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Abstract. The study of the degree sequences of h-uniform hyper-
graphs, say h-sequences, was a longstanding open problem in the case
of h > 2, until very recently where its decision version was proved to be
NP -complete. Formally, the decision version of this problem is: Given
π = (d1, d2, . . . , dn) a non increasing sequence of positive integers, is π
the degree sequence of a h-uniform simple hypergraph?

Now, assuming P �= NP , we know that such an effective characteri-
zation cannot exist even for the case of 3-uniform hypergraphs.

However, several necessary or sufficient conditions can be found in
the literature; here, relying on a result of S. Behrens et al., we present
a sufficient condition for the 3-graphicality of a degree sequence and a
polynomial time algorithm that realizes one of the associated 3-uniform
hypergraphs, if it exists. Both the results are obtained by borrowing some
mathematical tools from discrete tomography, a quite recent research
area involving discrete mathematics, discrete geometry and combina-
torics.

Keywords: h-uniform hypergraph · Hypergraph degree sequence ·
Discrete tomography · Reconstruction problem

1 Introduction

In order to model complex systems with one-to-one interactions, one among the
most versatile and used mathematical structure is that of graph so that the
elements of the systems are represented by nodes, and their mutual interactions
by edges. A wide interest in graph theory started in the half of 20th century, and
few years later, took shape the idea of generalizing the interactions’ possibility
to more than two elements of the systems. So, edges naturally evolved into
hyperedges, regarded as subsets of nodes, and the notion of graph changed into
hypergraph, accordingly.

In addition to the natural generalization of graphs, hypergraphs found their
own relevance in different research areas, ranging from the most theoretical ones
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such as Geometry, Algebra and Number Theory, to more applicative as Opti-
mization, Physics, Chemistry, etc.

The seminal book by Berge [5] will give to the reader the formal definitions
and vocabulary, some results with their proofs, and more about applications of
hypergraphs.

Most of the times what is required is to infer some statistics and characteris-
tics of the modelled system from partial and sometimes inaccurate information
about it. A typical situation is when the data concern only the number of inter-
actions that involves each node, say the degree of a node, without detailing the
subjects of those interactions; this case is referred to as degree based reconstruc-
tion problem and it involves various subproblems concerning the reconstruction
of a hypergraph from a given degree sequence π, counting the number of differ-
ent hypergraphs having a given π, possibly reconstructing all of them, and also
sampling a typical element among them.

In this paper, we concentrate on the first of these problems related to a
specific subclass of hypergraphs, i.e. the h-uniform simple ones, with h = 3. This
choice is motivated by the fact that degree sequences for h = 2, i.e. simple graphs,
have been studied by many authors, including the celebrated work of Erdös and
Gallai [17], which effectively characterizes them. From their result, a P -time
algorithm was designed to reconstruct the adjacency matrix of a graph having
degree sequence π (if it exists). On the other hand, the case h ≥ 3 remained open
till nowadays: in 2018, Deza et al. in [15] proved its NP -completeness, i.e., they
showed that for any fixed integer h ≥ 3 it is NP -complete to decide if a sequence
of positive integers can be the degree sequence of a h-uniform hypergraph.

So, it acquires relevance to restrict the set of intractable degree sequences and
find fast reconstruction algorithms for those remaining: in [18], h-uniform regular
and almost regular hypergraphs are considered and the related degree sequences
have been characterized and efficiently reconstructed. Successively, Behrens et
al. in [2] propose a sufficient condition for a degree sequence to be h-graphic;
unfortunately the characterization gives no information about the associated h-
uniform hypergraphs. Finally, in [7], an efficient generalization of the algorithm
in [18] fills this gap. Our studies aim to push further the efficient extension of
the condition of [2] in case of 3-uniform hypergraphs.

We give the definitions and the results useful for our study in the next section.
Then in the Sect. 3 we will give our new sufficient condition and the related
polynomial time algorithm that given a sequence of integers π satisfying it,
builds the incidence matrix of a 3-uniform hypergraph that realizes π, if such
hypergraph exists.

2 Definitions and State of the Art

Borrowing the notation from [5], we define hypergraph to be the couple G =
(V ert, E) such that V ert = {v1, . . . , vn} is a ground set of vertices and E ⊂
2|V ert| \ ∅ is the set of hyperedges. We choose to consider simple hypergraphs
only, i.e. such that e �⊆ e′ for any pair e, e′ of E , and we admit isolated points as
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vertices, so
⋃ E ⊆ V ert, see Fig. 1. The degree of a vertex v ∈ V ert is the number

of hyperedges e ∈ E such that v ∈ e, and the degree sequence of a hypergraph,
also called graphic sequence, is the list of its vertex degrees, usually written in
nonincreasing order, as π = (d1, d2, . . . , dn), d1 ≥ d2 ≥ · · · ≥ dn. In the sequel,
it will be useful to indicate by σ(π) the sum of the elements of π, and π− the
sequence π with the first element removed, i.e. π− = (d2, . . . , dn).

A hypergraph is h-uniform if |e| = h for all hyperedge e ∈ E . In Fig. 1 two
3-uniform hypergraphs, i.e., (a) and (c), and a 2-uniform one, (b), are depicted;
the last one turns out to be a simple graph.
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Fig. 1. (a): a 3-uniform hypergraph with vertices V = {v1, v2, v3, v4, v5} and hyper-
edges E = {e1, e2, e3, e4}. Its degree sequence (arranged in non increasing order) is
π = (3, 3, 2, 2, 2); (b): the link hypergraph of the decomposition of the hypergraph
in (a) w.r.t. the removed vertex v1, according to Theorem 2. The link hypergraph is
2-uniform, i.e. it is a simple graph; (c): the residual 3-uniform hypergraph of the same
decomposition.

The problem of the combinatorial and algorithmically efficient characteriza-
tion of the degree sequences of h-uniform hypergraphs, say h-graphic sequences,
has been one of the most relevant in the theory of hypergraphs: the case of simple
graphs, i.e. when h = 2, was solved in 1960 by Erdös and Gallai in the following
milestone theorem (see [4]).

Theorem 1 (Erdös, Gallai). A sequence π = (d1, d2, . . . , dn) where d1 ≥ d2 ≥
· · · ≥ dn is (2-)graphic if and only if σ(π) is even and

k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di}, 1 ≤ k ≤ n.

Concerning the general case of h-graphical sequences, we recall the following
(non efficient) result from [14]:

Theorem 2 (Dewdney). Let π = (d1, . . . , dn) be a non-increasing sequence of
non-negative integers. π is h-graphic if and only if there exists a non-increasing
sequence π′ = (d′

2, . . . , d
′
n) of non-negative integers such that
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1. π′ is (h − 1)-graphic,
2.

∑n
i=2 d′

i = (h − 1)d1, and
3. π′′ = (d2 − d′

2, . . . , dn − d′
n) is h-graphic.

The underlying idea of the theorem rests on the possibility of splitting a h-
uniform hypergraph G into two parts: for each vertex v, the first one consists of
the hypergraph obtained from G after deleting all the hyperedges not containing
v, and then removing, from all the remaining hyperedges, the vertex v; this
hypergraph is identified in the literature with LG(v), say the link of v, and its
degree sequence the link sequence of v. The second hypergraph G−

v , say the
residual of v, is obtained from G after removing all hyperedges containing v.
It is clear that G can be obtained from LG(v) and G−

v ; furthermore one can
notice that LG(v) is (h − 1)-uniform, while G−

v preserves the h-uniformity. Such
a decomposition can be recursively carried on till reaching trivial hypergraphs.

Relying on this result, the authors of [2] provided a sufficient conditions for
the h-graphicality of a degree sequence:

Theorem 3 (Behrens et al.). Let π be a non-increasing sequence of length n
with maximum entry Δ and t entries that are at least Δ − 1. If h divides σ(π)
and (

t − 1
h − 1

)

≥ Δ (1)

then π is h-graphic.

Unfortunately, this theorem does not furnish an efficient way to construct a
h-uniform realization of the sequence π.

It is worth mentioning that very recently, in [15], it has been proved the non
polynomiality of the reconstruction of a 3-uniform hypergraph that realizes a
given degree sequence, spreading the result to each h ≥ 3. So, it has acquired
relevance the study of sets of degree sequences whose h-graphicality can be
certified in polynomial time and the definition of a strategy to construct their
related hypergraphs.

Following the direction, in these last years the result of Behrens et al. has been
investigated from a different perspective, as an inverse problem in the discrete
environment. The required mathematical tools come from discrete tomography
that is wide research area whose aim, among many others, is that of reconstruct-
ing (or at least retrieve information about) unknown binary matrices regarded
as homogeneous finite sets of points, from projections, i.e. measurements of the
number of elements lying on each line intersecting the set and having a given
direction.

One can refer to the books of Herman and Kuba [21,22] for basics on the
theory, algorithms and applications of discrete tomography.

Coming back to our context, the problem of the characterization of the
degree sequence (d1, d2, . . . , dn) of an h-uniform (simple) hypergraph G asks
whether there is a binary matrix A with projections H = (h, h, . . . , h) and
V = (d1, d2, . . . , dn) and having distinct rows, i.e., A is the adjacency matrix
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of G where rows and columns correspond to hyperedges and vertices, respec-
tively. Ryser’s Theorem [24] answers the question for generic hypergraphs, since
it admits the presence of equal rows in the reconstructed matrix, so, as men-
tioned in [5], the reconstruction of a multi-hypergraph (parallel hyper edges are
authorized) from a given degree sequence can be efficiently done. In [7], the
Theorem 3 has been considered and translated into an inverse reconstruction
problem, gaining efficiency to the sufficient condition it introduces. In the next
section, we rely on this result to efficiently generalize the sufficient condition it
proposes to 3-uniform hypergraphs.

3 A Sufficient Condition for the 3-Graphicality

We recall the notion of dominance order defined by Brylawski in [6]: let
π = (d1, . . . , dn) and π′ = (d′

1, . . . , d
′
n) be two integer sequences such that

σ(π) = σ(π′), we define

π ≤d π′ if and only if
k∑

i=1

di ≥
k∑

i=1

d′
i

for each 1 ≤ k ≤ n.

Lemma 1. Let π = (d1, . . . , dn) and π′ = (d′
1, . . . , d

′
n) be two sequences such

that π ≤d π′. If π is graphic, then also π′ is.

Proof. The graphic characterization in Theorem 1 related to π states that, for
each 1 ≤ k ≤ n,

∑k
i=1 di ≤ k(k − 1) +

∑n
i=k+1 min{k, di}. Since π ≤d π′, we

have

k∑

i=1

d′
i ≤

k∑

i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k, di} ≤ k(k − 1) +
n∑

i=k+1

min{k, d′
i},

the last inequality holding since σ(π) = σ(π′), so π′ is also graphic. 	

The following lemma states the trivial property that in a n-nodes (simple

and loopless) graph, each node can be edge connected to the remaining n − 1
nodes at most:

Lemma 2. Let π = (d1, . . . , dn) be a non increasing graphic sequence. It holds
that d1 ≤ n − 1.

The following definitions and some notations introduce the main result of this
section: let π = (d1, . . . , dn) be a nonincreasing integer sequence. We define the
S cut (sequence) of π to be the sequence π′ = (d′

1, . . . , d
′
n) such that σ(π′) = S,

and

d′
i =

⎧
⎪⎨

⎪⎩

di − c − 1 if i ≤ k′

di − c if k′ < i ≤ k

0 otherwise
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Fig. 2. The Ferrer diagram of the sequence π = (9, 9, 8, 6, 6, 6, 5, 5, 5, 4, 3, 3, 3, 2, 2). The
cut sequence of sum 29 is π′ = Cut(π, 29) = (5, 5, 4, 2, 3, 3, 2, 2, 2, 1, 0, 0, 0, 0, 0). The
height c = 3 of the cut and the indexes k′ and k are also highlighted. Observe that π′

may loose the nonincreasing property.

with 0 ≤ k′ < k ≤ n and 0 ≤ c < d1. We indicate π′ = Cut(π, S) and we refer
to c as the height of π′; Fig. 2 helps in visualizing the definition.

Furthermore, let A and B be two m × n and m′ × n′ matrices, respectively;
we introduce the following standard operators: if m = m′, then the horizontal
concatenation of A and B, write A

�

B, is the matrix obtained by orderly con-
catenating the columns of A to those of B. Similarly, if n = n′, we define the
vertical concatenation of A and B, write A�B, to be the ordered concatenation
of the rows of A and B.

Theorem 4. Let π = (d1, . . . , dn) be a nonincreasing sequence such that σ(π)
is a multiple of 3. If the cut sequence π′ = Cut(π−, 2d1) is graphic, then π is
3-graphic.

Proof. We proceed by first constructing a 3-uniform realization G′ of the
sequence (d1, π′), with π′ = Cut(π−, 2d1) = (d′

2, . . . , d
′
n): the adjacency matrix

of G′ has dimension d1 × n since σ(d1, π′) = 3d1, so its first column contains
elements 1 only. By hypothesis, π′ is graphic, so we fill the remaining n − 1
columns by one of its realizations, obtaining the desired adjacency matrix of G′.
Since its horizontal projections have common value 3, then G′ is 3-uniform (see
Examples 1 and 2).

Now, we focus on the residual (in the sense of Theorem 2, and as shown in Fig. 2)
sequence π′′ = (π − (d1, π′))− = (d′′

2 , . . . , d′′
n) that we consider arranged in non

increasing order by the permutation α, if needed. By construction, it holds that
σ(π′′) is multiple of 3. If π′′ is the zero sequence, then G′ itself is a 3-uniform
realization of π. On the other hand, let Cut(π−, 2d1) have eight c < d1; some
cases according to the value of d′

2 arise:

(i) d′
2 ≤ 1: the maximum element of π′ is 1, and, by definition of cut sequence,

π′′ has an initial almost regular sequence of length greater than or equal to
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d1. Since d′
2 ≤ d1, then π′′ satisfies the conditions in Theorem3. The result

in [7] that relies back to [18], provides in P -time a 3-uniform realization G′′

of π′′;
(ii) d1 − 1 ≤ d′

2 ≤ d1: π′′ has maximum element 2 at most, and consequently it
has an immediate 3-uniform realization G′′;

(iii) d1
2 ≤ d′

2 < d1 − 1: the sequence π′ = (d′
2, . . . , dk, 0 . . . , 0) has k − 1 ≥ d′

2 + 1
elements different from zero, by Lemma 2, with k ranging from 4 to n (if
k = 3, then d′

2 = 1, as in case (i) above). The residual sequence can be
written as

π′′ = (c + 1, . . . , c + 1
︸ ︷︷ ︸

t times

, c, . . . , c, dk+1, . . . , dn) possibly with t = 0.

Since c ≤ d′
2 < k, it follows that π′′ satisfies the hypothesis of Theorem 3

and so it admits a 3-uniform realization in P -time as in [7] (see Example 1);
(iv) 1 < d′

2 < d1
2 : again the sequence π′ = (d′

2, . . . , d
′
k, 0 . . . , 0) has k−1 ≥ d′

2+1
elements different from 0, by Lemma 2. We observe that the maximum
number of edges, i.e. the maximum value of d1, of a graph with d′

2+1 nodes
is d′

2(d
′
2+1)
2 , provided by the complete graph that we indicate as Kd′

2+1, and
this same upper bound also holds for d2(≤ d1).
If the upper bounds realize for d1 and d2, with the minimum k, i.e. k =
d′
2 + 2, then π′′ has an initial sequence of d′

2 + 1 elements having common
value

c = d2 − d′
2 =

d′
2(d

′
2 + 1)
2

− d′
2 =

(d′
2 − 1)d′

2

2
,

that is the number of edges of the complete graph with (d′
2 − 1) nodes.

So, the sequence π′′′ = Cut(π′′, 2d′′
2) is again graphic and π′′ satisfies the

conditions of this theorem, allowing the described decomposition to apply
recursively till reaching the constant sequence. A 3-uniform realization G′′

of π′′ can be computed in P -time. If the upper bounds on d1 and d2 with
the minimum value of k do not realize, then the sequence π′′ that originates
is obviously greater in the dominance order, so π′′′ is graphic a fortiori (see
Example 2).

In all the cases, the final 3-uniform realization of π can be recursively obtained
as G = G′�([0]

�

α(G′′)−1), where [0] stands for the zero column, after observing
that G′ has no common edges with G′′. 	


To make clearer the reconstruction process just described, we provide two
examples of cases (iii) and (iv), being (i) and (ii) easiest subcases.

Example 1. Let us consider the sequence π = (10, 9, 7, 5, 4, 4, 4, 3, 1, 1), and
compute

π′ = Cut(π−, 20) = (6, 4, 3, 2, 2, 2, 1, 0, 0) and π′′ = (3, 3, 2, 2, 2, 2, 2, 1, 1).

Since the sequence π′ is graphic by Theorem1, then π′′ satisfies the hypothesis
of Theorem3, i.e. 3 ≤ (

6
2

)
, and so one of its realizations G′′ can be computed in

polynomial time.
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Fig. 3. A 3-uniform hypergraph G whose degree sequence is π =
(10, 9, 7, 5, 4, 4, 4, 3, 1, 1). The hypergraph G is obtained as the composition of
G′ and G′′, i.e., the 3-uniform realizations of the related sequences π′ and π′′,
respectively.

The final realization G of π is obtained by composing the realizations G′ and
G′′ of π′ and π′′, respectively, as indicated in the proof of Theorem4, case (iii),
and depicted in Fig. 3.

Example 2. In order to clarify the proof of Theorem4, case (iv), let us consider
the sequence π = (10, 10, 10, 10, 10, 10), and compute

π′ = Cut(π, 20)− = (4, 4, 4, 4, 4) and π′′ = (6, 6, 6, 6, 6).

It holds d′
2(= 4) < d1

2 , the sequence π′ is graphic and its realization is the
complete graph K5.

The sequence π′′ still satisfies the hypothesis of Theorem4, since π′′′ =
Cut((π′′)−, 12) = (3, 3, 3, 3) is again the degree sequence of K4.

The final realization G of π is obtained recursively by composing the
3-uniform realizations of K5, K4, K3 and K2 as in Fig. 4.

Finally, let us consider the sequence π1 = (10, 9, 9, 8, 8, 8, 5, 3), and verify that
π′
1 = (4, 4, 3, 4, 4, 1, 0) is graphic. The related π′′

1 = (5, 5, 5, 4, 4, 4, 3) is greater
than π′′ in the dominance order and consequently it admits a fortiori a 3-uniform
realization as stated in Theorem4, case (iv) (see the hypergraph G1 in Fig. 4).

Corollary 1. Let π = (d1, . . . , dn) be a nonincreasing integer sequence satisfy-
ing the hypothesis of Theorem4. The reconstruction of a 3-uniform hypergraph
consistent with π can be performed in P -time.



On the Degree Sequence of 3-Uniform Hypergraph 203

1
1
1
1
1
1
1
1
1
1

1
1
1
1

1

1
1

1

1
1
1 1

1
1

1
1

1
1

1 1

10

1

3

2G : G :11
1
1
1
1
1

1 1
1 1
1 1

1
1

1 1
1

1

1 1 1

1
1
1 1 1

1 1
1 1

4 4 4 4 4

6 3 3 3 3

3 2 2 2

10
1
1
1
1
1
1
1
1
1
1

1
1
1
1

1

1
1

1

1
1
1 1

1
1

1

1

1
11
1

4 14344

5

0

1
1
1
1
1 1

1
1

1
1 1

1

1

1
1

2 2 2 1

2223 3
1
1
1

1 1
1
1

1
1

1
1 11

111 1 1

Fig. 4. Two 3-uniform hypergraphs G and G1 related to case (iv) of Theorem 4. The
complete graphs K5, K4, K3, and K2 that are part of G. The 3-uniform hypergraph
G1 is still in case (iv) and it is a realization of π1.

In the proof of Theorem 4 we defined the algorithm to reconstruct the adja-
cency matrix of a 3-uniform hypergraph consistent with π. It is easy to check
that all the steps can be performed in P -time (with respect to the dimensions
of the matrix) and they are recursively called polynomially many times.

4 Conclusion and Open Problems

Our study gave a new sufficient condition for a sequence π of integers to be
the degree sequence of a 3-uniform hypergraph, that can be efficiently checked.
Furthermore, we also defined a polynomial time algorithm to reconstruct the
adjacency matrix of a 3-uniform hypergraph realizing π if such hypergraph exists.

The defined condition and the algorithm are tuned for 3-uniform hyper-
graphs. An open problem is to find similar conditions for h-uniform hypergraphs,
with h ≥ 4.

One of the most important feature in discrete tomography is the study of
the instances of a reconstruction problem admitting a unique realization. So,
another interesting open problem is to characterize such instances in the case
of the reconstruction of uniform hypergraphs. On the opposite side, another
challenge is to count the number of realizations of a given graphic sequence. The
interested reader can find some hints in this direction both in the last part of
[2], and in [23].
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Coming to an end, we recalled that the characterization of the degree
sequences of h-uniform hypergraphs, with h ≥ 3, is an NP -hard problem. So,
under the assumption that P �= NP , there is no hope to find a good characteri-
zation of them, but it would be of great interest to find a compact nice looking
one in order to design algorithms for real-life applications.
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