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Abstract. In this work we present an efficient implementation of vector-
based mathematical morphology operators applied to simple polygons by
performing wavefront propagation and computing polygon straight skele-
tons. In Digital Pathology (DP), the slide scanner generates important
volume of images from tissues called Whole Slide Image (WSI). The main
goal of the DP is to detect the biological stained structures in order to
quantify the tissue pathology, such as lesions or cancerous regions. We
propose the use of Adapted Straight Skeletons on polygons as an efficient
technique in time and memory, to improve image segmentation and image
analysis. Thanks to the use of polygons instead of bitmaps to store seg-
mentation results, the performance of straight skeletons depends only on
the polygon control points. These straight skeletons can be applied in
order to perform fast morphological operations such as dilation, erosion,
closing, opening, skeletonizing. When combined, these operations offer
different interesting outcomes: (i) multiple disjoint-segmented shapes can
be linked together to create a joint skeleton, (ii) the topological structure
of segmentation can be extracted as a straight skeleton. Then, it can be
used as features for structural and spatial tissue analysis.

Keywords: Polygonal morphological operations · Straight skeletons ·
Digital Pathology

1 Introduction

The main goal of histopathology is to assess the biological tissue samples by the
examination of the tissue in order to diagnose or prognose many diseases, such as
cancers, or tissue lesions. Nowadays, slide scanners allow to acquire images with a
high speed and high resolution. These images are called virtual slides, but image
analysis tools do not exploit the high potential content and the clinical analysis of
WSI largely remains the work of human experts. The images resulting from slide
scanner devices are of high dimensions (image size greater than 1 GB) containing
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up to several thousands of objects and thus, are considered as big data. Therefore
these images need to be processed by fast and efficient algorithms, both in time
and in memory. In [17], the authors propose a sparse coding and multi-scale
dynamic sampling approach. However, this approach is not adapted to object
detection, such as capillaries or early tumor areas. In order to cope with this big
data issue, object extraction will be coded by polygons which appear to be an
efficient structure to represent Regions of Interest (ROIs) within the tissue such
as vessels, capillaries, nuclei or pathological regions (fibrosis or cancerous areas).
They allow to capture information with a small amount of points in the context
of WSI. In this work, we will focus on manipulating and processing area objects
extracted from image segmentation of the tissue. In order to tackle this issue,
polygons appear to be an efficient structure to manipulate ROIs, in the context
of WSI. Indeed, polygons allow to capture region information with a relatively
small amount of points.

In this study, we will focus on morphological operations on polygons and we
assume that the polygons are the inputs of our algorithms. The notion of skeleton
was introduced by Blum [8] as a result of the Medial Axis Transform or Symme-
try Axis Transform. The research on mathematical morphology for image pro-
cessing has been very active, and we can distinguish two kinds of families: raster-
image based approach and vector-based approach [28]. In this paper, as the aim
is to handle polygons, we will only consider the vector based approach. Among
them, we find a popular approach based on the principle of the Voronöı Diagram.
The “Voronöı skeleton” is computed on a polygonal representation of an object,
which is the sampling of contour points, and is computed through geometry algo-
rithms. This method allows to compute the skeleton based on the edges formed
from vertices of the shape, but it does not allow to perform morphological oper-
ations such as dilations or erosions. Minkowski sums allow for computing offsets
at specific distances using the sum of a circle with the polygon boundaries [29].
Although this method can compute smooth contours, it does not allow to recover
the internal structure of the shape and requires recomputing the sum when mul-
tiple distances are required, which can be computationally expensive. Another
category is to use straight skeletons [2]. The skeleton of a polygon is a thin
version of that polygon where every point is equidistant to the polygon bound-
aries. Unlike skeletons based on Voronöı diagram which can contain parabolic
curves [1], straight skeletons contain only straight segments. This property allows
for easier and faster operations by avoiding calculus on curves, notably the pos-
sibility to compute multiple dilations and erosions at different distances in linear
time, with respect to the number of vertices in the polygon. Several works have
used this approach to compute straight skeletons (see Table 1). Aichholzer and
Aurenhammer [3] set the base grounds by formalizing the concept of straight
skeleton as a planar straight-line graph, as well as introducing their wavefront
propagation method performed with a time complexity of O(n2 log n), where n
is the amount of vertices in the polygon. Eppstein and Erickson presented a sub-
quadratic algorithm that used efficient closest-pair data structures to optimize
processing time up to O(n1+ε + n8/11+εr9/11+ε) ⊆ O(n17/11+ε), where r is the
number of reflex vertices in the polygon and 0 < ε � 1 is a fixed value [13].
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Table 1. Overview of existing straight skeleton algorithms: n: total number of vertices,
r: number of reflex vertices.

Algorithm Time Memory space

Aichholzer [2] O(nrlogn) O(n)

Aichholzer [3] O(n3logn) (pract. O(nlogn)) O(n)

CGAL [9] O(n2logn) O(n2)

Eppstein [13] O(n1+ε + n8/11+εlogn) ditto

Cheng O(n1+ε + n8/11+εr9/11+ε) O(n)

STALGO [18] O(n2logn) (pract. O(nlogn)) O(n)

Cacciola also presented an implementation currently available in CGAL to com-
pute straight skeletons with a complexity of O(n2 log n) in time, and O(n2) in
space [9]. More recently, Huber and Held have presented an implementation
(called STALGO) by computing the straight skeleton aided by a motorcycle
graph in O(n log n) in time and O(n) in space [18]. We based our solution by
following this idea [18], with adaptations to fulfill our needs in Digital Pathology.

2 Straight Skeletons

The straight skeleton S(P ) of a simple polygon P is defined by a wavefront
propagation process. A wavefront WP (t) of P is formed by edges that are parallel
to those of P moving all at unit speed to the interior of P for erosion computing
(resp. to the exterior of P for dilation). WP (t) is also defined by the vertices
moving on the internal angular bisectors of the vertices of P . These vertices
move until either of the following events happen:

– An edge collapses when two linked vertices join together at the same point at
a given time t. From this event, a new vertex is created following the direction
computed from neighboring edges of the collapsed edge.

– An edge is split into two new edges when a vertex forming a reflex angle (an
angle larger than π on the propagation side) meets a wavefront edge. This
results in two new edges with the same speed of the original edge, on each
side of the splitting vertex.

This two kinds of events are repeatedly handled, up until all wavefront edges
have collapsed and no new events happen. At this point, the skeleton S(P ) of
P is defined as the set of loci that are traced out by the wavefront vertices (see
the magenta lines on Fig. 2b).

Motorcycle Graph. Computing straight skeletons on convex simple poly-
gons is really straight forward since only edge collapses may happen during the
wavefront propagation process. In contrast, non-convex simple polygons require
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Fig. 1. (a) The cyan segments split the initial concave polygon into convex polygons,
(b) straight skeletons are represented by blue segments (Color figure online)

detecting potential split events during the propagation. A naive algorithm to
detect this kind of events could take O(n2 log n) in time by looking all possible
splitting events in the planar straight-line graph. However, using a motorcycle
graph for this end comes convenient because it allows to detect all the trajec-
tories of splitting vertices that occur during the propagation in O(n log n) time.
Motorcycle graphs divide polygons into convex tessellations that guarantee no
split events inside the subdivisions, thus reducing the complexity of the calcula-
tion of S(P ) [18].

On a motorcycle graph M(P ) a “motorcycle” mi is launched for each reflex
vertex pi of the P . These motorcycles are allowed to move on the bisectors of the
edges leaving a trace behind them until either they crash with another motorcycle
or trace, or escape to infinity if no crash happens (see green lines on Fig. 2a).
When two or more motorcycles crash at the same time, the pair of successive
motorcycles forming a reflex angle is used to compute a new motorcycle. The
reader is referred to [18] for more details.

Straight Skeleton Construction. Using all convex and reflex vertices from
the input polygon, as well as the motorcycle crash points from M(P ), the wave-
front WP (t) is initialized. From this wavefront it is possible to compute S(P ) by
following the evolution of WP . Vertices on WP (t) move either in the direction
of the bisector of the vertices incident edges, or in the inverse direction of the
crashed motorcycles from their crash point. The wavefront propagation is then
processed in chronological order (see Algorithm 1), handling each crash event to
build S(P ) step by step (see event examples in Fig. 1a and the wavefront evo-
lution in Fig. 1b). Once all crash events are processed, S(P ) is fully conformed
by the trace of the wavefront vertices. With this result, multiple morphological
operations are possible, presented in the following section.
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3 Morphological Operations on Polygons

Although straight skeletons are easier to handle and to model, they still have
a drawback. As they are built by evolving the wavefront at a constant speed,
the speed of reflex vertices tends to be faster than the rest of the wavefront.
This causes premature edge splitting and results in a very disturbed skeleton.
To address this issue, we propose a refined straight skeleton by adding more than
one vertex on reflex angles. This allows to homogenize the speed of vertices on
the wavefront avoiding premature split events. As a result, the produced skeleton
is smoother (see Figs. 2b and 6b, c).

3.1 Refined Straight Skeletons

To provide a more accurate method, we propose to launch two motorcycles
instead of just one on reflex angles when creating the motorcycle graph (see
red lines against green lines on Fig. 2a). From this, the wavefront is built in the
same way as the original straight skeleton. Performing the wavefront evolution
with this change allows to prevent excessive evolution on the reflex wavefront
vertices (see orange lines against light green lines on Fig. 2b), which can create
early polygon divisions when performing dilations and erosions.

Result: S(P )
WP ← initializeWavefront(P,MP );
SP ← initalizeStraightSkeleton(WP );
Fill event priority queue Q with initial events;
while Q is not empty do

e ← Q.poll();
if isEventStillValid(e) then

newPossibleEvents ← processEvent(e);
// This will update WP and S(P ))
Q.addAll(newPossibleEvents);

else
continue;

end
end

Algorithm 1. Event handling on the wavefront propagation when building the

straight skeleton S(P ).

Dilating and Eroding Polygons. With this consistent change on the wave-
front construction it is now possible to obtain dilations and erosions that are
closer to those made by classical bitmap methods [24]. In this case, dilations are
created by recreating the wavefront WP (t) from S(P ). For this, the edges of S
are followed from the leafs of the graph S up to the desired time (distance) t.
From there the dilation is created by connecting the valid edges at instant t (see
Fig. 3).
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P

M′(P )

M(P )

(a) Motorcycle graph

P

W ′
P (t)

S ′(P )

S(P )

WP (t)

(b) Straight skeleton and offset at time t

Fig. 2. Adaptation of Huber and Held’s method to improve offset results. In the
motorcycle graph (a), Huber’s method creates only one motorcycle for each reflex
vertex (M(P )), whereas our method creates two (M′(P )). In the straight skeleton
(b), Huber’s method creates only one wavefront vertex for each reflex vertex (S(P )),
producing sharp edges (WP (t)). Our method creates two vertices on reflex vertices
(S ′(P )), accentuating sharp polygon vertices on the wavefront. These changes produce
smoother offsets (W ′

P (t)). (Color figure online)

3.2 Medial Axis

Since its introduction by Blum [8], the notion of medial axis has proven to be
useful for many purposes in morphological analysis. He introduced the medial
axis of a shape X as the set of points x ∈ X that have more than one nearest
point on the boundary ∂X of X. To compute this medial axis several solutions
have been proposed making use of discrete geometry [14,16,23], digital topol-
ogy [10,22,26,27], computational geometry [4,5,21], partial differential equa-
tions [25], and level-sets [20]. In our case, we focus on the medial axis for skeletons
strictly made out of straight line segments, which has not been yet formalized
as far as we know.

Here we propose a medial axis based on the straight skeleton S(P ) of a poly-
gon P , with only one parameter for pruning. Let M(P ) be the straight medial
axis of the polygon P defined as the edges of S(P ) filtered by the minimum
allowed distance from an end-point of any skeleton edge to the shape bound-
aries. That is, any edge e ∈ S(P ) with an end-point whose distance to the
shape boundary is smaller than a given threshold will be discarded as part of
the straight medial axis. This definition can cause topology issues as the con-
nectivity of the medial axis can differ from that of the skeleton (see an example
in Fig. 4a). To address this issue we perform the edge filtering using a priority
on the minimal distance from the edge to the shape boundaries. This means
looking both edge ends and making sure that at least one of them is of degree
one. Otherwise the edge is not removed keeping the connectivity of the result
(see Fig. 4b).
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Fig. 3. Refined straight skeletons of two polygons. Inwards skeleton in red and outwards
in green. Successive dilations (in magenta) and erosions (in cyan) created from refined
straight skeletons. (Color figure online)

3.3 Weighted Straight Skeletons for Directional Operators

The weighted straight skeleton was first proposed in 1999 by Eppstein and Erick-
son [13], where the wavefront edges may move with arbitrary but fixed speeds.
Since its definition some partial implementations have been proposed to address
several of the issues associated to dealing with different speeds on edges. These
implementations handle issues such as negative and zero edge weights [19], edge
crash event ambiguities [6,7], and algorithm complexity improvements [12]. This
kind of skeletons are interesting for oriented morphological operations such as
oriented dilations/erosions to restrict the search space of neighbourhood based
on the orientation with respect to the shape, etc. We have started the develop-
ment of the weighted straight skeletons on convex polygon by taking into account
two main issues (see Fig. 5):

– The collapse of an edge with two parallel neighboring edges with different
weights. In this case a decision must be taken on the speed of the resulting
edges joined at this point of the propagation. One option is to take the highest
or lowest speed between the involved edges and apply it to them all. Another
option (the one chosen for our implementation) is to let the edges following
their own propagation speed and adding a zero-speed edge joining them. This
way helps to keep speeds without changes and the wavefront continues to be
consistent on the propagation.

– On multiple split events, special care must be taken while reconnecting edges
in order to keep a consistent topology of the wavefront. If other events hap-
pen at the same time, these events must be processed before processing the
splitting to avoid confusion when reconnecting edges participating on the
event.
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(a) axis without connectivity con-
straint

(b) axis with connectivity con-
straint

Fig. 4. A straight medial axis example. When a connectivity constraint is not applied
while pruning the straight skeleton, its topology can differ from that of the original
shape. (a) shows in red the edges ignored when no connectivity constraint is applied
when building the medial axis (in green) with a threshold criterion expressed by the
blue polygons. (b) shows the result of the connectivity-constrained straight medial axis.
(Color figure online)

(a) Non weighted straight
skeletons.

(b) Weighted straight skele-
tons.

Fig. 5. Comparison between the unweighted and weighted straight skeletons (in cyan)
applied to the same polygon, with successive dilations (in orange). (Color figure online)

4 Results

4.1 Applications to Digital Pathology

The structures in the tissue image can be split into several segments due to sev-
eral factors: the sample slice cut, the staining, the acquisition setup, etc. and can
result in over-segmented objects. Figure 7 shows the lumen around glomerulus
split into two regions. To help the object detection, we ran the weighted straight
skeleton algorithm to perform the directional dilation in order to find the second
segmented polygon thanks to this spatial context processing.
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Fig. 6. Morphological operations applied to a segmentation of a glomerulus from
a stained kidney tissue (input polygons in green). (b) Dilation of polygon (yellow)
using Huber’s method on polygons. (c) Dilations (yellow) and erosions (red) using our
method. (d) Closing (dilation o erosion) using our method (Blue) (Color figure online)

Fig. 7. Weighted straight skeletons applied to a glomerulus segmentation (input poly-
gon in orange). (a) Dilations of convex polygon in green using non-weighted straight
skeleton algorithm. (b) Directional dilations (green) of weighted straight skeletons. (c)
Ellipse detected after fusion of the two lumen segments (Color figure online)

Fig. 8. The lizzard image used for comparison tests. In green, the polygons used for
the straight skeleton algorithm and in cyan, the medial axis with a distance value set
to 1. Note that the polygon is not composed by the same amount of points in (b) and
(c). (Color figure online)
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Table 2. Comparison of skeletonization methods on Fig. 8.

Image size
W×H (px)

Points in
polygon

[27] Time
(ms)

[15] Time
(ms)

[30] Time
(ms)

Proposed method
time (ms)

250× 194 52 13 137.239 110.254 10.9

300× 233 57 17 145.683 143.966 11.43

350× 272 67 33 155.221 145.637 12.3

400× 311 74 42 172.495 158.056 17.17

450× 350 83 63 187.624 172.375 15.57

500× 389 87 89 202.811 182.217 19.45

550× 428 95 121 224.427 187.787 18.33

600× 467 98 143 245.708 190.95 21.64

650× 506 101 183 274.336 199.867 22.63

700× 545 108 297 299.136 228.684 23.07

750× 584 118 463 321.907 248.115 24.4

800× 623 120 646 386.24 289.133 22.05

850× 662 127 756 423.903 352.17 24.2

900× 701 169 971 457.716 361.06 38.89

1000× 779 166 1452 664.056 431.305 38.17

1500× 1169 169 5394 1625.04 1102.85 34.33

2000× 1559 172 10407 3528.13 2361.7 39.84

2500× 1949 174 17504 6714.95 4563.72 39.52

3000× 2339 181 28505 11456.6 7525.11 44.73

4.2 Evaluation

The complexity of the algorithms in time and memory can be found in Table 1.
We have performed a quick performance comparison of skeletonization algo-
rithms. Table 2 presents the comparison between 3 available and considered as
fast algorithms of skeletonization: Vincent [27], Guo and Hall [15] and Zhang and
Suen [30]. The algorithms have been performed on the lizzard image that shows
several levels of resolution (see Fig. 8). The method based on straight skeletons
is faster than the other methods especially for big shape sizes. Figure 8 shows the
medial axis extracted from straight skeletons. Figure 8b and c highlight the fact
that the medial axis could vary according to the number of points describing the
polygon: more points will give more branches of skeletons. As we do not have any
groundtruth to make a fair quantitative comparison of the skeleton accuracy, we
just show some qualitative results. The white points describe the skeleton result
from the method [30] in Fig. 8b and the method [15] in Fig. 8c. Figure 9 shows
the medial axis of a polygon containing holes (image of letter B). We assume that
a good skeleton should lay on the maximum value of the Chamfrein’s distance
map [8]. Our medial axis lays close to this maximum distance value.
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Fig. 9. Medial axis on a shape containing holes. (a) polygons of B shape and its medial
axis derived from the straight skeleton algorithm. (b) medial axis transform (c) overlay
of the proposed medial axis on the Chamfrein’s distance map.

5 Conclusion and Perspective

Straight skeletons are thus an interesting and fast tool in the process of tissue
analysis, but could also be applied as part of a characterization framework in
other domains such as Geographical Data or Document Analysis. This approach
can be used for map generalization: for example, river or road to line segment
simplification. We want to explore other propagation modes for the weighted
straight skeleton method. Other polygonal extraction methods to set the initial
one are under consideration to show the robustness of the achieved representa-
tion, for instance considering blurred segments calculated from different widths
of discrete curves [11].
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260 D. F. González Obando et al.

6. Biedl, T., Held, M., Huber, S., Kaaser, D., Palfrader, P.: A simple algorithm for
computing positively weighted straight skeletons of monotone polygons. Inf. Pro-
cess. Lett. 115(2), 243–247 (2015)

7. Biedl, T., Held, M., Huber, S., Kaaser, D., Palfrader, P.: Weighted straight skele-
tons in the plane. Comput. Geom. 48(2), 120–133 (2015)

8. Blum, H.: A transformation for extracting new descriptors of shape. In: Wathen-
Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380.
MIT Press, Cambridge (1967)

9. Cacciola, F.: 2D straight skeleton and polygon offsetting. In: CGAL User and
Reference Manual, 4.10.1 edn. CGAL Editorial Board (2017)

10. Davies, E., Plummer, A.: Thinning algorithms: a critique and a new methodology.
Pattern Recognit. 14(1), 53–63 (1981)

11. Debled-Rennesson, I., Feschet, F., Rouyer-Degli, J.: Optimal blurred segments
decomposition of noisy shapes in linear time. Comput. Graph. 30(1), 30–36 (2006)

12. Eder, G., Held, M.: Computing positively weighted straight skeletons of simple
polygons based on a bisector arrangement. Inf. Process. Lett. 132, 28–32 (2018)

13. Eppstein, D., Erickson, J.: Raising roofs, crashing cycles, and playing pool: applica-
tions of a data structure for finding pairwise interactions. Discrete Comput. Geom.
22(4), 569–582 (1999)

14. Ge, Y., Fitzpatrick, J.M.: On the generation of skeletons from discrete euclidean
distance maps. IEEE Trans. Pattern Anal. Mach. Intell. 18, 1055–1066 (1996)

15. Guo, Z., Hall, R.W.: Parallel thinning with two-subiteration algorithms. Commun.
ACM 32(3), 359–373 (1989)

16. Hesselink, W.H., Roerdink, J.B.T.M.: Euclidean skeletons of digital image and
volume data in linear time by the integer medial axis transform. IEEE Trans.
Pattern Anal. Mach. Intell. 30(12), 2204–2217 (2008)

17. Huang, C.H., Veillard, A., Roux, L., Lomenie, N., Racoceanu, D.: Time efficient
sparse analysis of histopathological whole slide images. Comput. Med. Imaging
Graph. 35(7), 579–591 (2011)

18. Huber, S., Held, M.: A fast straight-skeleton algorithm based on generalized motor-
cycle graphs. Int. J. Comput. Geom. Appl. 22(5), 471–498 (2012)

19. Kelly, T.: Unwritten procedural modeling with the straight skeleton. Ph.D. thesis,
University of Glasgow (2013)

20. Kimmel, R., Shaked, D., Kiryati, N., Bruckstein, A.M.: Skeletonization via distance
maps and level sets. Comput. Vis. Image Underst. 62(3), 382–391 (1995)
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