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Abstract. Color represents a primary feature in the field of Art and Cultural
Heritage, which can also be of help in defining the conservation state of an
artwork. The color identification by means of a digital camera represents a non-
destructive methodology which makes use of a non-expensive and portable
device and enables a spatial analysis which is not allowed to a colorimeter. The
present study compares an original method for camera characterization with two
approaches reported in the literature. The comparison is based on parameters
such as the Pearson correlation coefficient and the DE00 colorimetric difference,
computed according to the CIEDE2000 formula. The data sets used for both the
“training” and the “validation” processes are (a) the 24 tiles of the Color
Checker Passport Photo X-Rite color scale and (b) 30 samples of oil painting
laid down on a canvas prepared according to the indications of Giorgio Vasari in
his renowned “Le vite”. The data so far available clearly show that our original
method leads to results which are similar or better than those furnished by the
literature methods.

Keywords: Calibration � Camera characterization � Colorimeter �
Color identification

1 Introduction

Color is one of the most important properties of artworks, and color changes provide an
indication of an art object’s age and conservation state. As a consequence, the moni-
toring of color changes with time is a useful preventive diagnostic tool for Cultural
Heritage preservation. A color change is usually quantified by dedicated color mea-
suring devices, such as colorimeters and spectrophotometers, and analyzed in a device-
independent color space as CIE L*a*b* [1,2]. The artwork surface analyzed by
common devices is a point area, and thus measurement of heterogeneous and large
surfaces provides non-homogeneous values; this limitation can be overcome with the
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use of a digital camera, i.e., a device acquiring color information over a much wider
surface, only limited by the illumination area [3]. Moreover, a digital camera is less
expensive than a dedicated color-measuring spectrophotometric device.

A major problem when using a digital camera for measuring color is that consumer-
level sensors (of either CCD or Cmos type) are typically uncalibrated. As a consequence,
even though the raw camera output is declared to be converted in sRGB representation, it
is not color-accurate according to sRGB standard definition. In order to face this problem
a color calibration algorithm is then required to transform color digital values into
L*a*b* values in agreement with spectrophotometric measures.

Leon et al. [4] have considered different calibration algorithms, viz. (a) linear and
quadratic models for L*a*b* regression starting from RGB values, and (b) a direct
model where RGB values are transformed into XYZ values, in turn used to derive
L*a*b* values, (c) a gamma model which linearizes sRGB data before applying
method b (transformation into XYZ values and then calculation of L*a*b* values) and
(d) a “neural network” predicting L*a*b* values from RGB ones. Cheung et al. [5]
have considered the gamma correction approach to calibrate digital photos, evaluating
three different techniques for the linearization of sRGB values: spectral sensitivities,
luminance and mean reflectance.

The aim of the present study is to compare the two most effective camera cali-
bration methods among those outlined above (i.e., the regression method and the
approach with gamma correction preceding linearization) with an original method we
have specifically designed and implemented.

2 Materials and Approaches

Three methods have been tested and compared with the purpose of achieving the best
calibration of camera pictures, taking colorimetric measurements as reference values.

They are all supervised methods, what means that the setting of the calibration
parameters is optimized according to a training set, where each digital-camera image is
labelled with the reference color parameters obtained with the colorimeter.

Comparison of methods performance is based on the error computed when
applying each method to the samples of the training set (to evaluate precision) or to a
validation set (to evaluate robustness).

2.1 Materials

The training set and the validation set are made of color samples (see Figs. 1 and 2
below), each measured with both the colorimeter and the camera.

X-Rite ColorChecker Passport Photo is a photographic color scale made of 24
tiles for maintaining uniformity and color control in digital photography. Along with
color patterns, it also contains gray patches shading from white to black.
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Oil Painting Samples. A linen canvas has been purposely prepared according to the
indications provided by the Italian painter, architect and art historian Giorgio Vasari in
his renowned historiographical text “Le Vite” [6]. Accordingly, the linen texture was
treated with a few layers of rabbit glue, a layer of dough (made of walnut oil and flour),
further three layers of rabbit glue, to reach a homogeneous uniform thickness on the
linen surface, and finally with the preparatory layer, i.e. a mix of linseed oil, white lead
[biacca: (PbCO3)2�Pb(OH)2] and different ochres [mixed Fe(II) and Fe(III) oxides,
generally in presence of Mn(IV), Al(III) and Si(IV) oxides, with different amounts of
hydration water molecules]; once the preparatory layer dried, thirty color samples were
laid down with the oil painting technique, using different pigments (mainly ochres),
each pigment dispersion being prepared in 3 or 4 different w/w compositions. The
pigments were: ombra naturale, ombra bruciata, terra di Siena naturale, terra di Siena
bruciata, white lead, malachite, cinnabar and a pink pigment (obtained by mixing white
lead and cinnabar). The color measurements on the paint samples were repeated
monthly, with both the spectrophotometer and the camera.

Fig. 1. The ColorChecker Passport Photo X-Rite.

Fig. 2. The 30 oil-painting samples on a linen canvas.
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2.2 Data and Image Acquisition Tools

The data were acquired with both a colorimeter and a digital camera, the Matlab and
Excel softwares being used for the mathematical treatment.

Colorimeter. Reference measurements were made by the Konica Minolta CM2600d
spectrophotometer, a handheld, portable instrument designed to estimate the color
parameters. The settings are summarized in Table 1.

Digital Camera. The digital images were taken with the following image acquisition
system:

• A Panasonic Lumix DMC-FZ200 camera was placed vertically at 46.5 cm from the
samples. The angle between the axis of the lens and the sources of illumination was
approximately 45°.

• Illumination was achieved with 2 OSRAM, Natural Daylight 23 W fluorescent
lights, color temperature 6500 K.

• The photos were shot in a dark room.
• The settings of the camera are summarized in Table 2.

2.3 Training and Validation Sets

The training set consisted of the 24 tiles of the X-Rite ColorChecker Passport Photo,
on one side (reference set), and of the 30 painting samples on canvas on the other side;
the data (colorimetric measurements and digital-camera acquisitions) were collected in
March 2018.

The validation set is represented herein by the painting samples on canvas mea-
sured with the colorimeter and acquired with the camera in April 2018.

Table 1. Colorimeter setup.

Variable Value

Standard observer 10°
Illuminant D65
Acquisition SCI

Table 2. Camera setup.

Variable Value

Focal distance 4 mm
Flash Off
Iso velocity 400
White balance reference D65
Operation mode Manual
Exposure time 1/60 s
Quality Raw
Number f 3.2
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The colorimetric (Konica Minolta CM2600d) value of each painting sample is the
average of 5 spot areas and refers to the device-independent L*a*b* space. Likewise,
the colorimetric value of each tile of the X-Rite scale is the average of 4 spot areas.

The color measurements taken with the digital camera refer to the sRGB values of
the digital image. In this case, the color value of each sample (either the X-Rite tile or
the canvas paint samples) is the average of 5 different areas of 16 � 16 pixels for each
of 9 successive camera acquisitions.

3 Calibration Methods

The main purpose of the methods is to estimate the transformation from the camera
output given in sRGB space to the L*a*b* space which minimizes the error with
respect to the colorimetric L*a*b* values.

Method 1: Matrix-Based Method Through Polynomial Modelling
According to Hong et al. [7] and to Johnson [8], the most appropriate transformation
from the sRGB space to the L*a*b* space requires a polynomial regression with least-
squares fitting.

The applied polynomial, P[11], is as follows:

P 11½ � ¼ R G B RG RB GB R2 G2 B2 RGB 1
� �

The best matrix is estimated through the pseudo-inverse methodology by using the
training set values; R, G, and B refer to the color channels as acquired by the camera on
the training set; the target values are the Ls, as, bs values read by the spectrophotometer
on the same training set.

Once the matrix elements are estimated, the transformation is applied independently
to the training set and the validation set thus obtaining the calibrated values Lc, ac, bc.

Method 2: Method Based on the Gamma-Correction Technique
This method consists of two parts:

1. estimation of the non-linearity of digital data (gamma correction);
2. application of a polynomial modelling.

The gamma correction was performed through the luminance-based technique as
both Valous et al. [9] and Cheung et al. [10] have described.

The gray tiles of the ColorChecker Passport Photo (A4, B4, C4, D4, E4, and F4)
were considered to calculate the non-linearity parameter.

The calculated gamma factor was applied to the camera responses for the remaining
X-Rite colors so that their sRGB values were corrected for non-linearity. Polynomial
modelling was applied to corrected values using the vector P[11] above.

Method 3: Our Original Approach
An original, alternative approach has been devised and implemented in this study. The
initial idea is that a proper calibration must lead to an ideal y = x linear correlation,
with unitary slope and without offset between photographic and spectrophotometric
data (i.e. null intercept).
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Starting from the training set, a general-purpose transform from the sRGB to the
L*a*b* space was applied to the digital camera output, thus obtaining Lp, ap, bp.

In Figs. 3, 4 and 5, the scatter plots of uncalibrated digital color data vs. spec-
trophotometric values are shown.
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Fig. 3. Scatter plot of the L* component: colorimetric values vs. uncorrected digital-camera
values.
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Fig. 4. Scatter plot of the a* component: colorimetric values vs. uncorrected digital-camera values.
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The parameters to be used for camera calibration are then estimated according to
the linear regression analysis applied separately to L*, a*, and b* data:

Lp ¼ aLLs þ bL

ap ¼ aaas þ ba

bp ¼ abbs þ bb

where (aL, bL), (aa, ba), and (ab, bb) are the regression coefficients, the b’s being the
intercepts representing the systematic errors to be corrected by the calibration process.

Since the target is to find calibrated L*, a*, and b* values which better reproduce
the colorimeter values it holds that:

Lc ¼ Ls

ac ¼ as

bc ¼ bs

Then the proposed transformation is:

Lc ¼ Lp�bL
aL

ac ¼ ap�ba
aa

bc ¼ bp�bb
ab

-120

-100

-80

-60

-40

-20

0

20

40

60

80

100

120

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

di
gi

ta
l c

am
er

a,
 u

nc
al

ib
ra

te
d

colorimeter 

Fig. 5. Scatter plot of the b* component: colorimetric values vs. uncorrected digital-camera
values.
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As shown in Figs. 3, 4 and 5, the scatter plots displaying the uncalibrated digital
color data versus spectrophotometric values show a strong linear correlation: Pearson
coefficient are 0.9797, 0.9832, and 0.9596, for L*, a*, and b*, respectively.

In addition, the coefficient of determination is very close to one for L* and a*
(0.9675 and 0.9693, respectively) proving that a linear relation exists between uncal-
ibrated and calibrated data.

Indeed, by considering the b* scatterplot and the related coefficient of determina-
tion (0.9193), the independent calibration of the b* parameter is expected to be of
lower quality. As consequence, a calibration step in the (a, b) space is proposed, by
applying the matrix method only to these two chromaticity features. In such a case, the
terms of the polynomial P[6] are experimentally proved to be sufficient:

P 6½ � ¼ a� b� a�b� a�2 b�2 1
� �

The mapping can now be represented by:

a�

b�

 !
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4 Results

After the analysis of measure reliability through a test-retest evaluation, the three
methods have been applied. Their performance evaluation is based on statistical
measures (such as correlation coefficients) as well as on color-distance measures.

The analysis of the Pearson coefficients shows a general improvement when
comparing the values before and after calibration.

As far as it concerns the training set (reported in Table 3), the best outcome is that
achieved by method 2 but is clear how this same method performs very poorly on the
validation set (third line in Table 4).

One can also notice that, on the training set, methods 1 and 3 improve or preserve
correlation for L* and a*, while b* is less improved by method 3: indeed, on the whole
method 1 is better than method 3.

On the contrary, with the validation set the situation is reversed: model 1 improves
b* but it gets worse for the other components; model 3 improves b*, preserves the
correlation coefficient for L* (as expected by design), and performs better than method
1 on a* component.

What described above is also evident when analyzing the error in L*, a*, and b*
components (ΔL*, Δa*, and Δb*) between spectrophotometric data and calibrated
camera values.
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When considering the training set (Table 5), method 2 achieves the smallest error,
while method 3 shows the largest ΔL*, Δa*, and Δb* values, confirming its lower
accuracy with respect to the other models.

On the other side, when considering the validation set (Table 6), method 2 has the
smallest ΔL* and Δa* values, but the b* error is dramatically increased. Method 1 has
the largest ΔL* but negligible Δb*. Method 3, performs better than method 1 as dealing
with L*, a*, and root-mean-square errors.

Table 5. L*, a*, b*, and root-mean-square errors on training set.

Data ΔL* Δa* Δb* RMS error

Without calibration 11.243 7.335 1.289 7.786
Method 1 2.119 −6.631 −1.045 4.064
Method 2 0.030 0.036 0.030 0.032
Method 3 7.407 −9.013 4.802 7.284

Table 3. Pearson coefficients on training set.

Data r_L* r_a* r_b*

Without calibration 0.9797 0.9374 0.9454
Method 1 0.9912 0.9833 0.9735
Method 2 0.9976 0.9895 0.9981
Method 3 0.9797 0.9833 0.9596

Table 4. Pearson coefficients on validation set.

Data r_L* r_a* r_b*

Without calibration 0.9752 0.9832 0.8685
Method 1 0.9743 0.9651 0.9601
Method 2 0.9112 0.9112 0.6464
Method 3 0.9752 0.9772 0.9125

Table 6. L*, a*, b*, and root-mean-square errors on validation set.

Data ΔL* Δa* Δb* RMS error

Without calibration 5.485 12.073 3.570 7.928
Method 1 −6.702 2.599 1.403 4.229
Method 2 4.966 0.722 14.091 8.636
Method 3 −6.008 2.330 2.911 4.082
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When using color metrics, the color distance ΔE00, calculated according to formula
CIEDE2000 is applied. The equation used is based on the mathematical observations
and implementations analyzed by Sharma et al. [11], and the final formula is:

DE00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DL
KL � SL

� �2

þ DC
KC � SC

� �2

þ DH
KH � SH

� �2

þRt � DC
KC � SC

� �
� DH

KH � SH

� �s

where ΔL, ΔC and ΔH are the luminance, chroma and hue difference respectively, KL,
KC and KH are parametric weighting factors, that we set to unity, while Rt, SL, SC and
SH are terms computed in relation to C and H values.

When referring to the evaluation on the training set, the values reported in Table 7
have been found. The ΔE00 between the reference colorimetric values and the digital
data without calibration is 8.8 for X-Rite gray tiles and 13.5 for colored X-Rite tiles and
pigments. After applying each of the three methods a smaller distance is achieved, and
the improvement is even more evident for the colored tiles.

In general, method 1 achieves a better calibration when compared with method 3.
Such a result means that method 1 is very precise and accurate in calibrating the same
dataset used for the training phase.

When evaluating performances with the validation set, the values in Table 8 are
reported. After acquisition, without any calibration, ΔE00 is close to 13. By applying
the calibration methods, the minimum ΔE00 (7.3) is achieved by our model; ΔE00 of
model 1 and of method 2 are 7.9 and 9.8, respectively.

Even though results are not yet in line with the recommendation for the Cultural
Heritage field, where the accepted limit is ΔE00 = 3 [12]), it is interesting to notice how
the new method 3 has given positive results as compared to the other two methods.

This result suggests that our method is more robust than method 1 and method 2.
Especially, a too large precision of method 1 in the evaluation of the training set should
be a symptom of overfitting.

Table 7. Performance evaluation on training set.

Data ΔE00 (gray tiles) ΔE00 (non-gray samples)

Without calibration 8.8 13.5
Model 1 6.8 3.5
Model 2 / 2.2
Model 3 8.1 4.4

Table 8. Performance evaluation on validation set.

Data ΔE00

Without calibration 12.8
Model 1 7.9
Model 2 9.8
Model 3 7.3
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Finally, in Fig. 6 a color display of two data samples is reported, to provide an
optical visualization of the comparison of the different methods.

5 Conclusions

Despite the intrinsic differences in the samples used in the present work (i.e., the
ColorChecker Passport Photo tiles and the paintings on canvas) it has been possible to
achieve interesting insights into supervised calibration methods and their performances:
while method 1 proved to be the most precise and accurate on the same sample set used
during the training phase, method 3 proves more effective in the capability to be
generalized (robustness).

Robustness is indeed a major desired aspect in a calibration method, especially
when it must be applied to cultural heritage problems. In fact, when artistic artworks
cannot be measured with a colorimeter, but their image might instead be acquired by a
color camera, such an approach could represent a crucial color analytical method if the
camera data could be confidently esteemed precise and reliable enough in the identi-
fication and characterization of pigments.

Optimization of our method can still be pursued. For example, calibration errors
can also be related to the photographic elaboration of reflections on different surfaces.
In this context, a database with a larger quantity of samples will be used in future
developments, taking surface properties into proper consideration. In order to prove
how the proposed approach can be generalized, the results for different cameras will be
considered in future works.

Fig. 6. Sample color display; from left to right: colorimetric value, uncalibrated camera output,
camera output calibrated with method 1, 2, and 3. (a) sample within the training set; (b) sample
within the validation set: in this case the color display calibrated with method 2 is not available
because the validation set used for this method is different from that used for the other two
methods.
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