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Accurate localization and segmentation of intervertebral disc (IVD) is crucial
for the assessment of spine disease diagnosis. Despite the technological advances
in medical imaging, IVD localization and segmentation are still manually per-
formed, which is time-consuming and prone to errors. If, in addition, multi-modal
imaging is considered, the burden imposed on disease assessments increases sub-
stantially. In this paper, we propose an architecture for IVD localization and
segmentation in multi-modal magnetic resonance images (MRI), which extends
the well-known UNet. Compared to single images, multi-modal data brings com-
plementary information, contributing to better data representation and discrimi-
native power. Our contributions are three-fold. First, how to effectively integrate
and fully leverage multi-modal data remains almost unexplored. In this work,
each MRI modality is processed in a different path to better exploit their unique
information. Second, inspired by HyperDenseNet [11], the network is densely-
connected both within each path and across different paths, granting the model
the freedom to learn where and how the different modalities should be pro-
cessed and combined. Third, we improved standard U-Net modules by extending
inception modules [22] with two convolutional blocks with dilated convolutions
of different scale, which helps handling multi-scale context. We report experi-
ments over the data set of the public MICCAI 2018 Challenge on Automatic
Intervertebral Disc Localization and Segmentation, with 13 multi-modal MRI
images used for training and 3 for validation. We trained IVD-Net on an NVidia
TITAN XP GPU with 16 GBs RAM, using ADAM as optimizer and a learning
rate of 1× 10−5 during 200 epochs. Training took about 5 h, and segmenta-
tion of a whole volume about 2–3 s, on average. Several baselines, with different
multi-modal fusion strategies, were used to demonstrate the effectiveness of the
proposed architecture.

1 Introduction

Intervertebral disc (IVD) degeneration [1] is one of the main causes for chronic
low back pain (LBP), which has become a major public health problem in our
society and a leading cause of function incapacity [24]. Magnetic resonance imag-
ing (MRI) is the preferred modality to evaluate lumbar degenerative disc dis-
ease because it offers a good soft tissue contrast without ionizing radiation [12].
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Advances in multi-modal MRI have increased the quality of diagnosis, treatment
and follow-up in many diseases. However this comes at the cost of an increased
amount of data, imposing a burden on disease assessments. Visual inspections of
such an enormous amount of medical images are prohibitively time-consuming,
prone to errors and unsuitable for large-scale studies. Developing robust meth-
ods for automatic IVD localization and segmentation from multi-modal MRI is
thus essential for the diagnosis and treatment of spine pathologies. Having such
methods could also reduce the manual work required by clinicians, and provide
a faster and more consistent diagnosis.

Over the years, various semi-automated and automated techniques have
been proposed for IVD localization and segmentation [2,4]. Recently, deep con-
volutional neural networks (CNNs) have shown outstanding performance for
this task, outperforming previous segmentation approaches [5,14,16,27,31]. For
example, Ji et al. [14] proposed a standard CNN for IVD segmentation, where
the inference was performed pixel-wise by extracting a patch around each pixel.
In addition, the authors evaluated different patch strategies, such as 2D or 2.5D
patches, as well as the impact of vicinity size. More recently, a deeply supervised
multi-scale fully CNN was proposed in [27] for the segmentation of IVDs in MR-
T2 weighted images. An interesting feature of this work is its use of multi-scale
deep supervision in the architecture, which alleviates the risk of vanishing gra-
dient during training. Despite achieving satisfactory results, these works have
mostly focused on single-modality scenarios.

Integrating multi-modal images in deep learning segmentation methods has
also gained growing attention recently. Multi-modal segmentation in CNNs is
typically addressed with an early fusion strategy, where multiple modalities are
merged from the original input space of low-level features [10,15,18,23,29] (See
Fig. 1, left). By concatenating image modalities at the input of the network, we
explicitly assume that the relation between different modalities is simple (e.g.,
linear), which may not correspond to the characteristics of the multi-modal data
at hand [21]. To better account for the complexity of multi-modal data, other
studies investigated late fusion strategies [19], where each modality is processed
by an independent CNN and the multi-modal outputs are merged in a deep
layer, as in the architecture depicted in Fig. 1, middle. This late fusion strat-
egy was demonstrated to outperform early fusion on infant brain segmentation
[19]. More recently, Aygün et al. explored different ways of combining multi-
ple modalities [3]. In this work, all modalities are considered as separate inputs
to different CNNs, which are later fused at an ‘early’, ‘middle’ or ‘late’ point.
Although it was found that ‘late’ fusion provides better performance, as in [19],
this method relies on a single-layer fusion to model the relation between all
modalities. Nevertheless, as demonstrated in several works [21], relations between
different modalities may be highly complex and cannot easily be modeled by a
single layer. To account for the non-linearity in multi-modal data modeling, we
recently proposed a CNN that incorporates dense connections not only between
pairs of layers within the same path, but also between layers across different
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paths [9,11]. This architecture, known as HyperDenseNet, obtained very com-
petitive performance in the context of infant and adult brain tissue segmentation
with multi-modal MRI data.

Fig. 1. Typical feature-fusion strategies (left and middle) and proposed fusion tech-
nique (right).

In the context of IVD localization and segmentation, Li et al. [17] have also
considered multi-modal images. Specifically, they proposed a multi-scale and
modality dropout learning framework, which employed four MRI modalities.
To capture multi-scale context and handle the scale variations of IVDs, three
different paths process regions extracted from the same location but at different
scales. In addition, a random modality voxel dropout strategy is used to reduce
feature co-adaptation between multiple modalities, and encourage each single
modality to learn discriminative information independently.

Nevertheless, the combination of multi-modal data at various levels of
abstraction has not been fully exploited for IVD localization and segmentation.
In this work, we adopt the strategy presented in [9,11] and propose a multi-
path architecture [8] called IVD-Net, where each modality is employed as input
of one pathway, with dense connectivity used between the layers, within and
across paths (Fig. 1, right). Furthermore, we extend the standard convolutional
module of InceptionNet [22] by including two additional dilated convolutional
blocks, which can help to learn larger context. In our previous work on multi-
modal ischemic stroke lesion segmentation [8], we showed this model to outper-
form architectures based on early and late fusion, as well as several state-of-art
segmentation networks.

2 Methodology

The proposed IVD-Net architecture follow the structure of UNet [20]. This well-
known model is composed of two paths: one contracting and one expanding.
While the former collapses the input image into a set of high level features form-
ing a compact intermediate representation of the input, the latter employs these
features to generate a pixel-wise segmentation mask. Furthermore, it includes
skip-connections, which connect the outputs from shallow layers to the input of
subsequent layers, with the goal of transferring information that may have been
lost in the encoding path during the compression process.
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2.1 Processing Multiple Modalities Separately

In order to fully exploit multi-modal data, we adopt the hyper-dense connec-
tivity approach of [11] in the current work. To achieve this dense connectivity
pattern, we first create an encoding path composed of multiple streams, each of
them processing a different image modality. The main goal of employing sepa-
rate streams for different modalities is to disentangle information that otherwise
would be fused from an early stage, limiting the learning capabilities of the net-
work to capture complex relationships between modalities. The structure of the
proposed IVD-Net architecture is depicted in Fig. 2.

Fig. 2. Proposed IVD-Net architecture for IVD segmentation in multi-modal images,
which extends the traditional UNet. Dotted lines represent some of the dense connec-
tivity patterns adopted in this extended version of UNet.

2.2 Extended Inception Module

Meaningful areas in an image may undergo extremely large variation in size. In
our particular case, as 3D segmentation is assessed in a 2D slice-wise manner,
the region occupied by the IVD varies from one image to another. For instance,
when the 2D sagittal slice corresponds to the center of the vertebral column,
every IVD will appear in the image, whereas only one or two IVDs will be
present in the image when the sagittal plane is located at extremes. This makes
the selection of an accurate and general kernel size difficult. While a smaller
kernel is better for local information, a larger kernel can capture information
that is distributed globally. This idea is exploited in InceptionNet [22], where
convolutions with multiple kernel sizes operate on the same level. Furthermore,
in more recent versions, n × n convolutions are factorized to a combination of
1 × n and n × 1 convolutions, resulting in a 33% memory reduction.

To facilitate the learning of multiple contexts, we included two dilated convo-
lutional blocks in parallel to the existing blocks in an inception module. Dilation
rates of these blocks are different, which helps learning from different recep-
tive fields, thereby increasing the context of the original inception modules. In
addition, we removed max-pooling from the proposed architecture, as dilated
convolutions were shown to be a better alternative, which captures more effec-
tively the global context [25]. Our extended inception modules are depicted in
Fig. 3.
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Fig. 3. Proposed extended inception modules. The module on the left employs standard
convolutions while the module on the right adopts the idea of asymmetric convolutions
[22].

2.3 Hyper-dense Connectivity

Inspired by the recent success of densely connected architectures for medical
image segmentation [6,11,26], we adopted hyper-dense connections in the pro-
posed model. The benefits of employing dense connections in the network are
four-fold [11,13]. First, as demonstrated in [11], dense connections between multi-
ple streams can better model relationships between different modalities. Second,
flow of information and gradients through the entire network is facilitated by
the use of direct connections between all layers, which alleviates the problem of
vanishing gradient. Third, including short paths to all feature maps in the net-
work introduces an implicit deep supervision. Fourth, dense connections have a
regularizing effect, reducing the risk of over-fitting on tasks with smaller training
sets.

Formulation. Let xl denote the output of the lth layer, and Hl be a mapping
function, which corresponds to a convolution layer followed by a non-linear acti-
vation. In standard CNNs, the output of the lth layer is typically obtained from
the output of the previous layer xl−1 as

xl = Hl

(
xl−1

)
. (1)

In a densely-connected network, nevertheless, all feature outputs are concate-
nated in a feed-forward manner, i.e.,

xl = Hl

(
[xl−1,xl−2, . . . ,x0]

)
, (2)

where [. . .] denotes a concatenation operation.
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In the present work, as in HyperDenseNet [9,11], the outputs from previous
layers in different streams are also concatenated to form the input of subsequent
layers. This connectivity yields a much more powerful feature representation
than early or late fusion strategies in a multi-modal context, as the network is
capable of learning more complex relationships between the different modalities
within and in-between all levels of abstraction. For simplicity, let us consider
the scenario with only two modalities. Let x1

l and x2
l denote the outputs of the

lth layer in streams 1 and 2, respectively. Then, the output of the lth layer in a
given stream s can be defined as

xs
l = Hs

l

(
[x1

l−1,x
2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0]

)
. (3)

Furthermore, recent works have found that shuffling and interleaving com-
plete feature maps (or single feature maps elements) in a CNN can improve its
performance, as it serves as a strong regularizer [7,28,30]. Inspired by this, we
concatenate feature maps in a different order for each branch and layer, where
the output of the lth layer now becomes

xs
l = Hs

l

(
πs
l ([x

1
l−1,x

2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0])

)
, (4)

with πs
l being a function that permutes the feature maps given as input. Thus,

in the case of two image modalities, the outputs of the lth layers in both streams
can be defined as

x1
l = H1

l

(
[x1

l−1,x
2
l−1,x

1
l−2,x

2
l−2, . . . ,x

1
0,x

2
0]

)

x2
l = H2

l

(
[x2

l−1,x
1
l−1,x

2
l−2,x

1
l−2, . . . ,x

2
0,x

1
0])

A detailed example of the adopted hyper-dense connectivity for the case of
two image modalities is depicted in Fig. 4. This figure shows a section (only three
levels) of a deep CNN where the two image modalities are processed in separated
paths and modules are linked in a hyper-dense fashion.

3 Materials

3.1 Dataset

The provided IVD dataset is composed of 16 3D multi-modal MRI data sets of at
least 7 IVDs of the lower spine, collected from 8 subjects in two different stages.
Each MRI data set contains four aligned high-resolution 3D volumes: in-phase,
opposed-phase, fat and water images. In addition to the MRI images, correspond-
ing reference manual segmentations were provided. More detailed information
about the dataset can be found at the IVD website1.

1 https://ivdm3seg.weebly.com.

https://ivdm3seg.weebly.com
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Fig. 4. Detailed version of a section of the proposed dense connectivity in multi-modal
scenarios. For simplicity, two image modalities (in orange and in green) are considered
in this example. While boxes represent a complete convolutional block of the proposed
type, arrows indicate the connectivity pattern between modules. (Color figure online)

3.2 Evaluation Metrics

Even though segmentation is performed in a 2D-slice fashion, once all the 2D
sagittal slices for a given patient have been segmented, they are stacked to
reconstruct the original 3D volume. The metrics introduced below are there-
fore employed to evaluate performance on the whole 3D image. While the first
metric is used to evaluate the segmentation accuracy, the second one serves as
a measure of localization error.
Dice Similarity Coefficient (DSC). We first evaluate performance using
Dice similarity coefficient (DSC), which compares volumes based on their over-
lap. Let Vref and Vauto be the reference and automatic segmentations of a given
tissue class and for a given subject, respectively. The DSC for this subject is
defined as

DSC
(
Vref , Vauto

)
=

2 | Vref ∩ Vauto |
| Vref | + | Vauto | (5)
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Localization Distance. To evaluate the localization error, we compute the 3D
barycenters of ground-truth and predicted IVDs, and measure their Euclidean
distance. Results are given in voxels.

3.3 Implementation Details

Baselines. Several architectures are used to demonstrate the effectiveness of
the proposed network. As baselines, we consider two UNet versions, the first
one with early fusion and the other with late fusion. In early fusion, following
the procedure employed in most works, all MRI image modalities are merged
into a single input which is processed through a unique path. In contrast, for
late fusion, each MRI modality is processed in a separate stream, and learned
features of different modalities are fused in a later stage. In both early and late
fusion, the extended inception module of Fig. 3 is employed, however asymmetric
convolutions are replaced by standard n × n convolutions in these baselines.
Another difference with respect to standard UNet is that feature maps from
skip connections are summed before being fed into convolutional modules of the
decoding path, instead of being concatenated.

Proposed Network. In terms of architecture, the proposed IVD-Net network
and the one employed with late fusion strategy are very similar. As introduced
in Sect. 2.3, the main difference is that feature maps from previous layers and
different paths are concatenated and fed into the subsequent layers, following Eq.
(4). Details of the resulting architecture are provided in Table 1. The first version
of the proposed network employs the same convolutional module as the two
baselines, whereas the second version adopts asymmetric convolutions instead
(Fig. 3).

Training. We employed Adam optimizer to train the proposed architectures,
with β1 = 0.9 and β2 = 0.99. Training converged after 200 epochs with an
initial learning rate of 1×10−4, reduced by half after 100 epochs. Four images
were used in each mini-batch. The same values for all hyper-parameters were
employed across all architectures. Implementation of the analyzed architectures
was done in PyTorch and experiments were performed on an NVidia TITAN XP
GPU with 16 GBs RAM. While training was done in around 5 h, inference on
a whole 3D volume took in 2–3 s on average. Images were normalized between
0 and 1 and no other pre- or post-processing steps were used. Furthermore, no
data augmentation was employed to boost the performance of the networks. For
all architectures, we used the four MRI modalities provided by the organizers as
input. While 13 scans were employed for training 3 scans were used for validation.

4 Results

Quantitative results obtained with the different architectures are reported in
Table 2. First, we observe that by simply fusing all image modalities at the
input of the network provides the lowest mean DSC value. Adopting a late
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Table 1. Layer placement of the proposed hyper-dense connected UNet.

Name HyperDense connectivity

Feat maps (input) Feat maps (output)

Encoding
Path
(each modality)

Conv Layer 1 1 × 256 × 256 32 × 256 × 256

Max-pooling 1 32 × 256 × 256 32 × 128 × 128

Layer 2 128 × 128 × 128 64 × 128 × 128

Max-pooling 2 64 × 128 × 128 64 × 64 × 64

Layer 3 384 × 64 × 64 128 × 64 × 64

Max-pooling 3 128 × 64 × 64 128 × 32 × 32

Layer 4 896 × 32 × 32 256 × 32 × 32

Max-pooling 4 256 × 32 × 32 256 × 16 × 16

Bridge 1920 × 16 × 16 512 × 16 × 16

Decoding
Path

Up-sample 1 512 × 16 × 16 256 × 32 × 32

Layer 5 256 × 32 × 32 256 × 32 × 32

Up-sample 2 256 × 32 × 32 128 × 64 × 64

Layer 6 128 × 64 × 64 128 × 64 × 64

Up-sample 3 128 × 64 × 64 64 × 128 × 128

Layer 7 64 × 128 × 128 64 × 128 × 128

Up-sample 4 64 × 128 × 128 32 × 256 × 256

Layer 8 32 × 256 × 256 32 × 256 × 256

Softmax layer 32 × 256 × 256 2 × 256 × 256

fusion strategy instead of early fusion achieves a mean DSC of 0.9086. Moreover,
we see that our hyper-densely connected IVD-Net architecture brings a boost
in performance compared to the more ‘naive’ early or late fusion strategies.
When employing the extended module with standard convolutions (Fig. 3), we
obtained a mean DSC of 0.9162, whereas the use of asymmetric convolutions
in the proposed module provided the best performance in terms of mean DSC.
These results are in line with values of localization distance, where the proposed
architecture outperforms simpler fusion strategies. Nevertheless, in this case,
the proposed network integrating standard convolutions slightly outperforms
the architecture with asymmetric convolutions.

Table 2. Results on validation subjects obtained by the different architectures.

Architecture DSC Localization distance (voxels)

Baseline EarlyFusion 0.8981 ± 0.0293 0.7701 ± 1.5872

Baseline LateFusion 0.9086 ± 0.0339 0.7400 ± 1.6009

IVD-Net 0.9162 ± 0.0192 0.4145 ± 0.2698

IVD-Net (asym) 0.9191 ± 0.0179 0.4470 ± 0.2641
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Qualitative evaluation of the proposed IVD-Net architecture is assessed in
Figs. 5 and 6. First, ground truth and automatic contours obtained with IVD-
Net are depicted on the sagittal plane in Fig. 5 for two validation subjects. Then,
3D rendered volumes for the ground truth and CNN segmentation are compared
in Fig. 6. In both figures, we can see that the segmentation obtained by our
architecture is very close to the manual annotated data, which aligns with the
quantitative results in Table 2.

Fig. 5. Visual results for two subjects of the validation set. While the area in red
represents the ground truth, bluish contours depict the automatic contours by our
IVD-Net (asym) method in the different image modalities. (Color figure online)

5 Discussion

We have presented an architecture called IVD-Net that can efficiently leverage
information from multiple image modalities for inter-vertebral disc segmenta-
tion. Following recent research on multi-modal image segmentation [8,11], our
architecture adopts dense connectivity between multiple paths in the encoding
section, each of them processing single modalities. Specifically, convolutional lay-
ers in any stream receive as input the features maps of all previous layers in the
same stream as well as from other streams.
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Fig. 6. 3D visualization of the ground truth, segmentation achieved by the proposed
network and the combination of both for a subject on the validation set.

We have demonstrated that naive feature fusion strategies, such as simply
merging information at an early or late stage, may be insufficient to fully exploit
information in multi-modal scenarios. By allowing the network to learn how to
combine learned features from separate modalities, it can capture more com-
plex relationships between multiple sources. This improves its representation
power, which ultimately results in a boost on performance. These findings are in
line with recent works on multi-modal image segmentation [9,11,19]. For exam-
ple, high-level features were combined at a late stage in [19], outperforming an
early fusion strategy in the context of infant brain segmentation. In a recent
work, we demonstrated that adopting more complex fusion techniques, referred
to as hyper-dense connectivity, surpasses the performance of other features fusion
strategies in the challenging tasks of infant and adult brain tissue segmentation
[9,11].

Even though considering 3D context typically helps improve performance, we
treated each volume as a stack of 2D sagittal slices (see Fig. 7). The main reason
for this is that manual segmentations provided in this challenge were performed
slice-wise in the sagittal plane. Thus, when looking at these annotations in the
axial plane, a sharp contour is observed. As CNNs will generally provide a smooth
contour, we assumed that tackling this problem as a 3D task would have led to
lower values during evaluation. Furthermore, IVD localization is assessed after
volumetric segmentation is done. This means that the process of localization
itself is not optimized during training. A possible solution to overcome this
limitation in the future might be to investigate multi-task architectures that
can be trained end-to-end, so that both localization and segmentation tasks can
be jointly optimized.
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Fig. 7. Examples of manual annotations from the training set seen on axial slices.
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