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Abstract. In this paper, we propose a transfer learning-based method-
ology that can be exploited for indexing protein structures from associ-
ated 3D point clouds. Such a methodology can be particularly useful for
biologists that are searching automated solutions to find family members
of a query protein or even to label new structures by directly using input
raw 3D point clouds. Comparative study and performance evaluation
show the efficiency and the potential of the proposed methodology.
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1 Introduction and Motivation

Identifying protein functions and analyzing their interactions can help to under-
stand the mechanisms that govern the living beings, and accordingly, to establish
new effective therapeutic strategies. In most cases, functions of a protein can be
predicted through analysis of its structure, itself characterized by the composi-
tion of its molecules (e.g., amino acids) as well as their relationships and spatial
positions [4].

In this sense, methods are used for separating proteins from their other cellu-
lar compounds (e.g., ultracentrifugation, electrophoresis). Then, their structures
can be studied by varied methods such as X-ray crystallography, Nuclear Mag-
netic Resonance or mass spectrometer. Biologists and biochemists from around
the world regularly exploit these analysis methods and submit their obtained
data (e.g., 3D structural information of biological macromolecules) in a mutual
and public database that is named Protein Data Bank (PDB1) [2].
1 Guide to Understanding PDB Data: https://pdb101.rcsb.org/learn/guide-to-

understanding-pdb-data/introduction.
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Various bioinformatics research topics that have been investigated in the
literature for analyzing proteins are presented hereafter.

Due to the increasing interest for the analysis of protein and to the devel-
opment of emerging instruments and technologies, the size and the diversity of
digitized protein information are more and more high making then complex the
exploitation for such a database. In [5], a freely available web-based database
exploration tool (PDB-Explorer2 website) is proposed and permits to interac-
tively visualize and explore the structural diversity of the PDB (e.g., through
color-coded map generation or structure classification).

In [14], the author tackles the problem of functional annotation from protein
3D structures for which most solutions use 3D structure superposition techniques
that are computationally demanding. The author combines geometry character-
istics and physicochemical features for efficiently analyzing the protein surfaces.

In [7], the authors study the problem of understanding protein-protein inter-
actions. They propose a methodology of predicting of Hot-Spots in protein-
protein interfaces. The presented model is trained on a large number of structural
and evolutionary sequence-based features. Also, several classification algorithms
with cost functions are utilized. The best model is selected by using c-forest, a
random forest ensemble learning method.

In this paper, our goal is to present a transfer learning-based methodology
for indexing protein structures represented by 3D point clouds. Indeed, a neural
network training process can be computationally time consuming. Additionally,
it requires the preparation of ground-truths which is a fastidious task (manual
data labelling). Hence, instead of training a neural network, a pre-trained one
with generic 3D objects is directly exploited to characterise protein structures.
Our proposed indexing methodology is important for biologists that are searching
automated solutions to find family members of a query protein or even to label
new structures by directly using input raw 3D point clouds.

2 Proposed Methodology

A transfer learning is an operation that consists of exploiting knowledge gained
to solve a problem and applying it to solve a different but related problem.
Nevertheless, efficient transfer learning needs surrounding processing stages for
its adaptation to the targeted problem with respect to its applicative context. In
this section, we describe the proposed methodology which is entitled “Generic
Learning-based Transfer for Indexing Proteins (GLT4IP)”. It is focused on a
transfer learning-based indexing method for 3D protein shape retrieval.

Figure 1 provides an overview of the associated major stages. First, the input
protein which is represented in the form of a 3D point cloud is resampled and
normalized. The resulting pre-processed protein data is injected into a Convo-
lutional Neural Network (CNN) through a classification architecture that was
already pre-trained onto a 3D object database. Since this database was composed

2 PDB-Explorer website: http://www.cheminfo.org/pdbexplorer/.

http://www.cheminfo.org/pdbexplorer/
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Fig. 1. Overview of our proposed transfer learning-based method.

of a large variety of man-made objects, it made data structures and parameters
of the exploited CNN architecture (e.g., associated layers, weight coefficients)
particularly tuned for classifying a large variety of object shapes. A transfer
learning is then applied by extracting from this CNN architecture, for each pro-
tein, a feature vector that is globally embedding structural information of the
protein with a generic manner. Finally, extracted protein feature vectors are
used to compute the similarity scores from the ones to the others. A sorting of
similarity scores can then permit to identify proteins having similar structural
characteristics to a query protein—protein shape indexing.

2.1 Sub-sampling of the Considered Protein Point Clouds

Before to proceed to the feature extraction and in order to be able to exploit the
considered CNN architecture, the 3D point cloud representing the protein surface
(several thousand of points) is sub-sampled in order to reduce its size to 2048
3D points while keeping its global structure. This sub-sampling stage is done to
adjust the protein data size to the size of input data that is managed by the
CNN architecture. To this end, we apply a volumetric-based clustering algorithm
on the original protein by exploiting a simplification method that was proposed
in [1]. In particular, the minimum bounding box of the object is subdivided
into a 3D voxel grid according to a leaf size parameter (voxel size). This latter
parameter is set according to the targeted size of the final point cloud (2048 3D
values). The resulting point cloud is then generated by calculating the centroids
of the voxels containing points. The main advantage of such a transformation
is its ability to preserve the global structure of the object thanks to a uniform
sampling of the original surface. Additionally, it is known to be computationally
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fast thanks to the use of advanced data structures (see octree of the Point Cloud
Library [11]).

2.2 Normalization of the Sub-sampled Protein Point Clouds

Once we obtained the sub-sampled point clouds, the next stage consists of their
normalization in order to make coherent the targeted protein-to-protein com-
parison process. The applied normalization stage is twofold: (i) the sub-sampled
3D point clouds of proteins are spatially rescaled. To reach this goal, the object
is normalized into a unit sphere corresponding to the minimal bounding sphere.
This step is performed by using an algorithm which has the advantage of not
being time consuming ([13] and [9]), (ii) each resulting rescaled 3D point cloud
is then re-centered by computing its barycenter and by operating a zero-mean
translation to its associated points (i.e. registration of the 3D points to a zero
point of common XYZ referential). It is worth mentioning that the quantity of
each normalized 3D protein point cloud has not changed and is still equal to
2048.

2.3 Extraction of Structural Feature Vectors

Each prepared protein 3D point cloud (natural 3D object) is then injected into
a CNN architecture that was pretrained over a large database of diverse man-
made 3D objects in order to benefit from a deep analyzer already calibrated
with structural classification objectives (transfer learning). Indeed, deep learning
architecture of these recent years are pushing the frontier of performance in many
computer vision and 3D applications including data detection, segmentation and
classification. Our methodology exploits the PointNet classification architecture
[8] as a generic feature vector extractor.

More precisely, in our case we did not consider the output of the last layer
of this architecture (i.e. classification vector). We use the pretrained network
for extracting a global descriptor vector corresponding to an intermediate fully
connected layer giving the best experimental performance. To reach this goal,
we have conducted an empirical study to identify which layer level gives the
highest performance (see the architecture layers in Fig. 2 of [8]). Consequently,
the feature vectors that are generated for the prepared protein implicitly take
advantage of information learned on a dataset of approximately 12,300 CAD 3D
objects with 40 possible categories (details of operations and training protocols
are presented in the PointNet reference).

2.4 Shape Matching

Having generated a descriptor vector for each protein, the last stage consists
of measuring the protein-to-protein similarity. To this end, we experimented
cost functions over the descriptor vectors, namely the Euclidean distance and
the Earth Movers distance [10]. Proteins are sorted from the closest one to the
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Fig. 2. On each row, examples of proteins belonging to the same class from SHREC2018
protein dataset.

furthest one with respect to each query protein (e.g.; for generating a distance
matrix necessary to the object indexing). Both functions provide a dissimilarity
score between two compared proteins and a 0 value output means that they are
equal.

3 Experimental Results and Performance Evaluation

Our method has been experimented on the SHREC2018 protein dataset and
compared to the related state-of-the-art methods [6]. The SHREC2018 protein
dataset is composed of 2267 proteins. Each protein is represented by two formats,
namely PDB and OFF which give a total number of 4534 files. As raised in the
introduction, the PDB (Protein Data Bank) is the standard format that is used
by the biologist community. This format describes the protein structure in the
form of a point cloud where each point is the center of an atom. The OFF
(Object File Format) format describes the surface of the protein in the form of
a mesh of triangles. In this latter case, each atom is approximated by a sphere.

The 2267 proteins have been organized into 107 classes where each class
represents a protein domain. The dataset has been built following a specific
protocol while considering standard references including the protein structure
database PDB [2] as well as the SCOPe database (Structural Classification Of
Proteins - extended) [3]. For more details on the protocol followed to build the
dataset, we refer the reader to the original paper [6]. Figure 2 illustrates some
proteins in the OFF format. Each row shows examples of proteins belonging to
the same class.

To evaluate the performance of our method, we considered the OFF files
of the 2267 proteins. For each protein, we have applied the processing pipeline
described in our methodology to extract the feature vectors. As stated previously
in the paper, for the feature extraction stage, we employ a transfer learning
from the PointNet [8] CNN classification architecture. This allowed to generate
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for each protein three feature vectors corresponding to three intermediate and
successively fully connected layers for which the sizes are 1024, 512 and 256,
respectively.

Figure 3 shows the precision-recall curves obtained by our method for the
three feature vectors and using two different distances for the shape matching
step: the Euclidean distance and the Earth Movers distance. For this later, we
only display the best curve obtained among the three (the one based on a vector
of size 1024) for clarity’s sake. The figure clearly shows that the best retrieval
results correspond to the ones calculated from feature vectors of size 1024 using
Euclidean distance.

Fig. 3. Precision-recall curves obtained by our method with different settings.

Moreover, some other standard metrics [12] have been considered in our
evaluation:

– Nearest Neighbor (NN): the percentage of objects belonging to the query class
and ranked in the top k of the retrieval result where k = 1.

– First Tier (T1): the same idea as in NN where k depends on the size of the
class query. If the class size is C then k = C − 1.

– Second Tier (T2): in this case k = 2 ∗ (C − 1).
– E-Measure (EM): the precision and recall calculated on the first 32 retrieved

objects.
– Discounted Cumulative Gain (DCG): assuming that the user pays more atten-

tion on the first displayed results of a search, this measure assigns more weight
to the relevant results located at the top of the list.

All these metrics are ranged in [0, 1] where 1 indicates the best performance.
Using these metrics, we compared our best results (Euclidean distance calcu-
lated on 1024 dimensional vectors) with some of the most recent methods hav-
ing exploited the SHREC2018 protein dataset. More precisely, we compared our
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method (GLT4IP) with six methods described in [6]: 3D convolutional frame-
work for protein shape retrieval (3D-FusionNet), Global Spectral Graph Wavelet
framework (GSGW), Histograms of Area Projection Transform (HAPT), Pro-
tein Shape Retrieval driven by Digital Elevation Models (DEM), Scale-Invariant
Wave Kernel Signature (SIWKS) and Wave Kernel Signature (WKS).

Table 1 summarizes the performances obtained by our method and by the six
methods on the SHREC2018 protein dataset. It shows that our method GLT4IP
reaches better results than GSGW, DEM and SIWKS. Three other methods
outperform GLT4IP but this latter remains complementary since relatively fast
outputs are obtained through the pre-trained CNN. Nevertheless, performances
obtained by all current methods clearly show that characterizing the shapes of
the proteins is not an obvious task, probably in reason of their high diversity
and irregularity of shapes which make the current descriptors partially efficient.

Table 1. Performances of our proposed method GLT4IP compared to those of the
state of the art methods obtained on the SHREC2018 protein dataset.

Method NN T1 T2 EM DCG

GLT4IP 0.550 0.293 0.344 0.265 0.598

3D-FusionNet 0.689 0.404 0.459 0.366 0.681

GSGW 0.514 0.261 0.35 0.247 0.581

HAPT 0.77 0.493 0.584 0.462 0.755

DEM 0.421 0.238 0.319 0.231 0.555

SIWKS 0.199 0.109 0.189 0.114 0.452

WKS 0.717 0.41 0.49 0.377 0.701

4 Conclusion

The paper presents an approach (GLT4IP) indexing protein structures from
associated 3D point clouds. The protein data is subsampled to fit with the input
size of a CNN that was already pretrained onto man-made 3D object database.
The subsampling stage is performed while keeping the shape topology. By sub-
sampling data and transferring knowledge from a pretrained CNN, it makes
GLT4IP relatively fast. GLT4IP performances overpass half of the state-of-the-
art methods involved in the SHREC2018 contest. GLT4IP reveals the potential
of a prepared transfer learning-based method for competing with research meth-
ods in protein shape retrieval.
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