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Abstract. This paper reviews the estimation of spectral reflectance for corre-
sponding colors in XYZ color space, including both corresponding color data
sets and chromatically adapted colorimetry. For use in color management
workflows, the performance of an inverse transform of the chromatically
adapted data was evaluated using spectral estimation. These estimated spectra
were then evaluated against the estimated spectral reflectances of reference
corresponding color data to analyze the similarity. The results show that
established methods using PCA can be used to obtain good spectral estimates,
and the methods described in this paper can be implemented in a color managed
workflow where spectral processing and output are desired.

Keywords: Spectral estimation � Principal component analysis �
Corresponding color data � Chromatic adaptation transform

1 Introduction

Increasing use is now being made of spectral data in color reproduction workflows.
Spectral source data is available through measurement or from multispectral and
hyperspectral cameras, and there is also an increasing need for output that is spectral
(reflectance, emission or even bi-spectral, in the case of fluorescence). Such data may
be required for the final output, or may be used in an intermediate processing step prior
to calculation of final output values. With the introduction of ICCMAX in color
management it is now possible to connect spectral data, using a spectral Profile
Connection Space or transforming to or from colorimetric representations [1]. Spectral
data is also closely related to material property. ICCMAX can be used to exploit this
relationship and adjust for material properties.

Another application of spectral output is data hiding using spectral reflectance. Bala
et al. have encoded watermark by using metameric matches that can be detected using
narrow band illumination but goes visually undetected under wide band illumination [2].

Spectral data is extensively used in color science and the color reproduction
industries. In a color reproduction workflow, it is common to perform a chromatic
adaptation step to ensure the appearance is correct in the intended viewing condition, or
in the PCS. Chromatic adaptation transforms are defined for colorimetric data, via a
transform in a 3-dimensional cone space, but when this is done there is no spectral
representation of the adapted colorimetry.
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Another sensor adjustment transform is based on material equivalency. Derhak
developed a normalization method that transforms sensor excitation to material
equivalent representation described by the Wpt (Waypoint) color space. Such Wpt
based material adjustment transform reduces the difference introduced by observer and
illuminant [3]. In this paper, we review the use of spectral estimation using PCA for
various corresponding color datasets and evaluate its performance.

1.1 Spectral Estimation

The colorimetric value of an object defined as three co-ordinate representation is easily
available. But this colorimetric value is not a signature attribute of the object but rather
depends on the viewing conditions such as illuminant and observer function. Tristimulus
colorimetry is computed from the spectral reflectance of the object, with the illuminant
and colorimetric observer as input [4]. For cases where the spectral reflectance is not
known, a number of methods have been described for the estimation or reconstruction of
spectral reflectance from colorimetry. We will further discuss the reconstruction of
spectral reflectance from tristimulus values in the next section.

1.2 Training Datasets

For spectral estimation one of the most important steps is to decide and create a
database of spectral reflectances. This database is used to provide spectral reflectance
information and nature with respect to its colorimetric response and to obtain a
transformation matrix for estimation.

The training data should be selected based on the test data properties and it is
important to have a large number of measured spectral reflectances that is spread over a
range of colors distinguishable under various lighting conditions and preferably under
the test conditions. We will establish this importance of training data selection with
respect to test data later in the results section. We are using the following spectral
reflectances for training (Table 1).

The FOGRA51 spectral reflectance dataset represents characterization data for
printing by offset litho on premium coated paper [5]. It was extrapolated to 780 nm by
repeating the spectral reflectance value at 730 nm over the range 735–780 nm. The
CC240 dataset are measurements of 240 Macbeth Colour Checker samples obtained
using a hyperspectral camera. The above datasets are divided into two sets of training

Table 1. Description of training datasets used.

Dataset No. of samples Specification

FOGRA51 [5] 1617 380 nm–730 nm at 10 nm
CC240 240 380 nm–1080 nm at 2 nm
Munsell Glossy Corrected [6] 1600 380 nm–780 nm at 5 nm
Munsell Matt [7] 1269 380 nm–780 nm at 1 nm
ISO 17321 [8] 24 380 nm–830 nm at 5 nm
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spectral reflectances, the first training dataset comprises 1563 spectral reflectances of
FOGRA51 and the remainder of the 54 spectral reflectances are reserved as the ground
truth for the testing phase. The second training set comprises of the CC240, Munsell
Glossy corrected, Munsell Matt and ISO17321 spectral reflectances for a total of 3135
spectral reflectances. All the spectral reflectances are converted to 380–780 nm range
in steps of 10 nm for spectral estimation.

2 Spectral Estimation Methods

In this section, we discuss the methods used for spectral estimation of corresponding
color data i.e. reconstruction of spectral reflectance from tristimulus values. Tristimulus
values are defined as the product of surface spectral reflectance, spectral distribution of
illuminant and observer color matching functions. One of the simplest methods is the
pseudo inverse method that uses minimization of least square errors to obtain the
estimated spectral reflectance [9]. This method uses a set of training spectral reflec-
tances multiplied to the Moore-Penrose pseudo inverse of their tristimulus values under
a given viewing condition to generate the transformation matrix [10]. This matrix can
then reconstruct spectral reflectance given a tristimulus value. Another widely used
method is principal component analysis (PCA), described by Fairman and Brill [11].
“The K eigenvectors having the highest associated eigenvalues will be the first K
principal components of the spectral reflectances.”, as stated by Fairman and Brill
suggest to choose a number of eigenvectors as principal components that store the
highest variance of mean centered training spectral reflectances. To find the suitable
number of principal components, the percentage of variance can be calculated. In our
case, the percentage of variance for three principal components for the 3135 spectral
reflectance i.e. the second training dataset in the range of 380 nm-780 nm at an interval
of 10 nm is 96.74% and for six principal components it is 99.44%. While for 1563
spectral reflectances of the FOGRA51 dataset in the same wavelength range a 99.53%
of variance information is obtained with just three principal components. Therefore, if
the training dataset is large and comprises spectral reflectance of varied type of mea-
sured samples then it is recommended to increase the number of components to allow
more variance information. The percentage of variance obtained by Fairman and Brill
using 3534 spectral reflectances in the wavelength range of 400 nm to 700 nm at
10 nm interval for the first three principal components is 98.9% and for the first six
principal components is 99.8%. This suggest that apart from the amount of training
spectral reflectances, the range of wavelength also affects the percentage of variance
stored in the principal components. From a mathematical point of view, we know that
the principal components of a certain data set let us obtain the least number of
dimensions by which to effectively describe the data and its internal variability.
Therefore, it would indeed be prudent to perform more analysis and experiment on this
type of data where variance information is lower than expected within the first three
principal components. We are discussing the number of principal components in
multiples of three because the PCA method described by Fairman and Brill can be used
with only in multiples of three as discussed later. In this paper we will consider PCA
based methods. We refer to the simple PCA method proposed by Fairman and Brill as
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classical PCA, and a variant of this method proposed by Agahian et al. known as
weighted PCA. They are described below.

2.1 Spectral Estimation Using Classical PCA

Let E be a 41 � 3 matrix that contains the first three principal components column-wise
of the training spectral reflectance set Q (41 � n) where n is the number of spectral
reflectances in the training set. For the second training dataset n is 3135. Eo is a 41 � 1
matrix that contains the mean spectral reflectance of matrix Q given by:

Eo ¼
X

r
Q

� �.
n

where
P

r is row-wise summation applied on matrix Q.
For a spectral reflectance R with dimensions 41 � 1, the co-ordinates C (3 � 1) of

the principal components will have the following desired relationship according to
Fairman and Brill:

EC ¼ R� Eo: ð1Þ

or R ¼ EoþEC ð2Þ

Let, A (41� 3) be the weight set for tristimulus integration, R is the spectrum which
is being integrated. Therefore, the relationship between the tristimulus value T (3 � 1)
and spectral reflectance R (41 � 1) is:

T ¼ ATR ð3Þ

Matrix A is of the form Aik where i changes from 1 to 3 and k changes from
380 nm to 780 nm at an interval of 10 nm and it is given by:

A1k ¼ k
X

Sk�xk
� �

;A2k ¼ k
X

Sk�yk
� �

and A3k ¼ k
X

Sk�zk
� �

Where S is the spectral power distribution of the illuminant and x̄, ȳ and z̄ are the
colour matching functions stored column-wise in the same wavelength range 380 nm
to 780 nm at an interval of 10 nm. Scalar k is used for normalization and is given by:

k ¼ 1
. X

Sk�yk
� �

Using Eqs. (2) and (3) a relationship between the co-ordinates and the tristimulus
values can be drawn as below:

T ¼ ATEoþ Að ÞTEC

or C ¼ ATE
� ��1

T� ATEo
� � ð4Þ
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Equation 4 is now a relationship between the principal components co-ordinates
and the tristimulus values, hence, they are called the tristimulus-constrained principal
component co-ordinates. These co-ordinates can be used with the PCA method to
estimate spectral reflectance as in Eq. 2. Therefore, we can rewrite the Eq. 2 using the
tristimulus constrained principal component co-ordinates as below:

R ¼ EoþE AT E
� ��1

T�ATEo
� �� �

ð5Þ

As can be seen the term ATEo is the tristimulus value of the mean spectral
reflectance of the training data. This equation can be modified to use more principal
components in multiples of three and for each increase in the set of principal com-
ponents, we will also need to include a new illuminant with observer function and a
corresponding tristimulus value computed under the new illuminant, more information
can be found in [11]. This limitation arises because the principal component co-
ordinates are constrained by the tristimulus values which are three dimensional.
Moreover, to obtain the corresponding tristimulus values with the new illuminant we
have to use a regression method. Therefore, for simplicity, we will use this method with
three components considering the trade-off in variance percentage is reasonable. By
improving the selection of the training spectral reflectances, the variance percentage for
three principal components can be increased.

2.2 Spectral Estimation Using Weighted PCA

Agahian et al. proposed a weighted PCA where the training spectral reflectances are
assigned weights computed as the inverse of colorimetric difference d between the
tristimulus values computed using the training spectral reflectances and the test tris-
timulus value. The smaller the difference, higher will be the weight. These weights
form an nxn diagonal matrix which are multiplied by the training spectral reflectance
matrix Q, and then PCA is applied as above. To avoid division by zero, Agahian et al.
adds a small value s = 0.01 to the colorimetric difference d. This method allows the
mean reflectance to have a shape according to the test tristimulus value’s closeness to
the training spectral reflectance when tristimulus is computed from them using the test
illuminant and observer function. Therefore, the reconstructed spectral reflectance
should be closer to the original spectral reflectance compared to the reconstructed
spectra obtained by classical PCA [12].

We used both classical PCA and weighted PCA to estimate spectral reflectance and
compare the results.

3 Uses of Spectral Estimation on Corresponding Colors

A corresponding color transform allows an observer adapted to an illuminant to change
a stimulus under it to match visually to the original stimulus viewed under a reference
illuminant. This change in the stimulus is usually applied to the colorimetric data, but the
implication is that there is no corresponding spectral reflectance. Here we show how
spectral estimation can be used to estimate a spectral reflectance from a corresponding
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color. The two spectral estimation methods discussed above are applied on various
datasets and scenarios.

3.1 Testing the Method on Known Spectral Reflectances

First, we apply the methods to tristimulus values for which we know the measured
spectral reflectances in order to test their accuracy. We used spectral reflectances from a
characterization data set provided by Fogra [5]. It should be noted that this data was
obtained not from single measurements, but from many measurements of a test chart
printed according to a specific printing condition. After averaging, further manipulation
was performed to ensure the data set had certain desired properties including
smoothness and consistency in single-channel tone steps. Such steps are believed to
improve the model accuracy in color management [13] (Table 2).

3.2 Spectral Estimation of Corresponding Color Datasets

Both classical PCA and weighted PCA were applied on the reference tristimulus values
and visually matched corresponding tristimulus values of each corresponding color
dataset using training set 2. The standard two-degree observer color matching function
was used for all the cases while the illuminant for spectral estimation is the illuminant
under which the XYZ value is calculated. The estimated spectral reflectances would
help in analyzing how well PCA based spectral estimation can convert tristimulus
values to their respective spectral reflectance. They would also help in finding the
similarity between the estimated spectra of the reference XYZ and its corresponding
XYZ and if these spectra can be used for chromatic adaptation in the spectral domain.
Since we don’t have the measured spectral reflectances for the corresponding datasets
we can only make approximations based on reasonable assumptions.

3.3 Spectral Estimation of Chromatically Adapted Data

A CAT is optimized to predict corresponding color data [14]. By estimating spectra of
chromatically adapted tristimulus values it is possible to observe the changes in the
stimulus in the spectral domain. To calculate chromatically adapted tristimulus values
from the reference corresponding color in XYZ color space, we used three CATs,
namely, Bradford, CAT02 and CAT16.

Table 2. Description of corresponding color datasets used.

Dataset No. of samples Reference illuminant Test illuminant Method

Helson 59 C A Memory
Lam & Rigg 58 D65 A Memory
Kuo & Luo (A) 40 D65 A Magnitude
Lutchi (A) 43 D65 A Magnitude
Lutchi (D50) 44 D65 D50 Magnitude

Spectral Estimation of Chromatically Adapted Corresponding Colors 107



The reference XYZ values of a corresponding color dataset are taken and different
CATs are applied to obtain the chromatically adapted XYZ values under the test
illuminant of that corresponding color dataset. CAT02 and CAT16 have been imple-
mented using the two-step transform with equi-energy illuminant transform as an
intermediate step proposed by Li et al. [15]. We then apply classical PCA and weighted
PCA on these various chromatically adapted XYZ values using second training dataset.
Second training dataset has been used because it consists of a large number of spectral
reflectances for a variety of natural and synthetic objects to predict a match for cor-
responding datasets. The characteristics of the estimated spectra for these adapted
tristimulus values are discussed in the results section.

3.4 Spectral Estimation of Inverse of Chromatically Adapted Data

In color management it is important to be able to invert a transform, for example in
order to obtain a preview of a color on a different medium from the intended target. To
understand how well this inverse can be accomplished, the inverse transform was
implemented on the chromatically adapted tristimulus values and spectral reflectance
was estimated for these back transformed tristimulus values. When the inverse CAT is
applied, we only obtain the original reference color value if a linear CAT such as linear
Bradford is used. For the inverse CAT estimation, we have used Bradford CAT and
CAT16. The spectral estimation of these inverse CAT tristimulus values for each
corresponding color dataset were performed using the two PCA methods.

4 Results and Discussion of Spectral Estimation

In order to visualize the performance of the spectral estimation on the data set, we
select the spectra which correspond to the 5th, 50th and 95th percentile RMS errors. The
results are discussed in the following sections.

4.1 Spectral Estimation of FOGRA51 Data

Spectral estimation of fifty-four FOGRA51 samples whose XYZ values were computed
using D65 illuminant and D50 illuminant respectively were performed using two sets
of training data. The first training set comprises of 1563 FOGRA51 spectral reflec-
tances and the second training set comprises of 3135 spectral reflectances. The results
using the first and the second training sets with classical PCA method applied on
tristimulus values of FOGRA51 dataset are shown in Figs. 1 and 2 respectively.

In Fig. 1, the estimated spectra are very similar to their respective measured spectra
while the estimated spectra in Fig. 2 are not as accurate. This demonstrates the degree
to which the training set used influences the outcome. The same effect can be seen in
Figs. 3 and 4 where the FOGRA 51 samples were estimated using weighted PCA for
the two training sets 1563 FOGRA51and 3135 spectral reflectances respectively. To
improve accuracy, we need to choose training data whose surface properties are as
similar to the test data as possible.
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Fig. 1. Estimated reflectances of FOGRA51 using classical PCA and FOGRA51 training set:
5th, 50th and 95th percentile RMS errors.

Fig. 2. Estimated reflectances of FOGRA51 using classical PCA and 3135 training set: 5th, 50th

and 95th percentile RMS errors

Fig. 3. Estimated reflectances of FOGRA51 using weighted PCA and 1563 FOGRA51 training
set: 5th, 50th and 95th percentile RMS errors.

Spectral Estimation of Chromatically Adapted Corresponding Colors 109



If we compare Figs. 1 and 3 where the training set is the same but the spectral
estimation method differs, we see that weighted PCA results are closest to the measured
spectra. In this, the mean RMSE between measured spectra and estimated spectra of
D65XYZ values is 0.0153 and the mean RMSE between measured spectra and estimated
spectra of D50 XYZ values is 0.0104, which are the lowest. Now, if we compare the two
estimated spectra obtained from D65 XYZ and D50 XYZ values, an opposite behaviour
can be seen where the two estimated spectra using classical PCA are similar while the
dissimilarity between them increases when weighted PCA is used. This is because in
classical PCA every training spectral reflectance equally influences the test tristimulus
value and the Vo matrix is global, while in weighted PCA the influence of every spectral
reflectance increases as its colorimetric similarity under an illuminant increases with the
test tristimulus value, and in this case the Vo matrix is locally calculated. Although small
the mean RMSE is higher for weighted PCA than classical PCA.

The metamerism index suggests that the spectra estimated are acceptable for D50,
C and A illuminant according to mean ΔE00 difference. However, for cases using D65
as source illuminant with PCA, the color difference is high for some spectra with test
illuminant A.

It can be seen from the result above that if we wish to estimate spectra that are
closer to the original spectra then weighted PCA with carefully chosen training data
will perform best. But if we require the estimated spectra of XYZ values measured
under different illuminants to be closer to each other while being a good approximation
of the original spectra then classical PCA will perform better. When XYZ is recalcu-
lated using the estimated spectral reflectance, the CIELAB difference is close to zero,
differing only at the fourteenth decimal place when calculated against the actual XYZ.
As our aim in this paper is to estimate the spectral reflectance of corresponding color
datasets which are measured under different illuminants and compare them with other
CAT estimates, getting estimated spectral reflectances of reference XYZ values that are
similar to the estimated spectral reflectances of corresponding color XYZ values will be
more useful. Therefore, in the rest of the paper we will only discuss results obtained
with classical PCA.

Fig. 4. Estimated reflectances of FOGRA51 using weighted PCA and 3135 training set: 5th, 50th

and 95th percentile RMS errors.
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4.2 Spectral Estimation of Corresponding Color Dataset

For the Helson, Lam & Rigg, Kuo & Luo (A), Lutchi (A) and Lutchi (D50) corre-
sponding color datasets, spectral reflectances were estimated using classical PCA for
both reference and test XYZ values using the second training dataset with 3135 spectral
reflectances. The results of three samples chosen with 5th, 50th and 95th RMS difference
for Lutchi (A) and Lutchi (D50) are shown in Figs. 5 and 6. We need to note here that
in the corresponding color datasets the reference and test white points do not exactly
match the white points of standard illuminants, but as we need to use the illuminant
spectral power distribution in calculating the matrix [S.O], we use the standard illu-
minant for this purpose which introduces a small error. For this reason, estimated
spectral reflectances will not be as accurate an estimate of the original spectral
reflectance as in the case of calculated XYZ values of FOGRA51 dataset. Moreover, as
the corresponding color XYZ data are chromatically adapted data, they differ slightly
from the calculated corresponding XYZ values under respective illuminants. Hence, we
can see that the difference between the two estimated spectra are higher than in the case
of FOGRA 51 data under the two illuminants. Nonetheless, the estimated spectral
reflectances have similar shape. The mean RMS difference is given in Table 3.

Due to this the obtained estimated spectral reflectances will not be as accurate an
interpretation of the original spectral reflectance as in the case of calculated colori-
metric values of FOGRA51 dataset. Hence, we can see that the difference between the
two estimated spectra are higher than in the case of FOGRA51 data under the two
illuminants. But nonetheless, the estimated spectral reflectances have similar shape.
The mean RMS difference is given in Table 3. The Lutchi D50 data has the smallest
mean RMS difference and max RMS difference (Table 4).

The above Table 5 shows the metamerism index for the estimated spectra. Illuminant
D65 has been considered as reference light and illuminant D50, A and C as the test lights.
ThemeanΔE00 difference was below 1.0 for every dataset under different test illuminants
and only the Lutchi D50 with test illuminant A has a mean ΔE00 difference greater

Fig. 5. Estimated reflectances of Lutchi (A) using classical PCA:5th, 50th and 95th percentile
RMS difference.
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than 0.5. For all datasets test illuminant, A has the highest mean ΔE00 difference. This is
expected because the difference between D65 which is bluish light and illuminant A
which is reddish light is high. Also, when the reference spectra are estimated using D65 or
C it adds an error i.e. biased towards bluish light, similarly, for the test spectra the test
illuminant adds an error.

As expected, when making a corresponding color match under a test illuminant that
is less blue than the reference illuminant, both the corresponding color colorimetry and
estimated spectral reflectance are also less blue.

4.3 Spectral Estimation of Chromatically Adapted Data

Below are the plots for estimated spectral reflectance for each of the reference XYZ
values of the corresponding color dataset and estimated spectral reflectance of its

Fig. 6. Estimated reflectances of Lutchi (D50) using classical PCA: 5th, 50th and 95th percentile
RMS difference

Table 3. Metamerism Iindex for estimated reference and test spectra using classical PCA and
weighted PCA methods with reference illuminant D65 and three test illuminants D50, A and C.

Mean ΔE00 difference Max ΔE00 difference
D65/D50 D65/C D65/A D65/D50 D65/C D65/A

C-PCA D65 0.5504 0.1867 1.9604 4.4409 1.9676 12.5713
C-PCA D50 0.5804 0.1731 0.9053 5.9405 2.5142 4.5225
W-PCA D65 0.2619 0.0993 0.9460 4.6212 1.5358 13.8484
W-PCA D50 0.1839 0.0659 0.3586 0.8470 0.3354 1.4914

Table 4. Weighted mean RMS difference and weighted max RMS difference between the
estimated reference reflectance and estimated test reflectance.

Weighted mean RMSD Weighted max RMSD

CCD 0.0028 0.0079
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respective chromatically adapted XYZ values using the four transforms namely
Bradford CAT, CAT02 and CAT16. From the visual plots we can see that the esti-
mated spectral reflectances of the chromatically adapted XYZ values are quite similar
in shape to the estimated spectral reflectance of the reference XYZ values. The CAT02
(blue) and CAT16 (green) estimated spectral reflectance have similar characteristics.
Bradford CAT spectra had the lowest mean RMS difference for every dataset except
Lutchi D50 where CAT02 slightly performs better. CAT16 spectra have the highest
mean RMS difference for every dataset. The larger RMS differences indicate a larger
change in colorimetry (and therefore in the spectral reflectance estimated) in the
transform (Fig. 7).

Spectra estimation was also done for Wpt MAT adapted XYZ values and were
closest to the spectral estimation of reference corresponding color XYZ values. As
Wpt MAT has been developed to maintain sameness of material property and since
spectral reflectance is an intrinsic property of a material, therefore, we should recover a
very similar spectral reflectance. This topic will be further investigated in the future
(Fig. 8 and Table 6).

Table 5. Color accuracy for the estimated reference and test spectra using reference illuminant
D65 and three test illuminants D50, A and C

Weighted mean ΔE00

difference
Weighted max ΔE00

difference
D65/D50 D65/A D65/C D65/D50 D65/A D65/C

CCD 0.0617 0.5410 0.0593 0.8243 0.1713 0.7750

Fig. 7. Estimated reflectances of reference Lutchi(A) and reference data chromatically adapted
to ill. A using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 95th percentile RMS
difference. (Color figure online)
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Additionally, we have also calculated the weighted mean of CIELAB difference for
11 corresponding color datasets and their respective chromatically adapted data using
Bradford, CAT02 and CAT16 as shown in Table 7. This is to check the CAT per-
formance with respect to other known experimental data.

4.4 Spectral Estimation of Inverse of Chromatically Adapted Data

Selected results of spectral estimates for the inverse of chromatically adapted reference
XYZ of every corresponding color dataset are plotted against its respective estimated
spectral reflectance of reference XYZ values. The inverse transform has been per-
formed only for Bradford CAT and CAT16. Again, spectra obtained for the back
transformed XYZ values are very similar in shape to the spectral reflectance obtained
for the reference XYZ values (Table 8). The mean RMS difference and mean ΔE00 are

Fig. 8. Estimated reflectances of reference Lutchi (D50) and reference data chromatically
adapted to ill. D50 using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 95th

percentile RMS difference.

Table 6. Weighted mean RMS difference and weighted max RMS difference between the
estimated reflectance of reference corresponding color data vs estimated reflectance of
chromatically adapted data.

Weighted mean RMSD Weighted max RMSD
Bradford CAT16 CAT02 Bradford CAT16 CAT02

CCD 0.0225 0.0428 0.0278 0.0746 0.1455 0.0802

Table 7. Weighted mean of CIELAB difference of each of the corresponding color datasets to
its chromatically adapted data.

Datasets No. of samples Bradford CAT16 CAT02

Weighted mean 560 6.51 6.94 6.48
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low overall and lowest for the Bradford CAT. This demonstrates that the inverse
transform can successfully be used in a color management workflow (Figs. 9 and 10).

Table 8. Weighted mean RMS difference and weighted max RMS difference of estimated
spectra inverse of chromatically adapted XYZ and its respective reference XYZ reflectance.

Weighted mean
RMSD

Weighted max
RMSD

Weighted mean
ΔE00

Bradford CAT16 Bradford CAT16 Bradford CAT16

CCD 0.0050 0.0107 0.0196 0.0382 0.1661 0.2804

Fig. 9. Estimated reflectances of reference Lutchi (A) and inverse of chromatically adapted
reference XYZ to ill. A using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and 95th

percentile RMS difference.

Fig. 10. Estimated reflectances of reference Lutchi (D50), inverse of chromatically adapted
reference XYZ to ill. D50 using Bradford CAT, CAT02 and CAT16 respectively: 5th, 50th and
95th percentile RMS difference.
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5 Conclusion

Spectral estimation of corresponding color data has been performed to find the intrinsic
relationship between original stimuli and chromatically adapted colorimetric data. We
showed that for a recovery to be performed well we have to select training data which
has similar characteristics to the test data.

Classical PCA has successfully estimated spectra for the reference XYZ and cor-
responding XYZ of corresponding color datasets and have shown to have a similar
spectral shape. The estimated spectral reflectances of the chromatically adapted XYZ
values show that spectra estimated from Bradford CAT adapted XYZ values are closest
to the reference XYZ values of corresponding color dataset. This can also be seen in the
inverse transform, where the Bradford CAT had a lower mean RMS difference com-
pared to CAT16. If the source white point in the forward transform is same as the
destination white point in the inverse transform, then the inverse transform will be
complete and we should recover same spectra as the spectra obtained from the refer-
ence XYZ values. The low values of RMS difference suggest that the classical PCA on
the respective chromatically adapted XYZ values has been consistent in estimating
spectral reflectance.

The results demonstrate that, by using appropriate methods such as classical PCA,
it is possible to obtain good spectral estimates of corresponding colors, and therefore
that spectral estimation can be used in conjunction with chromatic adaptation in a color
managed workflow.

Spectral estimation of corresponding colors can readily be implemented within the
ICCMAX color management architecture, where the transform can be encoded either in
matrix form (preferably), or as a multidimensional look-up table with PCS XYZ input
and adapted spectral reflectances as output.
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