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Abstract. The Luther condition states that a camera is colorimetric
if its spectral sensitivities are a linear transform from the XYZ colour
matching functions. Recently, a method has been proposed for finding
the optimal coloured filter that when placed in front of a camera, results
in effective sensitivities that satisfy the Luther condition. The advantage
of this method is that it finds the best filter for all possible physical
capture conditions. The disadvantage is that the statistical information
of typical scenes are not taken into account.

In this paper we set forth a method for finding the optimal filter
given a set of typical surfaces and lights. The problem is formulated as
a bilinear least-squares estimation problem (linear both in the filter and
the colour correction). This is solved using Alternating Least-Squares
(ALS) technique. For a range of cameras we show that it is possible to
find an optimal colour correction filter with respect to which the cameras
are almost colorimetric.
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1 Introduction

Mapping the raw RGBs measured by a camera to either display coordinates
(such as sRGB) or the XYZ tristimuli - a human vision system referenced colour
space - is called colour correction. Colour correction is an essential procedure in
the camera pipeline since cameras do not “see” the world as humans do. Funda-
mentally, this is because the relationship between the spectral sensitivities of a
camera and human visual matching functions is not a linear mapping. Explicitly,
the Luther condition is not satisfied [1].

Many different algorithms have been developed for solving the colour correc-
tion problem. The most common method is to apply a linear correction transform
mapping RGBs to XYZs (or display RGBs). While linear correction generally
works well, it can still fail in a large number of cases, especially for saturated
colours. In order to address this issue, polynomial regression methods [2–5],
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look-up-table methods [6] and artificial neural networks have been proposed [7].
However, most non-linear methods are not invariant to exposure change. In
Finlayson et al. [8] a root-polynomial method is developed that is exposure
invariant. Indeed, given two input RGBs p and kp, the outputs of colour correc-
tion are q and kq if it is exposure invariant.

Another way of achieving better colour fidelity is to make more than three
measurements [9]. However, when more sensors are used, the acquisition is gen-
erally more complex and suffers from problems such as reduced resolution (when
sensor filter mosaic is used) or registration problem (when multiple pictures are
captured). Multispectral camera systems are much more expensive than conven-
tional cameras and are not widely deployed.

An alternate approach to increase the dimensionality of a camera system is
to take two pictures of every scene with and without a coloured filter [10]. Of
course this approach requires the two images to be registered (a far from easy
problem to solve). Finlayson et al. [11] also proposed a prefiltering solution but
the aim here was not to increase the dimensionality of capture. Rather a filter
was found such that the device sensitivities multiplied by the filter and then
linearly transformed by a 3 × 3 matrix were as close as possible to the XYZ
colour matching functions. We call this method spectral-based colorimetric
filter design. Surprisingly, for some cameras there exists a filter that makes
them almost colorimetric. In [11] a filter is sought that will allow a camera to
capture colorimetric data for all possible spectra. Yet, we know that the spectra
we measure in the world are not arbitrary. In particular, surface reflectances are
smooth and can be well approximated by lower dimensions [12].

In this paper we wish to find the filter that makes a camera as colorimetric
as possible for a given set of measured lights and surfaces. Figure 1 illustrates
our approach. Here we see a standard D65 illuminant lighting a colour target
with known reflectances. Given these spectra and the spectral sensitivities of
the camera and XYZ colour maching functions, we can calculate the camera
RGB responses and XYZ triplets respectively. In our optimisation we seek to
find a colour filter (red ellipse in the Figure) in combination with a 3 × 3 colour
correction transform.

Mathematically, we will show that the simultaneous calculation of the colour
filter and colour correction matrix is a bilinear optimisation problem. We show
that this can be solved using Alternating Least-Squares (ALS). We regulate the
optimisation to allow us to control the shape of the filter (e.g. its transmittance
property).

Experiments validate our approach. For a large corpus of data we solve for
the best filter for a large range of cameras. We show a filter can always be found,
with which the camera system becomes much more colorimetric.

The paper is organized as follows. In Sect. 2, we present the background on
image formation and linear colour correction. Section 3 discusses the formulation
and calculation of a filter and a transform matrix. The colorimetric performance
is evaluated in comparing with two other methods in Sect. 4. The paper concludes
in Sect. 5.
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Fig. 1. Schematic diagram of colour measurement for an object viewed under a given
illuminant. We try to determine a filter (placed in front) for a corresponding camera
such that the RGB outputs after a linear mapping become the same as perceptual XYZ
tristimulus results. Note that the human eye and camera system should be placed at
the same viewing geometry in practice. (Color figure online)

2 Background

Suppose a light E(λ) strikes a surface S(λ) then, under the Lambertian model
of image formation, the reflected light C(λ) is proportional to E(λ)S(λ). Given
a set of three spectral sensitivity functions, Q(λ), then the sensor response is
defined as:

ρ =
∫

ω

C(λ)Q(λ)dλ (1)

where the integral is taken over the visible spectrum ω. Similarly, the colour
response of human visual system can be defined as

x =
∫

ω

C(λ)χ(λ)dλ (2)

where χ(λ) represents the observer colour matching functions (including long-,
medium- and short- wavelengths).

In practice, the spectral data is measured through sampling across the visible
spectrum, i.e. typically from 400 nm to 700 nm at a 10 nm interval. Given a
discrete representation of our data, the integrals shown above can be replaced
by vector-matrix multiplication.

ρ = Qtc (3)

x = χtc (4)

c denotes one colour signal spectrum as a 31 × 1 vector. Q and χ are 31 × 3
matrices. The 3-vector camera response ρ and visual system response x are 3×1
vectors.
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Given a 31×N matrix C of colour signal spectra (one spectrum per column)
then, respectively, the camera responses and XYZ tristimuli are N × 3 matrices
written as

P = CtQ (5)

X = Ctχ (6)

In linear colour correction we solve for the best 3 × 3 matrix M that best
maps camera RGBs to XYZ tristimuli. Therefore, we minimize:

min
M

‖ PM − X ‖ (7)

The matrix M can be solved for in closed form (using the Moore-Penrose inverse)

M = P+X = [P tP ]−1P tX (8)

where the superscript + and t denote the pseudo-inverse and transpose operation
respectively.

Finally, in the next section, we are interested in designing a filter that makes
a camera more colorimetric. How then can we model the effect of a filter given
the linear algebra formulation of color formation we have been developing in
this section? Suppose f(λ) denotes a transmissive filter and C(λ) a colour signal
spectrum. Physically, the light passing though a filter is equal to the product
of the spectra f(λ)C(λ). In the discrete domain our spectral functions are now
represented by the 31-vectors f and c. Unfortunately, component-wise multipli-
cation of vectors do not exist in linear algebra. Rather we must re-express f as
a diagonal matrix:

D(f) = diag(f)

{
D(f)ij = 0 if i �= j

D(f)ij = fi otherwise
(9)

Now, D(f)c equals the component-wise multiplication of f and c.

3 Optimisation-Based Filter Design

Let us return to Fig. 1. For a given set of measured colour signal spectra and
camera sensitivities, we can calculate the camera RGBs and the corresponding
tristimuli. Now we wish to find a transmissive filter - that we can place in front of
the camera - that will allow the RGBs to be corrected more accurately. That is,
when we carry out a least-squares regression of the filtered RGBs we are closer
to the ground-truth XYZs.

A high-level mathematical formulation of the optimisation - for finding the
optimal filter supporting colour correction - can be addressed as:

min
f,M

‖ Ctdiag(f)QM − Ctχ ‖ (10)
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As before C denotes a set of N combinations of colour signal spectra. Respec-
tively, Q and χ are the 31 × 3 matrices encoding the spectral sensitivities of the
camera and XYZ colour matching functions. The colour filter is denoted by the
31 × 1 vector f . Remember the function diag() turns a vector into a diagonal
matrix where the filter components are mapped to the diagonal of the matrix
(see the end of Background Section) for a description. Finally, M denotes a
colour correction matrix.

The form of Eq. 10 is bilinear. That is to say we are solving for f and M ,
and if one (or the other) is held fixed the problem becomes a simple linear opti-
misation. We exploit this insight to solve for the overall optimisation problem.
See Algorithm 1 below for the details.

Algorithm 1. Alternative Least-squares Regression Algorithm for filter and
linear matrix calculation
1: i = 0, M0

3×3 = I, R0 = CtQ
2: repeat
3: i = i + 1
4: min

fi
‖ Ctdiag(f i)QM i−1 − Ctχ ‖ , subject to 0 ≤ f i ≤ 1

5: min
Mi

‖ Ctdiag(f i)QM i − Ctχ ‖
6: Ri = Ctdiag(f i)QM i

7: until ‖ Ri − Ri−1 ‖ < ε
8: return f = f i and M = M i

Most of the optimisation shown in Algorithm 1 is straightforward. Partic-
ularly in Step 5, we are solving a normal linear regression (and can use the
Moore-Penrose inverse). However, solving for the filter f is more complex. It is
still linear, ultimately, and can be solved using the Moore-Penrose inverse but
there is some ‘book-keeping’ (equation rearranging) to be done.

First, let us rewrite diag(f) in the following way

diag(f) = f1

⎛
⎜⎜⎜⎝

1
0

. . .
0

⎞
⎟⎟⎟⎠ + f2

⎛
⎜⎜⎜⎝

0
1

. . .
0

⎞
⎟⎟⎟⎠ + ... + f31

⎛
⎜⎜⎜⎝

0
0

. . .
1

⎞
⎟⎟⎟⎠

= f1D1 + f2D2 + ... + f3D31

(11)

where matrix Di is a sparse matrix having one non-zero value in the ith diagonal.
Based on this property, the calculation of Ctdiag(f)QM can be expressed as
follows

Ctdiag(f)QM = f1C
tD1QM + f2C

tD2QM + ... + f31C
tD31QM (12)
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Let us define a vector V i = vec(CtDiQM) where the vec() function strips out a
matrix into a vector. A new matrix V = [V1, V2, ..., V31] can now be constructed
accordingly (the vector V1 is placed in the first column followed by the second
V2 and the third V3 etc.). Similarly, we vectorise on the human response and
define X = vec(Ctχ). Step 4 of our algorithm can now be reformulated as:

min
f

‖ V f − X ‖ (13)

The same vectorisation is operated on the matrix X. Apparently, the filter can
now be easily solved by least-squares regression as f = V +X.

Using this newly calculated filter f , next we can solve the mapping matrix
M as

M = (Ctdiag(f)Q)+(Ctχ) (14)

Because solving for the filter or the colour correction matrix is to solve a
least-squares problem, then the error reduces at each stage in the optimisation
process. Further it is well known that Alternating Least-Squares problems (of
which Algorithm 1 is a particular case) also converge [13].

It is important to note that from a physical perspective, the transmittance of
the filter must be within the range [0, 100%]. Therefore Eq. 13 is solved subject
to 0 ≤ f ≤ 1. This linear constraint condition can be achieved using Quadratic
programming (least-squares problem as in Eq. 13 can be easily converted into
quadratic problem) where we apply the upper and lower constraints upon the
parameters [14].

4 Experimental Results

In this work, we find the best colour pre-filter for a set of 28 digital cameras [15].
The colour signal tested here is a combination of the CIE standard illuminant
D65 [16] with SFU-1995 reflectance data set [17]. The filter optimization is based
on the best mapping between RGBs (after filtering and linear correction) and
reference XYZs as formulated in Eq. 10.

4.1 Spectral Transmission of Filter

The filter and the corresponding transform matrix for each camera device with
given testing colour signal inputs are calculated through Algorithm 1. Note that
in order to simulate a physically reliable filter, we constrain its parameters in
the range of [0, 100%] and for the current method, the experimental results
presented here (in Table 1) are based on this constraint. For Canon D50 we show
the filter found by bilinear least-squares at the top of Fig. 2a representing the
transmittance within [0, 100%]. Actually, by using the Quadratic programming
technique, the boundaries for filter parameters can be easily adjusted. In Fig. 2b
we also show a variant where the filter transmittance is higher constrained to be
between 50% and 100% (it can be regarded as a high-transparent filter which
can result in less noise issues).
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(a) Filter parameters in the range of (0, 100%)

(b) Filter parameters in the range of (50%, 100%)

Fig. 2. Filters results for Canon D50 under different constraints

4.2 Colour Evaluation

We evaluate our method compared to simple least-squares and the previous
“spectral-based” colorimetric filter design method as in [11]. Our results are
summarized for all 28 cameras in Table 1.

In the first three columns of the table, we record the mean, median and
95 percentile of colour difference errors in terms of CIELAB ΔE∗

ab for the
SFU-1995 reflectance data set viewed under a CIE D65 illuminant. In the second
set of three columns we record the performance of the prior filter design method
(that tries to find a filter so a camera best matches the Luther Condition).
Finally, in the last three columns we record the colour correction performance
by our new method. The overall colour correction performance is drawn in Fig. 3
listing the results by these three methods (from left to right).

The current filtering method can achieve as small error as 0.98 ± 0.28ΔE∗
ab

by averaging the whole camera set. The overall medium error is even smaller,
reaching 0.59± 0.17ΔE∗

ab. Clearly, our new method finds filters which support a
step change in our ability to correct camera colour responses. Compared to the
linear colour correction and according to the mean, median and 95% percentile
error measures, the recorded error by current method is much less. Previously, we
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Table 1. Comparison of colour correction results between different methods

Camera name Linear correction Spectral-based method Current method

Mean Median 95 pct Mean Median 95 pct Mean Median 95 pct

Canon50D 1.03 0.64 2.82 0.47 0.29 1.47 0.68 0.42 2.20

Canon60D 1.08 0.65 3.09 0.51 0.32 1.55 0.88 0.55 2.74

Canon500D 1.09 0.65 3.14 0.48 0.29 1.44 0.91 0.58 2.80

NikonD40 1.11 0.75 3.30 1.61 1.08 4.97 0.81 0.51 2.50

Sony Nex5N 1.12 0.64 3.55 1.49 1.00 4.63 0.47 0.31 1.39

Canon600D 1.28 0.78 3.69 0.49 0.31 1.50 0.51 0.32 1.54

Canon300D 1.30 0.69 4.13 1.02 0.60 3.29 0.81 0.51 2.50

Canon1D Mark III 1.33 0.72 4.33 0.48 0.24 1.61 0.64 0.41 1.93

PentaxQ 1.36 0.90 4.06 0.85 0.45 3.03 0.61 0.39 1.82

PentaxK5 1.39 0.83 4.35 1.56 1.06 4.81 1.68 1.13 5.14

NikonD700 1.40 0.80 4.59 1.62 1.07 4.98 1.05 0.61 3.42

NokiaN900 1.41 1.01 3.86 0.60 0.35 1.90 1.01 0.58 3.30

NikonD50 1.43 0.97 4.45 1.73 1.14 5.35 0.99 0.58 3.16

NikonD3 1.45 0.84 4.63 1.60 1.06 4.92 1.09 0.65 3.51

Nikon3dx 1.46 0.83 4.76 1.65 1.11 5.06 0.95 0.56 3.07

NikonD200 1.50 0.91 4.82 1.66 1.10 5.12 1.03 0.59 3.25

NikonD90 1.54 0.87 5.05 1.66 1.11 5.11 1.06 0.63 3.41

NikonD5100 1.61 0.91 5.12 1.59 1.06 4.89 0.99 0.58 3.15

Canon40D 1.65 1.03 4.92 0.46 0.25 1.47 1.03 0.59 3.45

Canon5D Mark II 1.65 1.03 4.92 0.46 0.25 1.47 1.05 0.62 3.31

NikonD300s 1.70 0.94 5.48 1.59 1.06 4.86 1.15 0.72 3.59

Olympus EPL2 1.77 1.15 5.56 1.33 0.85 4.15 1.22 0.70 3.83

NikonD80 1.91 1.14 6.19 1.62 1.07 4.91 1.03 0.60 3.31

Phase One 1.95 1.18 6.24 0.74 0.43 2.37 1.00 0.55 3.32

Canon20D 2.01 1.13 6.60 0.68 0.43 2.15 0.85 0.51 2.76

PointGreyG 2.45 1.74 7.28 1.43 0.98 4.38 1.44 0.87 4.52

Hasselblad 2.65 1.65 8.45 0.89 0.57 2.78 1.61 0.94 5.13

PointGreyG2 3.03 2.07 9.38 1.60 1.08 4.90 0.98 0.57 3.06

Mean 1.60 0.98 4.96 1.14 0.74 3.54 0.98 0.59 3.11

proposed the filter design for colorimetric purpose based on Luther condition [11].
Comparing to the former spectral-based colorimetric filter design, the current
method outperforms overall, especially for the Nikon cameras which illustrate a
significant improvement. Among the camera set, Sony Nex5N provides the best
results which are all under Just Noticeable Difference [18].
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Fig. 3. Overall colour correction performance in terms of mean, median, 95 percentile
colour differences with error bars.

5 Conclusion

In this article, we develop a method to find the optimal filter (to be placed in
front of a camera) to make a device most colorimetric via optimisation. Experi-
ments show that this method provides dramatic improvement over direct linear
correction operating on raw unfiltered RGBs. Compared to normal linear cor-
rection the errors (calculated as mean, median or 95% ΔE∗

ab) are reduced by
20% to 70% on average.

Acknowledgments. We would like to express special thanks to our colleagues
Dr. Javier Vazquez and Miss Ellie Bowler for their helpful discussions and proofreading.

References

1. Luther, R.: Aus dem Gebiet der Farbreizmetrik. Zeitschrift fur Technische Physik
8, 540–558 (1927)

2. Hong, G., Luo, M.R., Rhodes, P.A.: A study of digital camera colorimetric char-
acterization based on polynomial modeling. Color Res. Appl. 26(1), 76–84 (2001)

3. Finlayson, G.D., Mohammadzadeh, D.M., Mackiewicz, M.: The alternating least
squares technique for non-uniform intensity color correction. Color Res. Appl.
40(3), 232–242 (2015)

4. Finlayson, G.D., Drew, M.S.: Constrained least-squares regression in color spaces.
J. Electron. Image 6(4), 484–493 (1997)

5. Vazquez-Corral, J., Connah, D., Bertalmio, M.: Perceptual color characterization
of cameras. Sensors 14(12), 23205–23229 (2014)

6. Hung, P.-C.: Colorimetric calibration in electronic imaging devices using a look-
up-table model and interpolations. J. Electron. Image 2(1), 53–61 (1993)

7. Li, X.: A new color correction model for based on BP neural network. Adv. Inf.
Sci. Serv. Sci. 3(5), 72–78 (2011)

8. Finlayson, G.D., Mackiewicz, M., Hurlbert, A.: Color correction using root-
polynomial regression. Trans. Image Process. 24(5), 1460–1470 (2015)



62 G. D. Finlayson and Y. Zhu

9. Liang, H.: Advances in multispectral and hyperspectral imaging for archaeology
and art conservation. Appl. Phys. A 106(2), 309–323 (2012)

10. Farrell, J., Wandell, B.: U.S. Patent No. 5479524, U.S. Patent and Trademark
Office, Washington, DC (1995)

11. Finlayson, G.D., Zhu, Y., Gong, H.: Using a simple colour pre-filter to make cam-
eras more colorimetric. In: 26th Color Imaging Conference (2018)

12. Marimont, D.H., Wandell, B.A.: Linear models of surface and illuminant spectra.
J. Opt. Soc. Am. A 9(11), 1905–1913 (1992)

13. Zhang, T., Golub, G.H.: Rank-one approximation to high order tensors. SIAM J.
Matrix Anal. Appl. 23(2), 534–550 (2001)

14. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York
(2006). https://doi.org/10.1007/978-0-387-40065-5
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