range.

Proposition 1. For a given set of radii r1, . . . , rm with corresponding number
of line segments n1, . . . , nm the constructed algorithm can find the broadcasting
sequence approximating Euclidean circle in polynomial time O(nm2+n3k) where
n is the sum of all ni for i = 1..m and assuming that k ∝ log t where t is
approximation precision.

Proof. According to the Sect. 4, which describes the whole process of broadcast-
ing sequence construction, there are 3 steps needed to be considered.

In the first step “Vector system setup”, based on the given set of square
radii where the size of set is m and max value of square radius is rmax, the
max number of line segments n for each PTP satisfies the equation n, which
is a linear relationship to square root of rmax: n ∝ √

rmax. In this case, the
time complexity for deriving the set of line segments of objective polygon p0
is O(nm). According to the definition (10), the time complexity to derive the
length matrix X of PTPs is O(nm2).

In the second step “Ideal Polygon Construction”, a non-linear equation set is
solved by Newton method, which is quadratic convergent [19]. Assuming that the
iterative time is k, based on the results discussing complexity of Newton method
[20], the iterative times depends on the initial points of Newton method and
approximation precision. Normally k is linear relative to log t where t is approxi-
mation precision. On the other hand, for each iterative step, several components
are calculated with the time complexity listed below:

1. Equation vector SP at the iterative point: O(n2).
2. Jacobian matrix at the iterative point: O(n3).
3. Matrix transposition: O(n2).
4. Matrix inversion and matrix multiplication: O(n3).

To sum up, the time complexity of Newton Method is O(n3logt), where n is
the total number of line segments and t is approximation precision. In the third
step “Broadcasting Sequence Construction”, the time complexity of Eqs. (9)
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and (11) are O(n3) since the calculations only includes matrix transposition,
inversion and multiplication. As a result, the time complexity of this method is
O(nm2 + n3k) and normally k ∝ log t where t is approximation precision.

5 Construction and Comparison

Let us illustrate the results of experiments and a few constructions for specific
set of radii. Let us consider the first example for the radius set R1 = {r1 =
2, r2 = 4} which corresponds to application of Von Neumann neighbourhood
(PTP with r = 2) and Moore neighbourhood (PTP with r = 4). Table 1 shows
all intermediate values as well as the optimal broadcasting sequence in this case.

Table 1. Immediate results of construction process

Gradient set Length
vector (X)

Length
vector (Y)

Parikh
vector (P)

Broadcasting sequence
of length 60

{0, 1}
[
2 0

0 2
√

2

] [
0.78

0.79

] [
0.39

0.28

]
{35, 25}

The image of transmission polygons for the radius set R1 is shown on Fig. 4
(Left). For this example, the transmission polygons of broadcasting sequence are
the same as in case of the neighbourhood sequence. Our broadcasting sequence
is optimal and it is matching with optimal error rate of 9.97% in this case.

Fig. 4. Constructed polygons for R1 = {r1 = 2, r2 = 4} (Left) and for R2 = {r1 = 2,
r2 = 4, r3 = 9} (Right)

The second example uses three types of PTPs for the design of broadcasting
sequence. Let the radius set R2 be {r1 = 2, r2 = 4, r3 = 9}. Table 2 shows the
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intermediate results of each step and Fig. 4 (Right) shows the generated image
of transmission polygon. The error rate in this case is 3.03% and the solution is
also optimal.

Table 2. Euclidean distance method result

Gradient set Length
vector (X)

Length
vector (Y)

Parikh
vector (P)

Broadcasting sequence of
length 60

{0, 1
2
, 1}

⎡
⎢⎣

2 0 0

0 0
√

5

0 2
√

2 0

⎤
⎥⎦

⎡
⎢⎣

0.52

0.41

0.24

⎤
⎥⎦

⎡
⎢⎣

0.26

0.08

0.18

⎤
⎥⎦ {29, 10, 21}

In the Table 3 we provide comparison between the error rate for optimal
solution approximating Euclidean circle by broadcasting sequences of length 60
and the sequence generated by our algorithm.

Table 3. Experimental results comparing error rates between the optimal and approx-
imate solution

Gradient set Radius set Approximated

broadcasting

sequence

Error rate of

approximated

solution

Optimal

broadcasting

sequence

Error rate of

optimal solution

0, 1 {2,4} {35,25} 9.97% {35,25} 9.97%

0, 1
2 , 1 {2,4,9} {29,10,21} 3.03% {29,10,21} 3.03%

0, 1
2 , 1 {5,16,18} {24,9,27} 3.03% {24,9,27} 3.03%

0, 1
3 , 1 {2,25} {25,35} 7.55% {0,60} 5.78%

0, 1
3 , 1 {5,25} {31,29} 4.51% {31,29} 4.51%

0, 1
3 ,

1
2 , 1 {2,9,36} {36,9,15} 5.79% {22,18,20} 2.31%

0, 1
3 ,

1
2 , 1 {16,18,25} {7,31,22} 3.77% {11,28,21} 2.98%

0, 1
4 ,

1
3 ,

1
2 , 1 {171,239} {34,26} 1.68% {35,25} 1.68%

0, 1
4 ,

1
3 ,

1
2 , 1 {233,239} {40,20} 2.15% {11,49} 1.93%

Conclusion. The main contribution of the paper is polynomial time algorithm
that can find for a fixed set of digital disks the broadcasting sequence which
Minkowski sum (i.e. covered area) can approximate Euclidean circles with a
small error rate. The efficiency of the method is limited by the ideal polygon
(see Subsect. 4.2) with the same list of gradients as in a given set of digital disks.
The error difference between an optimal polygon that can be constructed for
a given set of digital disks and a polygon produced by our algorithms can be
zero in some cases and also within 3.5% for all tested cases. Our approximation
algorithm can calculate the optimal solution (in some cases) or a solution with a
small error rate when gradients are repeated for several disks. From the structure
of our algorithm follows that the larger set of digital disks we take, the more
common gradients they have leading to smaller error rate between optimal and
approximate solutions.
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