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Abstract. We propose a new non-orthogonal basis to express the 3D
Euclidean space in terms of a regular grid. Every grid point, each rep-
resented by integer 3-coordinates, corresponds to rhombic dodecahedron
centroid. Rhombic dodecahedron is a space filling polyhedron which rep-
resents the close packing of spheres in 3D space and the Voronoi struc-
tures of the face centered cubic (FCC) lattice. In order to illustrate the
interest of the new coordinate system, we propose the characterization
of 3D digital plane with its topological features, such as the interrelation
between the thickness of the digital plane and the separability constraint
we aim to obtain. A characterization of a 3D digital sphere with relevant
topological features is proposed as well with the help of a 48 symmetry
that comes with the new coordinate system.

Keywords: Rhombic dodecahedron · FCC grid ·
3D coordinate system · Digital plane · Digital sphere

1 Introduction

The cubic grid Z
3 is the most frequently used grid for three-dimensional images.

Recently non standard, three-dimensional grids received a lot of interest with in
particular applications to networks [18], image processing [6,12,19], computer
vision [7] and many other fields. Among non standard grids we can cite face
centered cubic (FCC), body centered cubic (BCC), honeycomb [3] and diamond
grids [17]. Many works discussed coordinate system on the 3D grids such as [10]
for cubic grids, [13,14] for hexagonal and triangular grids and [4,5,20] for FCC
grids.

Space filled entirely by rhombic dodecahedra may be sliced by specific planes
to reveal patterns of hexagons. In [9], authors proposed a generation algorithm
for discrete spheres on the FCC grid using layered discrete annuli on hexagonal
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grids; the general idea is to propose digital primitive generation algorithms that
are compatible with additive manufacturing techniques.

The face centered cubic grid is the densest possible packing in three dimen-
sions [20]. The shape of the cells in an FCC grid is rhombic dodecahedron, which
is a space filling polyhedron described by 12 faces, 24 edges, and 14 vertices. The
FCC grid can be seen as the union of four disjoint cubic grids [4,8,15,16]. In such
a rhombic dodecahedron grid system, sometimes distinction is made between the
cells and not all the integer coordinates correspond to a cell. These make it dif-
ficult to use geometric transforms in those grid systems.

Our main contribution in this work is to propose a new non-orthogonal basis
coordinate system that provides integer coordinates for rhombic dodecahedron
centroids covering the whole set of integer points. The interest of such a system
would be to facilitate work on such a grid. This will be highly beneficial consid-
ering the usage of this grid in image reconstruction and similar applications due
to its correspondence with hexagonal grids in 2D, and also in additive manufac-
turing using spherical cells utilizing the emulation of densest sphere packing in
space. The interest of the new coordinate system is illustrated in this paper with
the (topological) characterization of various classes of digital planes and spheres
in the FCC grid. The coordinate system offers a 48-symmetry which can be used
to efficiently construct digital spheres and other symmetric objects.

Organization of the Paper. In Sect. 2, we present some preliminaries and
basics as well as the Rhombic Dodecahedron Grid (RDG) and Nagy’s coordinate
system [4]. In Sect. 3, we detail our coordinate system and we present some of its
properties. In Sect. 4, we define the digital spheres and planes in this coordinate
system and explore the required thickness for different models. We conclude and
present perspectives in Sect. 5.

2 Preliminaries

In this section, we recall some of the basic terminologies and definitions rele-
vant to our problem. We put forward the general definitions of a digital plane, a
digital sphere, and the different topological models already established in liter-
ature for conventional cubic grid. We also talk about the formal notion of grids
and coordinate systems and present the concept and importance of designing a
rhombic dodecahedron grid.

We consider a 3D space. We call integer points the points that have integer
coordinates on the three axes. Let us denote d2 as the Euclidean distance in the
regular Cartesian space. The standard definitions of digital planes and digital
spheres are as follows.

Definition 1 (Analytical Plane [1]). The digital plane P corresponding to the
Euclidean plane ax+ by + cz +d = 0, with ρ the thickness of the digital plane, is
the set of integer coordinate points p(x, y, z) verifying the following inequalities:

−ρ

2
≤ ax + by + cz + d <

ρ

2
.
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Fig. 1. (a) Unit dodecahedron in the Cartesian coordinate system, where t = 1√
3
. (b)

Combinatorial coordinates for vertices in the face centered cubic grid [4]. (c) Vertex
coordinates in the proposed non-orthogonal coordinate system, where u = 1

4
.

Definition 2 (Andres Analytical Sphere [2]). The digital sphere S centered
in c, of radius r and thickness ρ, is the set of integer coordinate points p verifying
the following inequalities:

(r − ρ

2
) ≤ d2(c, p) < (r +

ρ

2
).

Different values of ρ in these definitions leads to different digitization models,
e.g. 2-separating, 0-separating, etc. A digital object is l-separating if its inverse is
not l-connected. Hence, a digital plane is 2-separating if the half-spaces specified
by it are not 2-connected. Note that, 0-, 1-, and 2-connectivity here refer to the
classical 26-, 18-, 6-connectivity respectively. Please consult [1,2] for more details
on digital hyperplanes and hyperspheres in cubic grid.

We consider a grid based on rhombic dodecahedrons (which are space-filling).
A rhombic dodecahedron has 12 face-connected neighbors and 6 strictly vertex-
connected neighbors. A consistent coordinate system for the RDG will help us to
utilize this grid in 3D with similar advantages as hexagonal grid gives over square
grid in 2D, specially in the domain of imaging, tomography, etc. As rhombic
dodecahedron space filling arrangement emulates the close sphere packing in
space, RDG can be used for additive manufacturing using spherical material
particle powder.

The main problem of the unit dodecahedron (see Fig. 1) is that neither its
vertices nor its centroids form an integer coordinate grid. It is however simple to
get integer coordinates for either centroids or vertices or both using a scale and a
rotation as presented in [4]. In this paper [4], a combinatorial 3-coordinate system
for cells in the face centered cubic grid is presented and some of its properties are
detailed; authors made a rescaling with factor 2, in order to assign to each cell the
Cartesian coordinates of its center and to have only integer coordinates for faces
and edges. However, the main drawback of this system, which we want to address
here, is that this coordinate system leads to two different and intricate grids, and
any integer point in this space may either represent a centroid or a vertex. This
will be a major cause of anomaly while doing transformation operations such as
rotation, shear etc. and construction of different digital objects in this grid.
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Fig. 2. Coordinate system transformation: (a) Initial arrangement of axes in Cartesian
coordinate system, (b) After 45◦ rotation along Z-axis, (c) After required transforma-
tion to get non-orthogonal coordinate system.

3 Rhombic Dodecahedron Grid

In this section, we propose a non-orthogonal coordinate system for the rhombic
dodecahedron grid (RDG). The grid is formed on the rhombic dodecahedron
close packing such that each integer point corresponds to centroid of a rhom-
bic dodecahedron and vice versa. We talk about the conversion of this new
coordinate system to and from the Cartesian coordinate system and define the
corresponding distance metric. We also show that there exists a 48-symmetry in
RDG using this new coordinate system which can be utilized further to propose
efficient algorithm for geometric object construction in this type of grid.

3.1 Non-orthogonal Coordinate System

We propose a non-orthogonal coordinate system to represent the RDG where
each grid point represents the centroid of a rhombic dodecahedron cell. We
transform the well-known Cartesian space to obtain non-orthogonal grid vectors.
Figure 2(a) shows the initial positioning of the rhombic dodecahedron centered
at the origin with respect to the coordinate axes. All three axes are orthogonal
to each other and pass through vertices of the rhombic dodecahedron.

First, we give a clockwise rotation of 45◦ with respect to the positive Z-axis.
This gives us the arrangement as shown in Fig. 2(b). Notice that, to simplify the
visualization, we have kept the rhombic dodecahedron fixed while transforming
the coordinate axes. In this state, X- and Y -axes passes through the center of
faces of the rhombic dodecahedron and Z-axis still passes through the same
vertex.

Next, we keep the X- and Y -axis same while bending the Z-axis away from
the positive X- and Y -axes to make it pass through the center of the face of the
rhombic dodecahedron. At the third step, a scaling may be required to make
the rhombic dodecahedron cells unit in size; we consider our cells to have unit
distance between opposite faces and do not show any explicit scaling step to
obtain the same.
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The following two lemmas states the transformation needed for a point in
the new coordinate system to and from the Cartesian coordinate system. The
steps for rotation and transformation of Z-axis is described in the corresponding
proofs.

Lemma 1 (Cartesian to New). The transformation of a point p(x, y, z) from
the Cartesian coordinate system to the new coordinate system is given by,

N (p) =

(
−√

2y + z

2
,

√
2x + z

2
, z

)

.

Proof. As explained using Fig. 2, the steps to get the new coordinate values for
a point p(x, y, z) in the Cartesian space are a clockwise rotation of 45◦ along
positive Z-axis followed by a transformation to make the Z-axis non-orthogonal
with respect to the XY -plane. The final transformation can be calculated as
follows.

N (p) =

⎡

⎣
1
2 − 1

2
1
2

1
2

1
2

1
2

0 0 1

⎤

⎦

⎡

⎣
cos 45◦ − sin 45◦ 0
sin 45◦ cos 45◦ 0

0 0 1

⎤

⎦ (x, y, z)

=

(
−√

2y + z

2
,

√
2x + z

2
, z

)

.

��
Lemma 2 (New to Cartesian). The transformation of a point p(x, y, z) from
the new coordinate system to the Cartesian coordinate system is given by,

C(p) =
(

2y − z√
2

,
−2x + z√

2
, z

)
.

Proof. To get the Cartesian coordinate values for a point p(x, y, z) in the new
coordinate space, we need to do the reverse transformation as given in Lemma1.
Therefore, the first step is to make the Z-axis orthogonal to the XY -plane and
then doing a anticlockwise rotation of 45◦ with respect to the positive Z-axis.
Following calculation can be used to obtain the same.

C(p) =

⎡

⎣
cos(−45◦) − sin(−45◦) 0
sin(−45◦) cos(−45◦) 0

0 0 1

⎤

⎦

⎡

⎣
1 1 −1

−1 1 0
0 0 1

⎤

⎦ (x, y, z)

=
(

2y − z√
2

,
−2x + z√

2
, z

)
.

��
Lemma 3 (Euclidean Distance). Let p(x, y, z) and p′(x′, y′, z′) be two points
in the new coordinate system. The Euclidean distance between p and p′ is given
by,

d2(p, p
′) =

√
2((x− x′)2 + (y − y′)2 + (z − z′)2 − (x− x′)(z − z′)− (y − y′)(z − z′)).



32 R. Biswas et al.

Fig. 3. The twelve face-connected neighbors and the six strictly vertex-connected
neighbors in the proposed non-orthogonal coordinate system.

Proof. The proof follows directly from Lemma 2.

d2(p, p′) =
∥
∥C(p)− C(p′)

∥
∥

=
∥
∥
∥

(
2y−z√

2
, −2x+z√

2
, z

)

−
(

2y′−z′
√
2

, −2x′+z′√
2

, z′
)∥
∥
∥

=
√

1
2
((2y − z − 2y′ + z′)2 + (−2x+ z + 2x′ − z′)2 + 2(z − z′)2)

=
√

2 ((x− x′)2 + (y − y′)2 + (z − z′)2 − (x− x′)(z − z′)− (y − y′)(z − z′)).

��
We simplify the distance calculation by dropping the constant factor from

the Euclidean distance as calculated in Lemma 3, and define our new distance
which is to be used for further calculations.

Definition 3 (New Distance). Let p(x, y, z) and p′(x′, y′, z′) be two points in
the new coordinate system. The new distance between p and p′ is defined as,

d(p, p′) = 1√
2
d2(p, p

′)

=
√

(x− x′)2 + (y − y′)2 + (z − z′)2 − (x− x′)(z − z′)− (y − y′)(z − z′).

A rhombic dodecahedron has 12 face-connected neighbors and 6 strictly
vertex-connected neighbor as shown in Fig. 3. We make the following obser-
vations regarding the neighborhood of each rhombic dodecahedron cell.

Observation 1 (Neighbors). Rhombic dodecahedron cell p and p′ are face
(respectively strictly vertex) connected neighbors iff the new distance between
p and p′ i.e. d(p, p′) is equal to 1 (respectively

√
2).

Proof. From the positioning of the rhombic dodecahedron cell with respect to
the non-orthogonal coordinate axes, as shown in Fig. 2(c), following are the face-
connected neighbors of a cell (x, y, z): (x + 1, y, z), (x − 1, y, z), (x, y + 1, z),
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(x, y − 1, z), (x, y, z + 1), (x, y, z − 1), (x + 1, y + 1, z + 1), (x − 1, y − 1, z − 1),
(x, y + 1, z + 1), (x + 1, y, z + 1), (x − 1, y, z − 1), (x, y − 1, z − 1). By using the
definition of d(p, p′), we can see that the distance between p and p′ is always 1
when they are face-connected neighbors.

Similarly, we can have the strictly vertex-connected neighbors of (x, y, z),
which are (x + 1, y + 1, z), (x + 1, y − 1, z), (x − 1, y + 1, z), (x − 1, y − 1, z),
(x + 1, y + 1, z + 2), (x − 1, y − 1, z − 2), and the distance between two strictly
vertex-connected neighbors comes out to be

√
2. ��

3.2 48-Symmetry

The rhombic dodecahedron belongs to the octahedral symmetry group. It there-
fore has 24 rotational symmetries and 48 symmetries when considering transfor-
mations that combine a reflection and a rotation. Table 1 shows the 48 symmetric
points corresponding to a point (x, y, z) in the non-orthogonal coordinate sys-
tem. This symmetry can be utilized while constructing symmetrical geometric
objects, e.g. spheres, cones, cylinders, etc., in this digital space.

Table 1. 48-symmetry in RDG using proposed non-orthogonal coordinate system.

(x, y, z) (y − z, y, −x + y) (−x + z, y, z) (y − z, y, x + y − z)

(−x + z, y, −x + y) (x, y, x + y − z) (−y + z, −x + z, z) (−x, −x + z, −x + y)

(y, −x + z, z) (−x, −x + z, −x − y + z) (y, −x + z, −x + y) (−y + z, −x + z, −x − y + z)

(y, x, z) (x − z, x, x − y) (−y + z, x, z) (x − z, x, x + y − z)

(−y + z, x, x − y) (y, x, x + y − z) (x − z, y − z, −z) (y, y − z, −x + y)

(−x, y − z, −z) (y, y − z, x + y − z) (−x, y − z, −x + y) (x − z, y − z, x + y − z)

(−x + z, −y + z, z) (−y, −y + z, x − y) (x, −y + z, z) (−y, −y + z, −x − y + z)

(x, −y + z, x − y) (−x + z, −y + z, −x − y + z) (y − z, x − z, −z) (x, x − z, x − y)

(−y, x − z, −z) (x, x − z, x + y − z) (−y, x − z, x − y) (y − z, x − z, x + y − z)

(−y, −x, −z) (−x + z, −x, −x + y) (y − z, −x, −z) (−x + z, −x, −x − y + z)

(y − z, −x, −x + y) (−y, −x, −x − y + z) (−x, −y, −z) (−y + z, −y, x − y)

(x − z, −y, −z) (−y + z, −y, −x − y + z) (x − z, −y, x − y) (−x, −y, −x − y + z)

4 Digital Objects: Definition and Topological Analysis

In this section, we define digital models of two primitive geometric objects,
namely, digital sphere and digital plane. We define these using the proposed
non-orthogonal coordinate space and use the defined distance to control the
thickness of the objects resulting in different topological models.
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)b()a(

Fig. 4. Digital sphere of radius 8 (a) and radius 23 (b) in the rhombic dodecahedron
grid, with one of the 48th parts shown in blue, computed using the proposed non-
orthogonal coordinate system.

4.1 Digital Sphere

We define a digital sphere in the proposed orthogonal coordinate space using the
same thickness notion as used while defining Andres Analytical Sphere (recol-
lected in Definition 2). However, we use our new distance measure as defined in
Definition 3.

Definition 4 (Digital Sphere). The set of Dodecahedron centroids belonging
to the digitization of a Sphere centered on c of radius r and thickness ρ is given
by: S(c,r) = {p ∈ Z

3|r − ρ
2 ≤ d(c, p) < r + ρ

2}
To control the topology of the resulting sphere, we use one of the two following

values for the thickness.

Proposition 1 (Topology and Separation). The thickness ρ = 1 provides
a 2-separating sphere. The thickness ρ =

√
2 provides a 0-separating sphere.

Proof. The proof for the 2-separating value comes directly from the distance
between a dodecahedron and its face neighbors which is 1 (leading to a thick-
ness 1). The distance

√
2 between the dodecahedron and its vertex neighbors

leads to the 0-separating thickness of
√

2. ��
The spheres presented in Fig. 4 are obtained using a brute force algorithm

implemented in Mathematica that tests every integer coordinate point (i.e.
dodecahedron centroid) in the bounding box with the sphere inequality using
the 2-separating thickness 1. An optimization of this algorithm could be imple-
mented using a 48th of the bounding box (see Fig. 4(a)) and build the rest of the
sphere using the symmetries we have previously defined in Sect. 3.2.
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4.2 Digital Plane

Similar to digital sphere, we define digital plane in the new coordinate system
using the classical definition. However, note that, the real plane in consideration
here is given in the new coordinate system and not in the Cartesian coordinate
system.

Definition 5 (Digital Plane). Let ax+ by + cz + d = 0 be a plane equation in
the new coordinate system. Let ρ be the thickness of the digital plane. The digi-
tization of the plane in the dodecahedron grid is the set of dodecahedron (x, y, z)
satisfying the following inequality.

− ρ/2 ≤ ax + by + cz + d < ρ/2. (1)

Following we give the formulas for converting between plane equations from
the new coordinate system to the Cartesian coordinate system and reverse.

Proposition 2 (New to Cartesian Plane Equation). Let axn +byn +czn +
d = 0 be a plane equation in the new coordinate system. The equation of the
same plane in the Cartesian coordinate system is given by:

b
√

2xc − a
√

2yc + (a + b + 2c)zc + 2d = 0 (2)

Proposition 3 (Cartesian to New Plane Equation). Let axc + byc + czc +
d = 0 be a plane equation in the Cartesian coordinate system. The equation of
the same plane in the new coordinate system is given by:

− 2b√
2
xn + a

√
2yn + (b/

√
2 + c − a/

√
2)zn + d = 0 (3)

We can control the topology of the digital plane by changing the value of ρ
as mentioned in Proposition 4 below.

Proposition 4 (Topology and Separation). The Supercover plane is
obtained using:

ρSup = max
(

|a + b|, |b − a|, |a + b + 2c|, 1
2
(|a + b| + |b − a| + |a + b + 2c|)

)
.

(4)
The 0-separating (thinner than the supercover) plane is obtained using:

ρStd = max (|a|, |b|, |c|, |a + b + c|, |a + c|, |b + c|, |a + b|, |a − b|, |a + b + 2c|) .
(5)

The 2-separating digital plane in the dodecahedron grid is obtained for

ρN = max (|a|, |b|, |c|, |a + b + c|, |a + c|, |b + c|) . (6)

Proof. The proof for the supercover is the same as in [11] using the following
plane equation in Nagy’s coordinate system:
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a) Supercover. b) Standard (0-separating). c) Naive (2-separating).

Fig. 5. Dodecahedron Digitizations for the plane x + 11y + z + 20 = 0 in the new
coordinate system.

Ax + By + Cz + D = 0

where A = a+b
2 , B = b−a

2 , C = a+b+2c
2 ,D = d. It can also be proven by consid-

ering the thickness of the thickest directions we can have in the dodecahedron,
i.e. the distance between opposite vertices or opposite faces as necessary.

Figure 5 presents the three different digitizations for the plane x + 11y + z +
20 = 0 in the dodecahedron non-orthogonal grid. Figure 5(a) shows the thickest
plane, i.e. the supercover plane which uses Eq. 4 for the thickness. On Fig. 5(b),
we can see the standard 0-separating plane obtained with Eq. 5 and on Fig. 5(c)
we present the Naive 2-separating plane for the thickness defined by Eq. 6.

5 Conclusion

In this paper, we have defined a new coordinate system. The novelty of this
system is that unlike the previous coordinate system, every single one of the
integer coordinate points is the centroid of a dodecahedron. Using this system
we have defined spheres (together with their 48 symmetries) and planes. Both can
be topologically controlled, i.e. both are proposed with a 0- and a 2-separating
forms. In future works, we want to explore the possibilities of defining lines in this
coordinate system and to study the graphical transforms such as the rotation.
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