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Abstract. A set S ⊂ Z
d is digital convex if conv(S) ∩ Z

d = S, where
conv(S) denotes the convex hull of S. In this paper, we consider the
algorithmic problem of testing whether a given set S of n lattice points
is digital convex. Although convex hull computation requires Ω(n log n)
time even for dimension d = 2, we provide an algorithm for testing
the digital convexity of S ⊂ Z

2 in O(n + h log r) time, where h is the
number of edges of the convex hull and r is the diameter of S. This
main result is obtained by proving that if S is digital convex, then the
well-known quickhull algorithm computes the convex hull of S in linear
time. In fixed dimension d, we present the first polynomial algorithm to
test digital convexity, as well as a simpler and more practical algorithm
whose running time may not be polynomial in n for certain inputs.

Keywords: Convexity · Digital geometry

1 Introduction

Digital geometry is the field of mathematics that studies the geometry of points
with integer coordinates, also known as lattice points [1]. Convexity is a funda-
mental concept in digital geometry, as well as in continuous geometry [2]. From
a historical perspective, the study of digital convexity dates back to the works of
Minkowski [3] and it is the main subject of the mathematical field of geometry
of numbers.

While convexity has a unique well stated definition in any linear space, dif-
ferent definitions have been investigated in Z

2 and Z
3 [4–8]. In two dimensions,

we encounter at least five different approaches, called respectively digital line,
triangle, line [4], HV (for Horizontal and Vertical [9]), and Q (for Quadrant [10])
convexities. These definitions were created in order to guarantee that a digital
convex set is connected (in terms of the induced grid subgraph), which simplifies
several algorithmic problems.

The original definition of digital convexity in the geometry of number does
not guarantee connectivity of the grid subgraph, but provides several other
important mathematical properties, such as being preserved under certain affine
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Fig. 1. Shearing a digital convex set. Example of a set whose connectivity is lost after
a linear shear.

transformations (Fig. 1). The definition is the following. A set of lattice points
S ⊂ Z

d is digital convex if conv(S) ∩Z
d = S, where conv(S) denotes the convex

hull of S.
Herein, we consider the fundamental problem of verifying whether a given

set of lattice points is digital convex.

Problem TestConvexity(S)
Input: Set S ⊂ Z

d of n lattice points given by their coordinates.
Output: Determine whether S is digital convex or not.

The input of TestConvexity(S) is an unstructured finite lattice set (without
repeating elements). Related work considered more structured data in dimension
2, in which S is assumed to be connected. The contour of a connected set S of
lattice points is the ordered list of the points of S having a grid neighbor outside
S. When S is connected, it is possible to represent S by its contour, either directly
as in [11] or encoded as binary word [12]. The algorithms presented in [11,12]
test digital convexity in linear time on the respective input representations.

Our work, however, does not make any assumption on S being connected,
or any particular ordering of the input. In this setting, a naive approach to test
the digital convexity is:

1. Compute the convex hull conv(S) of the n lattice points of S.
2. Compute the number n′ of lattice points inside the convex hull of S.
3. If n = n′, then S is convex. Otherwise, it is not.

Step 1 consists of computing the convex hull of n points. The field of compu-
tational geometry provides a plethora of algorithms to compute the convex hull
of a finite set S ⊂ R

d of n points [13]. The fastest algorithms for dimensions 2
and 3 take O(n log n) time [14], which matches the lower bound in the algebraic
decision tree model of computation [15]. In dimension d ≤ 3, if we also take into
consideration the output size h, i.e. the number of vertices of the convex hull, the
fastest algorithms take O(n log h) time [16,17]. Some polytopes with n vertices
(e.g., the cyclic polytope) have Θ(n�(d−1)/2�) facets. Therefore, any algorithm
that outputs this facet description of the convex hull requires Ω(n�(d−1)/2�) time.
Optimal algorithms to compute the convex hull in dimension d ≥ 4 match this
lower bound [18].

Step 2 consists of computing the number of lattice points inside a polytope
(represented by its vertices), which is a well studied problem. In dimension 2, it
can be solved using Pick’s formula [19]. The question has been widely investi-
gated in the framework of the geometry of numbers, from Ehrhart theory [20] to
Barvinok’s algorithm [21]. Currently best known algorithms have a complexity
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of O(nO(d)) for fixed dimension d [22]. As conclusion, the time complexity of this
naive approach is at least the one of the computation of the convex hull.

1.1 Results

In Sect. 2, we consider the 2-dimensional version of the problem and show that
the convex hull of digital convex sets can be computed in linear time. Our main
result is an algorithm for dimension d = 2 to solve TestConvexity(S) in O(n +
h log r) time, where h is the number of edges of the convex hull and r is the
diameter of S.

In Sect. 3, we consider the problem in fixed dimension d. We present the first
polynomial-time algorithm to test digital convexity, as well as a simpler and
more practical algorithm whose running time may not be polynomial in n for
certain inputs.

2 Digital Convexity in 2 Dimensions

The purpose of this section is to provide an algorithm to test the convexity of
a finite lattice S ⊂ Z

2 in linear time in n. To this endeavour, we show that the
convex hull of a digital convex set S can be computed in linear time. In fact,
we show that this linear running time is achieved by the well-known quickhull
algorithm [23].

Quickhull is one the many early algorithms to compute the convex hull in
dimension 2. Its worst case time is O(n2), which makes it generally less attractive
than the O(n log n) algorithm. However for certain inputs and variations of the
algorithm, the average time complexity is reduced to O(n log n) or O(n) [13,24].

The quickhull algorithm starts by initializing a convex polygon in the fol-
lowing manner. First it computes the top-most and bottom-most points of the
set. Then it computes the two extreme points in the normal direction of the line
supported by the top-most and bottom-most points. Those four points describe
a convex polygon that we call a partial hull, which is contained inside the convex
hull of S. The points contained in the interior of the partial hull are discarded.
Furthermore, horizontal lines and lines parallel to the top-most to bottom-most
line passing through these points describe an outlying bounding box in which
the convex hull lies (Fig. 2).

The algorithm adds vertices to the partial hull until it obtains the actual
convex hull. This is done by inserting new vertices in the partial hull one by one.
Given an edge of the partial hull, let v denote its outwards normal vector. The
algorithm searches for the extreme point in direction v. If this point is already
an edge point, then the edge is part of the convex hull. Otherwise, we insert
the farthest point found between the two edge vertices, discarding the points
that are inside the new partial hull. Throughout this paper, we call a step of
the quickhull algorithm the computation of the farthest point of every edge for
a given partial hull. When adding new vertices to the partial hull, the region
inside the partial hull expands. Points inside that expansion are discarded by
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Fig. 2. Quickhull initialization. Points inside the partial hull (light brown) are dis-
carded. The remaining points are potentially part of the hull. (Color figure online)

quickhull and herein we name this region discarded region. The points that still
lie outside the partial hull are preserved, and we call the region within which
points might still lies preserved region (Fig. 3).

We show that quickhull steps takes linear time and that at each step half
of the remaining input points of the convex hull is discarded. Therefore, as
in standard decimation algorithms, the total running time remains linear. In
Sect. 2.2, we explain how to use this algorithm to test the digital convexity of
any lattice set in linear time in n.

Theorem 1. If the input is a digital convex set of n points, then QuickHull has
O(n) time and space complexities.

2.1 Proof of Theorem1

We prove Theorem 1 with the help of the following lemma.

Lemma 1. The area of the discarded region is larger than the area of the pre-
served region.

Proof. Consider one step of the algorithm: Let ab be the edge associated to the
step. When a was added to the hull, it was as the farthest point in a given
direction. Hence, there is no point behind the line orthogonal to this direction
going through a. (Fig. 3b). The same can be said for b. Let c be the intersection
point of those two lines. Every point that lies within �abc will be fed to the
following steps. At this step, we are looking for the point that is the farthest
from the supporting line of ab and outside the partial hull (let that point be d)
(Fig. 4). Let e and f be the intersections between the line parallel to ab going
through d, and respectively ac and bc. There are no points from S inside the
triangle �cef . Adding d to the partial hull creates two other edges to further
be treated: one with ad as an edge that will be fed the points inside �ade and
one with bd as the edge that will be fed the points inside �bdf . The triangle
�abd lies within the partial hull, therefore �abd is the region in which points
are discarded (Fig. 4).
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Fig. 3. Quickhull regions. The preserved region (region in which we look for the next
vertex to be added to the partial hull) is a triangle. This stays true when adding new
vertices to the hull (as shown here in the bottom right corner). The partial hull (whose
interior is shown in light brown) grows at each vertex insertions to the partial hull. The
new region added to the partial hull is called discarded region. (Color figure online)

We established that the preserved lattice points are the lattice points within
�ade and �bdf . Also the discarded lattice points are those within �abd. Let
c1 be the middle of ad and c2 be the middle of bd. As shown in Fig. 4, the
symmetrical of �ade and �bdf through respectively c1 and c2 both lie inside
�abd and do not intersect each other. Hence �abd is larger in terms of area
than �aed ∪ �bdf . �	
Remark 1. Pick’s formula does not apply here since all vertices of the triangle
(namely c in Fig. 4) are not necessarily lattice points.

Remark 2. As there is no direct relation between the area of a triangle and the
number of lattice points inside it, this result is not sufficient to conclude that a
constant proportion of points are discarded at each step.

Corollary 1. The reflection of lattice points inside �aed and �bdf across
respectively c1 and c2 are lattice points.

Proof. The points a, b, d are lattice points so c1 and c2 (middle of respectively ad
and bd) have their coordinates in multiple of half integers. Hence the reflection
of a lattice point across c1 or c2 is a lattice point. Therefore, every lattice point
within �aed has a lattice point reflection across c1 within �ae1d and every
lattice point within �bfd has a lattice point reflection across c2 within �bf2d.

�	
Remark 3. This previous result would prove that half the points are discarded
at each step if it were not for the lattice points on the diagonals ad and bd.

We will now show that quickhull discards at least half of the remaining points
at each step, hence proving Theorem 1



414 L. Crombez et al.

Fig. 4. Symmetrical regions. The next step of the algorithm will only be fed the points
inside the dark brown regions (search regions). Each lattice points inside the light
brown region (discarded region) is inside the partial hull and is therefore discarded.
Each search region (in dark brown) has a symmetrical region (either through c1 or
c2) that lies inside the discarded region. Furthermore, this symmetrical transformation
also preserve lattice points. (Color figure online)

Proof. We established in Corollary 1 that lattice points inside the search regions
(�aed and �bfd) have symmetrical counterparts inside the discarded region
(more precisely inside �ae1d and �bf2d) (Fig. 4). By preserving each points
inside �aed and �bfd at each step, we do not have a discarded symmetrical
counterpart for the lattice points lying on ad and bd. But we do not need to
preserve those points, since ad and bd are at this step edges of the partial hull.
Removing lattice points from ad and bd implies that in the following step there
will be no lattice points on ab, leaving lattice points on ef without a discarded
symmetrical counterparts (Fig. 5).

Let actually discard every points on ef , since they all are equally farthest
from ab in the outer direction, they all belong to the hull. Hence we can add the
first and last lattice point on ef to the partial hull (Fig. 5). Note that this only
takes linear time and does not change the time complexity of each individual
step. Hence, at each step of quickhull, for every preserved points there is at least
a discarded point. Consequently, the number of operations is proportional to

n
∞∑

i=0

( 12 )i = 2n and quickhull takes linear time for digital convex sets. �	

2.2 Determining the Digital Convexity of a Set

We showed in Theorem 1 that the quickhull algorithm computes the convex hull
of digital convex sets in linear time thanks to the fact that at each step quickhull
discards at least half of the remaining points. By running quickhull on any given
set S, and stopping the computation if any step of the algorithm discards less
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Fig. 5. Lonely points. The lattice points without discarded symmetrical counterparts
are shown in red. On the left: if every points inside the triangle is preserved, and in
the center: if the points on the edges of the partial hull are discarded. Finally on the
right a visualization of what happens if we discard all the farthest points and update
the partial hull accordingly. (Color figure online)

than half of the remaining points, we ensure both that the running time is linear,
and that if S is digital convex, quickhull finishes and we get the convex hull of
S. If the computation finishes for S, we still need to test its digital convexity. To
do so, we use the previously computed convex hull and compute |conv(S) ∩ Z

2|
using Pick’s formula [19]. The set S is digital convex if |conv(S) ∩ Z

2| = |S|.
Hence the resulting Algorithm 1.

Algorithm 1. isDigitalConvex(S)
Input: S a set of points
Output: true if S is digital convex, false if not.
1: while S is not empty do
2: Run one step of the quickhull algorithm on S
3: if quickhull discarded less than half the remaning points of S then
4: return false
5: Compute |conv(S) ∩ Z

2|
6: if |conv(S) ∩ Z

2| > |S| then
7: return false
8: return true

Theorem 2. Algorithm1 tests digital convexity of any 2 dimensional set S, and
runs in O(n + h log r) time, where h is the number of edges of conv(S) and r is
the diameter of S.

Proof. As Algorithm 1 runs quickhull, but stops as soon as less than half the
remaining points have been removed, the running time of the quickhull part is

bounded by the series n
∞∑

i=0

( 12 )i = 2n, and is hence linear. Thanks to Theorem1

we know that the computation of quickhull will not stop for any digital convex
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sets. Computing |conv(S) ∩ Z
2| using Pick’s formula requires the computation

of the area of conv(S) and of the number of lattice points lying on its boundary,
which requires the computation of a greatest common divisor. Hence this takes
O(h log r) time where h is the number of edge of conv(S) and r is the diameter
of S. As S is digital convex if and only if |S| = |conv(S) ∩ Z

2|, Algorithm 1
effectively tests the digital convexity of a 2 dimensional set in O(n + h log r)
time. �	

3 Test Digital Convexity in Dimension d

We provide two algorithms for verifying the digital convexity in any fixed dimen-
sion.

3.1 Naive Algorithm

The naive algorithm mentioned in the Introduction is based on the following
equivalence: the set S ⊂ Z

d is digital convex if and only if its cardinality is equal
to the cardinality of conv(S)∩Z

d. In Step 1, we compute the convex hull of S (in
O(n log n + n� d

2 �) time [18]). In Step 2, we need to count the number of integer
points inside conv(S). The classical algorithm to achieve this goal is known as
Barvinok algorithm [21]. This approach determines only the number of missing
points. If we want to enumerate the points, it is possible to do so through a
formal computation of the generating functions used in Barvinok algorithm.

Theorem 3. The naive algorithm tests digital convexity in any fixed dimension
d and runs in polynomial time.

Proof. Computing the convex hull of any set can be done in O(n log n + n� d
2 �)

time [18]). Counting lattice points inside a convex lattice polytope can be done
in polynomial time [22]. A direct consequence of the digital convexity definition
is that a set S ⊂ Z

d is digital convex if and only if |S| = |conv(S) ∩ Z
d|, hence

the naive algorithm tests digital convexity in any fixed dimension d and runs in
polynomial time. �	

3.2 Alternative Algorithm

This new algorithm computes all integer points in the convex hull of S with a
more direct approach. Its principle is to enumerate the points x of a finite lattice
set S′ ⊂ Z

d surrounding conv(S) ∩ Z
d (conv(S) ∩ Z

d ⊂ S′). In a first variant,
we count the number of points of S′ belonging to conv(S). At the end, the set
S is convex if and only if |conv(S) ∩ Z

d| is equal to the cardinality of S. In a
second variant, for each point of S′, we test whether it belongs to S and in the
negative case, we test whether it belongs to the convex hull of S. If a point of
S′ \ S ∩ conv(S) is found, then S is not convex (Fig. 6).

We define the set S′ as the set of points x ∈ Z
d such that the cube x+[− 1

2 , 1
2 ]d

has a nonempty intersection with the convex hull of S, where + denotes the
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Fig. 6. Practical algorithm. A lattice set S, its convex hull and its dilation by a centered
cube of side 1. The intersection of conv(S) + [− 1

2
, 1
2
]d with the lattice is the set S′. It

is 2d-connected and contains the convex hull of S. The principle of the algorithm is
either to count the points of S′ in conv(S) (variant 1) or to search for a point of S′ \ S
(blue points) in the convex hull of S (variant 2). (Color figure online)

Minkowski sum. It can be easily proved that S′ is 2d-connected (the 2d neighbors
of a lattice point x ∈ Z

d are the 2d integer points at Euclidean distance 1) and by
construction, it contains S. The graph structure induced by the 2d-connectivity
on S′ allows to visit all the points of S′ efficiently: for each point x ∈ S′, we
consider its 2d neighbors and test whether they belong to S′. If they do, we add
them to the stack of the remaining points of S′. The goal is to test whether a
point of S′ \ S is in the convex hull of S.

Then the algorithm has two main routines:

– InConvexHullS tests whether a given point x ∈ R
d belongs to the convex

hull of S. It is equivalent with testing whether there exists a hyperplane
separating x from the points of S. It can be done by linear programming
with a worst-case time complexity of O(n) for fixed dimension d [13].

– InConvexHullS+[− 1
2 ,

1
2 ]

d tests whether a given point x belongs to the convex
hull of S +[− 1

2 , 1
2 ]d. It follows the same principle as InConvexHullS with 2dn

points. The time complexity remains linear in fixed dimension. This routine
is used to test whether an integer point belongs to S′.

The algorithm is the following. First, we create a stack T of the points of S′

to visit and initialize it with the set S. For each point x in T , we remove it from
the stack T and label it as already visited. Then, we consider its 2d neighbors
x′. If x′ belongs to S′ and has not been visited previously, we add it in the
stack T . We test whether x belongs to conv(S) and increment the cardinality of
conv(S) ∩ Z

d accordingly (variant 1) or test whether x is in S and conv(S) and
return S not convex if x ∈ conv(S) \ S (variant 2).
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The running time is strongly dependent on the cardinality of S′. It is O(n|S′|).
If the size of S′ is of the same magnitude as the initial set, the algorithm runs
in O(n2) time. It is unfortunately not possible to bound |S′| as a function of
n. The ratio |S′|

|S| can go to infinity. It is easy to build such an example with
a set S consisting of only two lattice points, for instance for any k ∈ Z the
set S = {(0, 0); (1, 2k)} induces |S′|

|S| ≥ k. A direction of improvement could be
to consider a linear transformation of the lattice Z

d in order to obtain a more
compact lattice set and then a lower ratio |S′|

|S| . LLL algorithm [25] could be
useful to achieve this goal in future work.

As in the naive algorithm, a variant of this approach can be easily developed
in order to enumerate the missing points.

4 Perspectives

In this paper, we presented an algorithm to test digital convexity in time linear
in n for dimension d = 2. In higher dimensions, our running time depends on the
complexity of general convex hull algorithms. The questions of whether digital
convexity can be tested in linear time in 3 dimensions, or faster than convex hull
computation in arbitrary dimensions remain open. A tentative approach consists
of changing the lattice base, in order to obtain certain connectivity properties.

We showed that the convex hull of a digital convex set in dimension 2 can be
computed in linear time. Can the convex hull of digital convex sets be computed
in linear time in dimension 3, or more generally, what is the complexity of convex
hull computation of a digital convex set in any fixed dimension? We note that
the number of faces of any digital convex set in d dimensions is O(V (d−1)/(d+1)),
where V is the volume of the polytope [26,27]. Therefore, the lower bound of
Ω(n�(d−1)/2�) for the complexity of the convex hull of arbitrary polytopes does
not hold for digital convex sets.
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IDEX-0001 (CAP 20-25).
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