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Abstract. We propose a method for automated grading of the vertebral end-
plate regions according to the Modic changes scale based on the VGG16 net-
work architecture. We evaluate four variations of the method in a standard 9-
fold cross-validation study setup on a heterogeneous dataset of 92 cases. Due to
the very weak representation of the Modic Type III in the dataset, we focus on
the grading of Modic Type I and Modic Type II. Despite the relatively small size
of our dataset, the pipeline demonstrated a performanc1e that is similar to or
better than those achieved by the state-of-the-art methods. In particular, the most
performant variant achieved an accuracy of 88.0% with an average-per-class
accuracy of 77.3%. When the method is used as a binary detector for the
presence or not of Modic changes, the achieved average-per-class accuracy is
92.3%. Our evaluation also suggests that the so-called mixup strategy is par-
ticularly useful for this type of classification task.
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1 Introduction

The term Modic changes (MCs) refers to specific patterns of intensity variation in the
signal of the T1 and T2 MR scans of the spine, occurring in the bone marrow region
around the vertebral endplates. They were first mentioned in 1987 [1] and they are then
named after the first author of [2, 3], where three types of such patterns were defined
and their possible association with degenerative disk disease (DDD) was discussed.

Specifically, a Type I Modic change is defined as the presence of a bone morrow
region which has a lower intensity than its surrounding tissue in a T1 scan and a higher
intensity in a T2 scan, indicating a bone marrow oedema. In a Type II Modic change,
the intensity of the region is higher than its surrounding tissue in both the T1 and T2
scans, indicating local fatty degeneration. Finally, in Type III Modic change the
intensity is lower in both the T1 and T2 scans, representing sclerotic changes of the
endplates that result in low signal in both sequences. For brevity, we will refer to these
grades as MC-I, MC-II and MC-III respectively. Figure 1 shows a representative
example for MC-I and MC-II from the dataset of our study.
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MCs are considered to be clinically important, especially MC-I and MC-II. There
has been evidence suggesting a correlation between the presence of these two MC
types (especially MC-I) and low back pain (LBP) [2, 4–7], however the etiology of the
MCs and how they are linked to either LBP or DDD remains an active research topic
[4, 9]. Research related to MCs is complicated by the subjectability of the MC grading
to inter-rater disagreement [10]. The variability in grading can be reduced substantially
if the grading process is more strictly standardized and when the raters get more
experienced in the task [4, 8, 10]. However, both of these conditions need time to be
satisfied. Moreover, grading every case manually on a large dataset is a time-
consuming process.

In this study, we propose a pipeline for the automated grading of the endplate
regions around the intervertebral disks (IVDs) of the lumbar spine according the MC
scale. As a component of a computer aided diagnosis system, we envision that such a
method can be useful in a clinical setting by automatically pinpointing IVD regions in
an MRI which might require further attention by the clinician, as possible sources of
LBP. Furthermore, it can facilitate the conduction of large population studies related to
MCs, as it can minimize the tedious task of annotating manually the large number of
cases typically stored in a PACS system.

Despite the small size of the dataset that was used, we were able to achieve a MC-
detection rate which is on par with the reported performances of human raters.
A highlight of the presented work is the application of the mixup strategy [16], which
we found to be effective for this particular type of classification task. In particular, we
make the following contributions:

(a) We present a learning-based method for the automated grading of MCs, reporting
an accuracy which is better than that of the other published work on this task [12].
The dataset that was available in the present study consisted of 92 cases, as
opposed to 388 of [12].

(b) We present a successful application of the mixup strategy as introduced in [16] for
data augmentation. Mixup appears to be well-suited for this problem, assisting us
in coping with the inherent imbalance of this classification task.

1.1 Related Work

A method for the automated detection of MCs was first proposed in [11], which
requires the manual segmentation of the IVDs, it consults only one T2 slice for the
detection and it performs only binary classification (presence or not of a MC). The first
complete system for automatic MC grading was proposed in [12], which also includes
an automatic module for the localization of the vertebrae and their corners, making the
whole pipeline fully automatic. Their proposed system achieved a 87.8% classification
accuracy. The same authors proposed a multi-task CNN architecture in [14], yielding
impressive performance in a variety of spine-related computer-aided diagnosis tasks.
One of them was the detection of bone marrow defects of the upper and lower vertebrae
of IVD regions, which they were able to detect with an accuracy of 91.0% and 90.3%
respectively with their best performing models, approaching their intra-rater accuracy.
These defects appear to be very similar to MCs, however they are not the same, since
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they are graded after consulting T2 slices only. The datasets used in the latter two
works were rather extensive, consisting of the annotated scans of 388 patients in the
case of [12] and of 2009 patients in the case of [14].

2 Method

The aim of the present study is to automatically grade a given pair of T1 and T2
sequences of regions of interest that capture the upper and lower marrow regions
around a particular IVD according to the MC grading system. We will refer to the two
sequences of regions of interest as IVD volumes and to their individual slices are IVD
regions. We restrict our attention to the following six spinal levels: T12/L1, L1/L2,
L2/L3, L3/L4, L4/L5 and L5/S1. For the rest of the discussion, we will refer to these as
IVD levels. Example IVD volumes are illustrated in Fig. 2.

As mentioned earlier, there are three MC types defined. However, in the dataset that
was utilized in this study, the number of cases with MC-III was very limited. Due to
this limitation and also because of the limited clinical significance of MC-III, it was
decided to restrict the set of the grades to the first two types, i.e. MC I and MC II. For
convenience, we will also refer to the absence of any MC on some IVD level as MC-0
(background class). Thus, there are M ¼ 3 classes in total, MC-0, MC-I and MC-II.

Fig. 1. Two characteristic cases of MCs from the dataset of the present study. The top T1 and
T2 slices depict a MC-I case at level L3/L4 and the bottom a MC-II case at level L5/S1. The
affected regions are highlighted with yellow rectangles. For the case of MC-I, the affected bone
marrow region is visibly hypointense on T1 and hyperintense on T2, whereas the for the MC-II
case the bone marrow is hyperintense on both modalities. (Color figure online)
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2.1 Isolation of the IVD Regions

The input to the pipeline is a sequence of T1-weighed and a sequence of T2-weighted
sagittal MR scans of a lumbar spine. Additionally, it is assumed that a prior localization
step has taken place that can provide estimations for the centers of the depicted IVDs,
their orientations and their widths. We are interested only in the projection of these
elements on the sagittal plane, therefore, for each IVD, we assume the availability of:
(a) its 2D center on the sagittal plane and (b) a 2D vector, whose angular displacement
represents its orientation and its length is equal to the width of the IVD.

The supplied information is utilized for the extraction of rectangular IVD regions.
The extracted IVD regions are centered around their corresponding 2D IVD center,
they are parallel to the identified orientation and their size is proportional to the
identified width, with their aspect ratio set to 2:1. For the extraction of the IVD volume,
this operation is carried out on five of the slices of the input T1 sequence and five of
these slices of the input T2 sequence, symmetrically around their midsagittal slice. The
same center, orientation and width are used for the extraction of all the 10 IVD regions
of the two IVD volumes. In [12], a rigid registration step was also employed for the
extraction of the IVD regions in order to account for the small possible movement of
the patient between the acquisition of the two sequences. In the present work, no
further attempt is made to register one of the two modalities to the other. Finally, the
intensity of the extracted regions is rescaled linearly to the 0-255 range. The result of
this region extraction stage is illustrated in Fig. 2.

Fig. 2. Schematic illustration of the procedure for the extraction of the IVD volumes. The width
of the IVD, its center and its orientation are given as input (left). Then, a region of aspect ratio 2:1
is extracted from five T1 and five T2 slices, symmetrically around the midsagittal slice (the two
slices from the left side of the midsagittal, the midsagittal and the two slices from its right side).
The result of this procedure is 10 aligned IVD regions, as shown on the right.
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2.2 Network Architecture

A variant of VGG16 CNN of [15] is employed, with the following modifications to the
vanilla architecture: (a) The size of the input layer is 112 � 224 � 6; (b) A dropout
layer is added after the last convolutional layer and (c) there is only one fully-connected
layer before the softmax classification. The six channels of the input volume consist of
three IVD regions extracted from the T1 slices and the corresponding three IVD
regions from the T2 slices, in that order. An illustration of the employed architecture is
presented in Fig. 3.

The weighted cross entropy is used as a loss function in all the conducted exper-
iments. Due to the imbalanced representation of the classes in the dataset, the contri-
bution of every training sample to the loss function is weighted according to its class.
These class weights are set to be inversely proportional to the frequency of the
respective class in the training set.

2.3 Mixup

An important challenge in this study is the lack of a satisfactory number of cases with a
non-background label. Only 123 IVD regions (22.3% of the total number) in our dataset
have a label which is not MC-0, with 84 of them labeled as MC-II. We attempt to
partially address this problem by using the so-called mixup strategy, introduced in [16].

Fig. 3. Schematic illustration of the VGG16 architecture of [15] as employed in the single-stage
variant of the present work. The input to the CNN consists of six channels of size 112 � 224,
populated with the IVD regions that are extracted from the three T1 and and three T2 slices. The
output is a softmax layer of three units, corresponding to the grades MC-0, MC-I, MC-II. Each
layer of the architecture is represented with a rectangle, whose width is proportional to the
number of feature maps in the layer. For the two-stage variant, the CNN architectures of the first
and the second stage differ only on the final classification layer (two output units instead of
three).
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The mixup approach was motivated in [16] by the desire to reduce the oscillating
predictive behavior of a trained classification model when it encounters samples that
fall outside of its training set. The basic idea is the following: Given two training
samples S1 ¼ x1; y1ð Þ and S2 ¼ x1; y2ð Þ where y1; y2� 0; 1½ �M are 1-hot vectors and M is
the number of classes in the problem, a new training sample Sm is formed by a linear
interpolation of S1; S2:

Sm ¼ xm; ymð Þ ¼ k � x1 þ 1� kð Þ � x2; k � y1 þ 1� kð Þ � y2ð Þ; k 2 0; 1½ � ð1Þ

Or more concisely:

Sm ¼ k � S1 þ 1� kð Þ � S2; k 2 0; 1½ � ð2Þ

Where the weight k is a random variable. When k is very close to either 0 or 1, Sm
will very similar to one of the original training samples, whereas values near 0.5 lead to
maximum blending. Following [16], k is drawn from a beta distribution, giving flex-
ibility on specifying how aggressively new mixup samples are formed. An illustration
of the mixup procedure is shown in Fig. 4.

Although after the application of mixup the target ym is no longer an 1-hot vector, it
can still be treated as a probabilistic distribution. Indeed, let y1 ¼ y1;1; � � � y1;M

� �
,

y2 ¼ y2;1; � � � y2;M
� �

, ym ¼ ym;1; � � � ym;M
� �

be the elements of the target vectors we

interested in. The original targets y1 and y2 are 1-hot vectors, so
PM

i¼1
y1;i ¼

PM

i¼1
y2;i ¼ 1.

Then:

XM

i¼1

ym;i ¼
XM

i¼1

k � y1;i þ 1� kð Þ � y2;i

¼ k �
XM

i¼1

y1;i þ 1� kð Þ �
XM

i¼1

y2;i ¼ kþ 1� kð Þ ¼ 1

Also, the elements ym;i are all positive since k; 1� kð Þ[ 0. Therefore, the target ym
can be treated as a discrete probability distribution over theM classes. This is important
because it allows us to continue using the cross-entropy as a loss function for training
the network, which is the standard choice for classification tasks.

In practice, mixup can be understood as a data augmentation method [16] and it can
be implemented with minimal modifications to the standard training pipeline. In par-
ticular, for every training mini-batch, a random permutation of it is constructed and the
k values are sampled from the beta distribution. Then, the original mini-batch and its
permuted version are multiplied with k and 1� kð Þ and they are added together to form
the mixup mini-batch.
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2.4 IVD Level Grading

A straightforward approach for predicting the label of a certain IVD level would be to
pass the isolated T1 and T2 IVD volumes (of five slices each) to the network and use
the prediction of the network as the prediction for the MC of that level. In practice
however, we found out that the accuracy is improved if narrower volumes are used as
input. The adopted strategy is as follows: firstly, from the original T1 and T2 IVD
volumes of five slices, three sub-volumes are constructed with three consecutive IVD
regions each. The constructed T1 and T2 sub-volumes are combined, forming three
volumes of size 112 � 224 � 6. Then, these three combined volumes are passed in
succession to the network in order to get one prediction for each of them. If all of these
predictions are MC-0, the assigned grade for this particular IVD level is MC-0.
Otherwise, it is the grade that corresponds to the most confident prediction.

Such an approach can be justified on the grounds that it mimics the process that a
human rater is following when rating a given pair of T1 and T2 sequences: One
examines one T1 slice and one T2 slice at a time, in order to assess whether MC
intensity patterns are present or not. The two adjacent slices are also taken into account
in order to decide whether any pinpointed pattern is consistent with the presence of a
MC or it is an unrelated artifact. If it is decided that a MC is present, this is enough to
assign a MC grade to whole IVD level, even if the detected pattern is not visible
throughout the sagittal length of the endplate.

Fig. 4. Illustration of the generation of the mixup training samples for a 3-class classification
scenario (MC-0, MC-I, MC-II). On the left, two training samples from the original mini-batch
with labels MC-0 and MC-II (top to bottom). The two training samples are linearly interpolated
with weights k and 1� kð Þ to form a mixup training sample. In this example, k ¼ 0:769. The
entire IVD volumes are interpolated (for convenience, only one pair of T1 and T2 slices are
shown on the figure).

Automated Grading of Modic Changes Using CNNs 47



3 Experimental Design and Results

3.1 Dataset

The dataset of this study consists of a fully anonymized dataset of 92 pairs of T1 and
T2 sequences. These sequences were acquired using a variety of protocols, including
fat-suppressed T1 and T2, some of them employing the Dixon method. The inclusion
criteria were the following: (a) The entire sacrolumbar region should be visible; (b) any
deformities of the spinal curvature should be limited enough for a midsagittal slice to
still be definable and (c) no implants should be present on the lumbar region of the
spine. All of these sequences were sagittally acquired, with the total number of slices
per sequence being in the 9–17 range.

The endplate regions of six spinal levels from T12/L1 to S1/L5 of every case were
rated from two spine surgeons according to the MC grading system with every case
being rated by exactly one rater. The acquisition of the ground truth was guided by the
following criteria:

(a) Only the five slices closest to the midsagittal one were taken into consideration
during grading;

(b) Only intensity changes of the bone marrow that extend from an endplate were
graded as a MC;

(c) The MC pattern must be visible in at least two adjacent sagittal slices for an
endplate region to be graded as MC-I or MC-II.

Similar criteria have been used in literature in order to standardize the annotation
process [4, 8, 10]. The localization of the IVDs that is required for the extraction of the
IVD regions was performed with the help of a manual, approximate segmentation of
the IVDs. The orientation of each IVD was given by the first component of a principal
component analysis (PCA) on the corresponding binary segmentation mask of the IVD
and the IVD center by the centroid of the mask.

3.2 Evaluation

The dataset was split in 9 folds; 8 folds have the sequences of 10 patients and one fold
of 12 patients. A standard 9-fold cross-validation study was then conducted and the
achieved accuracy was compared with the annotations provided by the experts.
Therefore, every case participated exactly once in the study as a member of a testing
fold, permitting the computation of the evaluation metrics on the whole dataset.

The principal evaluation metric that was used is the average-per-class accuracy
(APCA), which is especially suited for unbalanced classification tasks. In particular, let
ACCMC�0;ACCMC�I ;ACCMC�II by the achieved accuracies for the classes MC-0, MC-I
and MC-II respectively. Then, the APCA will be:

ACCAPC ¼ ACCMC�0 þACCMC�I þACCMC�II

3
ð3Þ
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We also record the accuracy of detecting whether certain degree of MC is present,
i.e. the accuracy on the union of the MC-I and MC-II classes. We will denote this
measurement with ACCMC. The APCA for this binary classification task is:

ACCAPC;bin ¼ ACCMC�0 þACCMC

2
ð4Þ

Finally, the total, unweighted accuracy ACC is also reported, i.e. the rate of the
correct automatic classifications.

3.3 Multiclass Classification vs. Two-Stage Classification

In addition to the classification pipeline as presented in the previous section, we
evaluated an alternative scheme where the multiclass CNN classifier is replaced by two
binary classifiers, assembled in a two-stage classification fashion. In particular, the first-
stage binary classifier makes a prediction on whether the given IVD volume has a MC
grade of MC-0 or not. If the first-stage classifier does not detect a MC-0 grade, the
second-stage classifier further classifies the same IVD volume into MC-I or MC-II.
Except for the final softmax layer, both of these binary classifier share exactly the same
architecture as the multiclass classifier, including the size of the input IVD volume.
Both pipelines were evaluated with and without the application of mixup strategy.

3.4 Hyperparameters

The values of the hyperparameters were set using two splits of a subset of 78 cases of
the dataset into 70 training and 8 testing cases. The width of the extracted IVD regions
was set to be 1.7 times the width of the IVD. The parameter alpha of the beta distri-
bution of mixup was set to 0.1 for all experiments. Mixup was applied indiscriminately
to all the MC classes, thus all the combinations of MC classes were possible during the
creation of the mixup mini-batch. The dropout rate was set to 0.2. The mini-batch for
the training of the multiclass classifier and of the first-stage classifier was formed from
the IVD volumes of three cases of the training set. The size of the mini-batch of the
second-stage classifier was set to six IVD volumes, drawn from all the IVD volumes of
the training set with a non-MC-0 label. The weights of all the network were initialized
from a VGG16 network pre-trained on ImageNet [17]. The networks were trained for
40 epochs when mixup strategy was not used and for 80 epochs when mixup strategy
was used. The difference in the number of epochs was due to our observation that,
when mixup is applied, more epochs are need for the training error to reach the same
level (this observation agrees with [16]). When mixup was not used, the performance
seemed to actually get worse when the network was trained to the same number of
epochs (80), hence we decided to keep it much lower (40), in an attempt to make the
comparison fair. Furthermore, as in [14], we noticed that the increased network
capacity offered by the two additional fully-connected layers of the default VGG16
architecture hurt the performance, therefore we kept only one fully-connected layer
before the softmax layer.
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Similar to [14], extensive training-time data augmentation was applied: rotation of
the IVD regions by ±7.5˚, change of their scale by a factor of 0.8–1.2, displacement of
their center by ±5 pixels in the coronal and axial dimensions, random flipping in the
coronal direction with a probability of 0.5 and swapping of the order of the IVD
regions in a volume with a probability of 0.5.

3.5 Results

Four variations of the proposed method were evaluated, corresponding to the four
configuration combinations of using/not-using mixup and for multiclass/two-stage
classification. The achieved evaluation scores are reported in Table 1. For the case of
the two-stage classification, the ACCMC�0 and ACCMC metrics depend only the per-
formance of the first-stage classifier. On the other hand, the ACCMC�I and ACCMC�II

metrics depend on both on the accuracy of the first-stage on detecting MCs and on the
ability of the second-stage classifier to discriminate between MC-I and MC-II.

From this table, we can make some observations: firstly, the application of mixup
resulted in an improvement in five out of the six recorded evaluation metrics, both in
the multiclass and in the two-stage classification scheme. The metric that got worse in
both scenarios was the accuracy on the MC-0 class (ACCMC0). These results leave the
impression that mixup improves the accuracy on the underrepresented classes, at the
modest expense of the most common class.

The second observation is that the two-stage classification scheme seems to be
performing better than the multiclass one. Even though ACCMC�II got worse in the two-
stage pipeline, leading to a worse ACCMC too, the APCA is much higher (both the
binary and the multiclass one), as well as the total accuracy.

4 Discussion and Conclusion

This paper proposed a method for the automated detection of MC-I and MC-II in IVD
regions. The four variants of the proposed method were evaluated in a standard 9-fold
cross-validation setup with a heterogeneous dataset of 92 cases. The evaluation

Table 1. The achieved accuracies of the four variation of the pipeline (with and without mixup,
multiclass vs. two-stage classification). All the shown values are percentages over the whole
dataset. The number of IVD levels with labels MC-0, MC-I and MC-II is 429, 39, 84
respectively. The best values are highlighted with bold font.

MC-0 MC-I MC-II MC-I + MC-II APCA APCA binary Accuracy

Multiclass classifier
No mixup 90.4 41.0 78.6 88.6 70.0 90.0 85.1
Mixup 88.8 59.0 81.0 94.3 76.2 91.6 85.5
Two-stage classification
No mixup 93.2 51.3 71.2 87.8 71.6 90.5 86.8
Mixup 92.8 64.1 75.0 91.9 77.3 92.3 88.0
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demonstrated the usefulness of the recently proposed mixup strategy for this type of
classification task. Interestingly, a two-stage classification scheme achieved a generally
better performance than a multiclass classification approach.

Despite the relatively small size of the dataset used, the proposed method seems to
achieve a performance that is similar to or even better than those achieved by the state-
of-the-art methods. In particular, the most performant variant achieved an accuracy of
88.0%, which compared favorably to the 87.8% accuracy of [12], the only other
published method for the automatic MC multiclass grading. However, a direct com-
parison is difficult to make, since our dataset is different and smaller compared to the
one used in [12] and we also opted to omit the MC-III grade from our study. On the
other hand, when the proposed method is used as a binary detector for the presence or
not of MCs, the achieved performance is very good, with an average-per-class accuracy
of 92.3%, for the most performant variant.

Despite the success of the method in detecting the presence of MCs, their classi-
fication into MC-I or MC-II was proved to be a more challenging task for the present
method: the average-per-class-accuracy of 77.3% leaves much to be desired. The
accuracy on the MC-I class was particularly low (64.1%), likely related to the small
number of cases with such a grading on our dataset (39 in total).

As part of future work, we plan to collect and annotate additional cases, since we
feel that this is a limiting factor of the current study. A larger dataset could hopefully
allow us to consider MC-III in our study. Even though MC-III is clinically less sig-
nificant, the etiology of MCs is still not well understood and an automated system for
the identification of all the recognized MC types would be beneficial to MC-related
research. From a technical standpoint, it would be also interesting to see if mixup
remains effective on a larger dataset.
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