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Abstract. In the context of the challenge of “automatic InterVertebral
Disc (IVD) localization and segmentation from 3D multi-modality MR
images” that took place at MICCAI 2018, we have proposed a segmenta-
tion method based on simple image processing operators. Most of these
operators come from the mathematical morphology framework. Driven
by some prior knowledge on IVDs (basic information about their shape
and the distance between them), and on their contrast in the different
modalities, we were able to segment correctly almost every IVD. The
most interesting feature of our method is to rely on the morphological
structure called the Three of Shapes, which is another way to represent
the image contents. This structure arranges all the connected compo-
nents of an image obtained by thresholding into a tree, where each node
represents a particular region. Such structure is actually powerful and
versatile for pattern recognition tasks in medical imaging.
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1 Introduction

Segmenting intervertebral discs (IVDs) is important to be able to measure auto-
matically their degeneration. Indeed, there is a strong association between such
degeneration and low back pain, which is one of the most prevalent health prob-
lems amongst population and, consequently, a leading cause of disability that
affects work performances and well-being.

The recent trend in medical imaging segmentation is to use convolutional
neural networks (CNN), which was not yet the case of the (rather) recent state-
of-the-art methods such as [1,10,14,15]. Since many research groups would
probably take advantage of the powerful—yet black-boxed–CNNs, we have
decided to propose an alternative approach based on mathematical morphology.
Section 2 explains the morphological tools used in our method, which is described
in Sect. 3. The result we obtained on the data provided by the challenge “Auto-
matic intervertebral disc localization and segmentation from 3D multi-modality
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MR images (IVDM3Seg)”1, that took place at the 21st International Confer-
ence on Medical Image Computing & Computer Assisted Intervention (MIC-
CAI) 2018, are given in Sect. 4. As we advocate reproducible research, the code
of the method presented here is available from:
https://publications.lrde.epita.fr/carlinet.19.csi.

2 Theoretical Background

The method we propose falls into the framework of mathematical morphology.
This section thus recalls the basic notions that are used in this paper. We will
consider that an image, either a 2D digital image or a 3D digital volume, are
represented by a function f : X → Y , where X is a subset of Z2, resp. Z3, and
where Y is a subset of N, typically �0, 255� in the case of an 8-bit quantization.

2.1 Operators

An operator ϕ on images (i.e., taking an image as input and producing an image
as output) is:

– increasing iff f1 ≤ f2 ⇒ ϕ(f1) ≤ ϕ(f2),
– idempotent iff ϕ ◦ ϕ(f) = ϕ(f),
– extensive iff ϕ(f) ≥ f ,
– anti-extensive iff ϕ(f) ≤ f .

In the writing of these properties, we implicitly consider that, for an operator
ϕ, they apply whatever the considered functions. Furthermore, ϕ ◦ ϕ(f) = ϕ(f)
means that ∀x ∈ X, we have ϕ ◦ ϕ(f)(x) = ϕ(f)(x). In the following, we will
also use the classical operator compact notation, such as ϕ ◦ ϕ = ϕ, meaning
that such a property applies whatever the function. Last, we say that:

– the operators ϕ and ψ are dual iff ϕ(f) = −ψ(−f),
– the operator ϕ is self-dual iff ϕ(f) = −ϕ(−f).

2.2 Morphology with Structuring Elements

First let us recall the couple of fundamental operators of mathematical morphol-
ogy. We call structuring element, a set B of vectors having the same discrete
coordinate system than X. In the following, we will only consider structuring
elements with the two following properties:

– centered, that is, 0 ∈ B,
– and symmetrical, that is, b ∈ B ⇒ −b ∈ B.

1 Site of the challenge: https://ivdm3seg.weebly.com/.

https://publications.lrde.epita.fr/carlinet.19.csi
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(a) f (b) opening γB(f) (c) top-hat κB(f)

Fig. 1. Illustration of the white top-hat effect, with B being a vertical line of 15 pixels.
(Color figure online)

The structuring element is a parameter for some morphological operators; its
shape influences the filtering effect, while its size adjusts the filtering strength.

Given a structuring element B, the dilation δ and the erosion ε are operators
on images, respectively defined by:

∀x ∈ X, δB(f)(x) = max
b∈B

f(x + b) (1)

εB(f)(x) = min
b∈B

f(x + b). (2)

These two operators are dual, so εB(f) = −δB(−f). The dilation is extensive
(the resulting image is brighter than the input image), whereas the erosion is
anti-extensive (the result is darker than the input).

From these two operators, we can define two idempotent operators, the clos-
ing (extensive) and the opening (anti-extensive), respectively by:

φB = εB ◦ δB , (3)
γB = δB ◦ εB , (4)

which are dual: φB(f) = −γB(−f). If we consider that an image f is seen as a
landscape, where f(x) is the elevation—height of the landscape—at point x, the
effect of the closing φB is to fill valleys, i.e., image parts surrounded (in the sense
of B) by brighter pixels, whereas the opening γB has the opposite effect: remove
mountains, i.e., image parts surrounded by darker pixels. The white top-hat
operator is derived from the opening:

κB = id − γB , (5)

where “id” denotes the identity operator. Since we have κB ≤ id, the top-hat
operator is anti-extensive: it removes some bright regions in images.

The behavior of the opening and top-hat operators are illustrated in Fig. 1.
The IVD spaces appear as light parts in the original image f (Fig. 1(a)), sur-
rounded vertically by some darker regions, that correspond to disks. Therefore
the effect of an opening with a vertical structuring element is to remove the
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(a) Gray scale (b) An image f (c) Level lines of f

(d) Two shapes of f (e) Tree S(f)

Fig. 2. Toy example of an image, its level lines, its shapes, and its tree of shapes.

bright IVD spaces, as it can be seen in Fig. 1(b). In this image, namely γB(f),
the part of the spine is exclusively dark.

The top-hat is the difference κB(f) = f − γB(f), so the removed IVDs now
reappear; this result is depicted in Fig. 1(c). When comparing the original image
f with κB(f), we can observe that most of the bright parts/objects of f have
been filtered out, and, as a corollary, some IVD regions that were connected
in f with some other anatomical parts are now de-connected in κB(f); see for
example the red circle in Fig. 1(a) and (c).

In the following, the top-hat operator will thus be used to “clean” the 3D
volumes in different modalities, so that:

– many non-IVD objects are removed in the resulting volumes,
– and IVDs appear more clearly and are de-connected from other objects.

2.3 Tree of Shapes

Given a gray-level image f : X → Y and any scalar λ ∈ Y , the lower level sets
are defined as:

[f < λ] = {x ∈ X; f(x) < λ}, (6)

and the upper level sets as:

[f ≥ λ] = {x ∈ X; f(x) ≥ λ}. (7)

We will now consider the connected components (obtained by the opera-
tor denoted by CC) of these sets. Let us denote by Sat the cavity-fill-in
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operator2. In the following, we call shape the result of the cavity-fill-in oper-
ator applied to a connected component of a (lower or upper) level set. In the
image f depicted in Fig. 2(b), we have for instance the lower level set [f < 1] = B,
and CC([f < 1]) = {B}. Note that B has two holes, namely D and E, so we have
the shape Sat(B) = B ∪ D ∪ E. An example of upper level set is [f ≥ 2], and
CC([f ≥ 2]) = {C,D,E}. C is a component of a level set, so Sat(C) = C ∪ F is a
shape. Figure 2(d) depicts the two shapes Sat(B) and Sat(C).

The tree of shapes (ToS) of an image u is classically [13] defined by:

S(f) = {Sat(Γ ); Γ ∈ CC([f < λ]) ∪ CC([f ≥ λ])}λ. (8)

An image f and its tree of shapes S(f) are depicted respectively in Fig. 2(b)
and (e). An element of S(f) is called a shape; it is a connected component
of X with no cavity, and its boundary is a level line of f . Two shapes of f
are displayed in Fig. 2(d). Every shape corresponds to a node of the tree; for
instance, in Fig. 2(e) (right), the sub-tree rooted at node “B” corresponds to the
shape B∪D∪E. Keeping the level of every node—such as displayed in Fig. 2(e)
(right)—allows to reconstruct the image from its tree. It is thus another way to
represent the image contents.

original modified #1 modified #2 same level lines

(a) Invariance of the ToS wrt level/color transforms.

image #1 lines of #1 lines of #2 image #2

(b) Stability of level lines (taken from [19]).

Fig. 3. About properties of the tree of shapes and the level lines. (Color figure online)

It is worth mentioning that the tree of shapes has also been defined for multi-
variate data [5], that is, images whose pixel values are not scalars but vectors,

2 Topological reminder: In 2D, the cavity-fill-in operator is also called hole filling; in
3D, a cavity is just like a bubble within a sphere (whereas a hole is like a tunnel
going through a sphere).
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such as it is the case for instance for color images, multi-modality medical images,
and multi-band satellite images3.

The tree of shapes of an image f is a morphological representation of f , which
makes it easier to deal with the image contents [9]. For a “classical” image, there
is about as many nodes in the tree than pixels in the image. Such a tree thus
encodes a lot of shapes (connected components, i.e., regions) and their inclusion
relationship. Despite one might think that such a structure should be complex
and long to compute, and heavy to store in memory, this is actually not true.
Indeed, storing [3] and computing [6,11,12] the tree of shapes can both be done
very efficiently.

The tree of shapes is an operator satisfying two important major properties.
First, we have:

S(−f) = S(f), (9)

meaning that this representation does not favor a particular contrast (light
regions surrounded by darker ones, or the opposite). This property thus “con-
trasts” with the morphological operators presented in Sect. 2.3, where dual oper-
ators (such as δ and ε, or φ and γ) can be useful exactly because they rely on a
particular kind of contrast: we choose one of the dual operators so that we pro-
cess either brighter or darker parts of the images (remind Fig. 1 for instance).
Conversely, the tree of shapes is a structure from which we can derive self-dual
operators, that are, operators that process “the same way” light objects and dark
objects. The second property is that, with any non-negative function � acting
over gray-levels (that is, a contrast change function), we have:

S(� ◦ f) = S(f). (10)

This property implies that it is not the gray-level values of the pixels that mat-
ters, but only their ordering. Applying a gray-level change (or look-up table)
such as � = [0 
→ 0, 1 
→ 2, 2 
→ 4, 3 
→ 5] to the image in Fig. 2(b) does
not change the structure of its tree of shapes: the ToS of the new image is the
one of Fig. 2(e). As a direct consequence, the image processing operators that
derive from the ToS structure apply the same way on low-contrasted images (or
low-contrasted parts of images) than on better contrasted ones.

These properties are illustrated in Fig. 3. The image on the left in Fig. 3(a)
has been modified to produce two new images. The modification #1 consists
in contrast-change and contrast-inversion on the different color components; we
have applied a function �i (such as in Eq. 10) on each ith component. The mod-
ification #2 is a local contrast change. In both cases, the original image and the
modified ones have exactly the same set of level lines, depicted on the right.
In Fig. 3(b), two images (on the left and on the right) share partially the same
contents—a DVD jacket; yet the point of view, the lighting environment, and
the quantity of noise are different. Despite these differences, the “meaningful”

3 Such a multi-variate version of the tree of shapes is used in the illustrations of Figs. 3
and 4, but not in the segmentation method presented in this paper.
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Fig. 4. Some applications of the ToS: grain filter [8], filtering in shape-space [17], object
detection [16], simplification/segmentation [18], object picking [4]. (Color figure online)

level lines extracted from both images are very similar; the lines are depicted
on the middle, the colors expressing the depth in their respective tree of shapes.
In the grain filter example, depicted on the top-left part in Fig. 4, we can see
that both bright and dark objects tiny are filtering out at the same time, thus
illustrating the self-dual property, Eq. 9, of the ToS structure.

2.4 Some Applications of the Tree of Shapes

The tree of shapes is a versatile tool to perform image filtering [17], and a very
relevant structure to perform some pattern recognition and computer vision
tasks [2,7]. For illustration purpose, Fig. 4 shows that many applications can be
derived from manipulating—or just using—the tree of shapes.

3 Method Description

In the IVDM3Seg challenge, for each patient we have four aligned high-resolution
3D volumes: in-phase, opposed-phase, fat and water images. We only use the
three last modalities, abbreviated in the following opp, fat, and wat respectively.
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Fig. 5. Scheme of our method.

Our method has four main steps, illustrated in Fig. 5:

– Step 1: obtain some prior knowledge about IVDs localization, i.e., get a 2D
region of interest (ROI) for each IVD;

– Step 2: prepare a 3D “input” volume from the volumes corresponding to the
3 modalities;

– Step 3: identify shapes that correspond to IVDs in the set of “input” slices,
using the ROIs as localization constraints;
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– Step 4: regularize the output in 3D.

These steps are described in the next four sections.

(a) opp slices at z = 8, 16, and 24.
�
(b) 2D summation.

(c) Level lines of (b). (d) Zoom on (c). (e) Maximal shapes. (f) Selected ones.

Fig. 6. Step 1: obtaining localization prior knowledge.

3.1 Obtaining Prior Knowledge About IVDs Localization

The first step of the method aims at getting a gross estimation of the IVDs in
3D which will be refined later. At this stage, we do not need a precision at pixel
level, only the bounding box of the IVDs.

Image Preprocessing. The method works with the opp volume only. In slices
which reveal the IVDs the most, IVDs appear as bright oriented blobs which are
at least 7-pixels high. Thus, for each slice, a top-hat (as described in Sect. 2.2)
with a flat vertical structuring element of size 15 × 1 allows filtering out the
background and highlights the IVDs. Then, the slices are summed up (similar to
an Average Intensity Projection along the z-azis) to produce a consensus image.
The projection serves as a Temporal Noise Reduction to reduce noisy structures
that could have passed the top-hat filtering in some frames. Figure 6(b) shows
the result of the preprocessing of a volume whose slices are shown in Fig. 6(a).

IVD Selection. The method computes the Tree of Shapes (ToS) on the prepro-
cessed image. The latter enables a hierarchical representation of the inclusion of
the hole-filled connected components of the image. The tree is then filtered by
some prior-knowledge-based basic criteria:
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(a) fopp (b) fwat (c) − ffat (d) g

Fig. 7. Step 2: creation of a 3D volume from three different modalities.

– bounding box size and position of the shape
– position of the center of the shape
– orientation of the shape
– height of the shape
– average gray level of the shape.

Only about 20 maximal (i.e., not included in any other shape) shapes Si are
able to pass these requirements but have non-regular contours. To overcome this
problem, we then look for the sub-shapes S∗

i the most compact (i.e., maximizing
the ratio of the surface over the enclosing oriented rectangle surface) included
in the maximal shapes Si.

From this set of candidates, we then need to select only 7 of them—because
exactly 7 IVDs are expected for the challenge. The candidates are sorted by
decreasing average gray value (remind that IVDs appear very bright in the pre-
processed image). The brightest shape serves as a reference and is augmented
with shapes taken from S∗

i satisfying some relative positioning constraints:

– the y-distance between the shape center and the current bounding box is
between 15 and 45 pixels

– the x-distance between the shape center and top/bottom selected shapes is
below 15 pixels.

Figure 6(e) and (f) illustrate the 7 maximal and regular shapes retained by
our shape selection algorithm. From these shapes, we extract the 7 Region of
Interests (ROI) as the bounding boxes of the selected shapes. These ROIs and
shape center will be used as markers in Step 3.

3.2 Preparing a 3D “input” Volume

The previously detected seeds are used to guide the search in the 2D slices. We
are now going to work on an image combining the opp, fat and wat modalities,
as IVDs contours may be spread among these images. To that aim, the top-
hat filtering is used to enhance the contrast of IVDs. The combination of the 3
volumes is given by:

g = κB(fopp) + κB(fwat) − fwat, (11)

and is illustrated in Fig. 7.
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3.3 Identifying Shapes of IVDs in 2D Slices

This step is very similar to the IDV Selection process of Step 2 described in
Sect. 3.1. A ToS is computed on each slice of the 3D input volume. In each ROI
of the IVDs localized previously, we look for the best regular shape passing some
basic geometric criteria (min/max size, bounding box, minimum intensity. . . ).
Note that for an IVD ROI, there may not exist such shape, as some IVDs might
not be visible in some slices.

3.4 3D Regularization

Z-axis Regularization: In some slices, when no shape can be found for a given
IVD, it may be normal but also might be a missed detection. If a pixel (x, y)
is labeled at z = k − 1 and z = k + 1, but not at slice z = k, it is likely a
miss-detection. As a consequence, the regularization applies:

f(z, x, y) = f(z, x, y) ∨ (f(z − 1, x, y) ∧ f(z + 1, x, y))

3D Shape Regularization: In each 2D slice, shapes are quite regular because
of the shape selection algorithm that favors regular contours. On the contrary,
back in 3D, the concatenation of 2D results has no 3D coherence. To tackle this
problem, a structural opening followed by a structural closing with a small 3D
ball allows to remove contour irregularities.

Isolated Pixels Removal: While the z-axis regularization tackles the missed-
detection problem, false-detections may appear due to some natural noise (espe-
cially at the beginning and the end of the sequence). These shapes are generally
disconnected in 3D from the real IVDs. Thus, as a final step, we perform a 3D
connected component labeling and only retain the 7 largest ones.

Step 4 in Fig. 5 illustrates the 3D regularization of the shapes performed by
our method.

Dice
mean 0.881

sd 0.025
min 0.852
max 0.927

(a) On the training set.

IVDs
1 2 3 4 5 6 7

1 0.784 — — 0.858 0.589 0.850 0.659
2 0.899 0.416 — 0.916 0.902 0.892 0.706
3 0.742 — — 0.787 0.815 0.732 0.601
4 0.813 0.908 0.910 0.837 0.832 0.793 0.763
5 — 0.805 0.911 0.879 0.864 0.875 0.659
6 — 0.723 0.902 0.883 0.882 0.857 0.635
7 0.839 0.902 0.900 0.888 0.872 0.839 0.784
8 0.847 0.896 0.892 0.897 0.890 0.863 —

mean 0.821 0.775 0.903 0.868 0.831 0.838 0.687

(b) Dice values on the 8 cases of the test set.

Fig. 8. Quantitative results on the challenge data sets.
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4 Results

First we have run our method on the 16 cases of the challenge training set. We
can observe in Fig. 8(a) that the average Dice value of 0.881 is good, with a
very low standard deviation. On the 8 cases of the test set, the different rows in
Fig. 8(b), we miss some IVDs (which is symbolized by “—” in the table). Since
we do not have access to the data of the test set, we cannot figure out what
makes our method fail for these few IVDs. Yet, for the ones we segment, the
Dice values are satisfactory, with an overall average Dice of 0.816. Last, some
qualitative results, compared to the reference images provided by the challenge
organizers, are depicted in Fig. 9.

original reference our segmentation

Fig. 9. Some qualitative results on selected slices, respectively taken from training
samples #6 (top), #14 (middle), and #16 (bottom).
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5 Conclusion

We have presented a mathematical morpholology-based of the IVD segmentation
problem. This method which is a machine-learning free, only relies on a chain of
some simple morphological processing blocks. Despite being a learning-free app-
roach, we have shown that it is able to compete with new CNN-based methods
(but still perform worst when looking at the metrics only). On the other hand,
the strength of our method lies in its speed. Only few seconds are required to pro-
cess a whole volume with a single-threaded desktop processor, where CNN-based
methods would be several order of magnitude slower. Yet, our implementation
does not take benefit neither from a straightforward parallelization of the 2D
slices processing, nor from parallel implementations of the tree of shapes [6,11].
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5. Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE
Trans. Image Process. 24(12), 5330–5342 (2015)
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