
Chapter 7
Model-Based Round-Trip Engineering
and Testing of Evolving Software Product
Lines

Malte Lochau, Dennis Reuling, Johannes Bürdek, Timo Kehrer, Sascha Lity,
Andy Schürr, and Udo Kelter

Modern software systems tend to be more and more long living and, there-
fore, have to undergo continuous evolution to cope with new, and often initially
unforeseen, user requirements, application contexts, and execution platforms. In
practice, the necessary changes applied to respective design-, implementation-, and
quality-assurance artefacts are often performed in an ad hoc, and mostly manually
conducted, manner, thus lacking proper documentation, consistency checks among
related artefacts, and systematic quality-assurance strategies.

These issues become even more challenging in case of variant-rich software sys-
tems such as software product lines, where even small changes may (intentionally or

M. Lochau (�) · J. Bürdek · A. Schürr
Technische Universität Darmstadt, Fachbereich Elektrotechnik und Informationstechnik,
Fachgebiet Echtzeitsysteme, Darmstadt, Germany
e-mail: malte.lochau@es.tu-darmstadt.de; johannes.buerdek@es.tu-darmstadt.de; andy.
schuerr@es.tu-darmstadt.de

D. Reuling
Praktische Informatik/Softwaretechnik, Fachbereich Elektrotechnik und Informatik, Universität -
GH - Siegen, Siegen, Germany
e-mail: dreuling@informatik.uni-siegen.de

T. Kehrer
Institut für Informatik, Humboldt-Universität zu Berlin, Berlin, Germany
e-mail: timo.kehrer@informatik.hu-berlin.de

S. Lity
Institut für Softwaretechnik und Fahrzeuginformatik, Technische Universität Braunschweig,
Informatikzentrum, Braunschweig, Germany
e-mail: lity@isf.cs.tu-bs.de

U. Kelter
Praktische Informatik/Softwaretechnik, Fachbereich Elektrotechnik und Informatik, Universität -
GH - Siegen, Siegen, Germany
e-mail: kelter@informatik.uni-siegen.de

© The Author(s) 2019
R. Reussner et al. (eds.), Managed Software Evolution,
https://doi.org/10.1007/978-3-030-13499-0_7

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13499-0_7&domain=pdf
mailto:malte.lochau@es.tu-darmstadt.de
mailto:johannes.buerdek@es.tu-darmstadt.de
mailto:andy.schuerr@es.tu-darmstadt.de
mailto:andy.schuerr@es.tu-darmstadt.de
mailto:dreuling@informatik.uni-siegen.de
mailto:timo.kehrer@informatik.hu-berlin.de
mailto:lity@isf.cs.tu-bs.de
mailto:kelter@informatik.uni-siegen.de
https://doi.org/10.1007/978-3-030-13499-0_7

142 M. Lochau et al.

erroneously) affect a high number of similar product variants simultaneously. Again,
the idealistic assumption that a software product line is designed, implemented, and
assured in its entirety from scratch prior to the initial delivery any individual product
variant to costumers is often unrealistic in practice. In particular, three (potentially
concurrently) evolving sets of related product-line artefacts have to be taken into
account:

1. A product-line architecture typically consists of a configuration model, con-
figurable product-line implementation source code, as well as further design-
and quality-assurance artefacts from which respective variants are automatically
derivable for a given product configuration.

2. A product family consists of materialised software variants corresponding to
valid product configurations of the product line as delivered to the customers.

3. A set of product-specific quality-assurance artefacts (e.g. test cases) that permit
sufficient assurance of every software variants of the product line prior to their
delivery and initial execution by the customer.

As a consequence, during product-line evolution and co-evolution scenarios, devel-
opers are faced with multiple diverse yet highly interrelated notions of artefact-
consistency preservation, namely consistency between (1) product-line architecture
artefacts and (2) respective software variants of the product family, as well as
consistency between (3) configuration-specific quality-assurance artefacts and (2)
corresponding software variants.

In this chapter, we describe a model-based framework for systematic and (semi-
)automatic round-trip engineering of continuously evolving software product lines
incorporating all possible evolution and co-evolution scenarios of product-line
engineering and quality-assurance artefacts. To this end, we lift the corresponding
forward- and re-engineering scenarios known from classical round-trip engineering
to product-line engineering, respectively. In particular, we consider a product-line
architecture to consist of a feature diagram serving as a configuration model,
a STATECHART model superimposing all product-variant behaviours into one
behavioural product-line specification, and a preprocessor-based C-code product-
line implementation comprising all software-variant implementations. As quality-
assurance methodology, we consider model-based testing, where test suites are
automatically generated for product-line implementations with respect to a given
set of test goals on the corresponding product-line STATECHART test model, to
be covered on all derivable software variants. Our methodology combines two key
techniques from model-based software engineering, namely:

• Model differencing and model merging for automatically comparing and inte-
grating software variants and versions in a systematic way into one unified yet
evolving product-line representation, and

• Knowledge-carrying software for integrating information about variant- and
version-specific software artefacts into engineering and quality-assurance pro-
cesses at different levels of abstraction

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 143

This combination ensures consistency of interrelated engineering- and quality-
assurance artefacts throughout the entire life cycle of evolving product lines. In
addition, the approach facilitates the application of efficient family-based analysis
strategies, initially developed for software variants already organised in product
lines, to both variant- and version-rich software systems, as well as arbitrary
combinations thereof.

To summarise, the contribution of this chapter consists of an integrated approach
that combines different recent techniques and tools from model-based software
engineering and software product-line engineering into one novel conceptual
framework for product-line round-trip engineering. The methodology is illustrated
by a running example by means of an extract from the extended Pick and Place
Unit (xPPU) study, and we further describe available tool support for the different
techniques.

This chapter is organised as follows. In Sect. 7.1, we first describe the necessary
background on product-line engineering and model-based testing and introduce a
running example by means of an extract from the xPPU case study. Based on these
foundations, we summarise the challenges in round-trip engineering and model-
based testing for quality assurance of evolving software product lines, as addressed
in the remainder of the chapter. The main part of this chapter is separated into
two consecutive sub-parts: in Sect. 7.2, we first describe evolution scenarios of the
different engineering and quality-assurance artefacts separately and, in Sect. 7.3,
we then explain co-evolution scenarios to ensure consistency among concurrently
evolved yet interrelated artefacts. Section 7.4 concludes and gives a sketch of a road
map for future research. Finally, Sect. 7.5 summarises recent publications describing
in detail the different approaches summarised in this chapter.

7.1 Foundations

In this section, we first describe the necessary background and basic notions from
the research fields of model-based software engineering and testing, especially in the
context of software product lines, as used throughout this chapter. Based on these
concepts, we describe the major challenges in handling evolution and co-evolution
scenarios in product-line engineering and model-based testing, in order to facilitate
a comprehensive methodology to support model-based round-trip engineering and
quality assurance of evolving software product lines.

7.1.1 Model-Based Software Development and Testing

As our running example, we consider an excerpt from the extended Pick and Place
Unit (xPPU) case study [Vog+14b], which is used in the following to illustrate the
proposed methodology. For a detailed description of the xPPU case study, we refer
the interested reader to Sect. 4.3.

144 M. Lochau et al.

Fig. 7.1 (a) xPPU evolution scenario. (b) Overview of xPPU evolution steps

Extended Pick and Place Unit (xPPU) The xPPU is a bench-scale demonstra-
tor for software systems in the automation-engineering domain. As depicted in
Fig. 7.1a, the xPPU is a configurable system consisting of several different hardware
components for handling and transporting Workpieces (WP) with cylindrical shapes
(e.g. bottles). In this way, the xPPU is adaptable to different application scenarios. In
particular, the xPPU is able to handle three types of WP: light plastic, dark plastic,
and metal. To this end, an xPPU comprises a Stack working as WP input storage, a
Ramp working as a WP output storage, a Stamp for labelling WP, and a Crane for
transporting WP between working positions.

The PLC-based control software of the xPPU has been developed in a model-
based way, by employing a combination of structural and behavioural modelling
languages as defined by the EN 61131-3 standard for automation-engineering
software [Gro11]. Model-based development of automation-control software helps
to cope with inherent complexity and mission criticality, as apparent in this and sim-
ilar application domains, by facilitating automated generation of high-quality and
platform-specific implementation code, as well as model-based quality-assurance
techniques such as model-based testing.

Model-Based Testing Model-based testing is a widely used black-box testing
technique that abstracts from internal implementation details of software com-
ponents or -systems under test [UL07]. To this end, a test model serves as a
behavioural specification of the expected behaviour of the (potentially inaccessible)
implementation code to be tested. Behavioural conformance of an implementation
to a given test model is investigated by experimental execution scenarios (i.e. test
cases). Hence, test models are utilised in two ways during model-based testing:

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 145

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected
&& !SensorMetal
&& SensorLight]
/WPPushedOut = true;
WPMaterial = 3

[MatSensorDetected
&& !SensorMetal
&& !SensorLight]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
&& SensorMetal]
/WPPushedOut = true;
WPMaterial = 1;

[PressureAdjStatus]
/StatusLampBlue = true;
slideSort()

t0

t1

t2

t3

t8 t9[!PressureAdjStatus &&
!(Cylinder.PushedOut &&
!MatSensorDetected)]
/ slideSort()

(a) (b)

Fig. 7.2 Extract from a xPPU variant. (a) Test model. (b) Code

• The test model is used as input for testing tools for automatically generating test
cases, executing those test cases on the system under test, and evaluating test-
execution results with respect to the expected behaviour (test oracle) as stated by
the test model.

• The test model is used to measure adequacy of an (either already existing or pro-
actively generated) set of test cases (i.e. a test suite). For instance, a coverage
criterion may be applied to identify a set of test goals in the test model, each to
be satisfied by at least one test case of the test suite.

Figure 7.2 shows an extract from the test-model specification of the xPPU in
terms of a STATECHART model [UL07]. STATECHARTS (and respective dialects)
offer a widely used visual modelling language that constitutes a particularly
well-established specification formalism for concisely capturing functional spec-
ifications of reactive control-software systems at system and component levels.
STATECHARTS are also widely applicable as a basis for automated generation of
implementation code, as well as for model-based test-case generation and test-
coverage measurement [UL07, Rös+14, Loc+14].

The xPPU behaviour, as abstractly specified in the STATECHART model in
Fig. 7.2, constitutes handling of three different types of WP: light plastic, dark
plastic, and metal. Each of those types of WP are transported from the Stack via
the Crane to the Stamp. Light WP are stamped using adjustable pressure, whereas
dark WP and metal WP are stamped using standard pressure. To this end, variable
PressureAdjStatus determines whether adjustable pressure or standard pressure is
used based on the material of the incoming WP. Finally, all WPs are transported
to the Slide and sorted according to their specific type. The behaviour specified in
the test model in Fig. 7.2a corresponds to one particular implementation variant of
the xPPU, as shown in the (simplified) code-listing excerpt in Fig. 7.2b. Whenever
a new WP arrives in the xPPU (see Line 2), the Cylinder pulls it from the Stack (see
Line 3). Lines 4–11 implement the control logic for identifying and handling the
three different types of WP, as described above.

146 M. Lochau et al.

When using STATECHARTS as test models, test cases correspond to valid and
complete transition paths in the state-transition graph (i.e. paths corresponding to
valid executions from the initial state to a final state). A test-case execution thus
defines a sequence of input stimuli to be injected into the system under test, together
with a corresponding sequence of observable output behaviours expected from the
system under test for those inputs as given by the transition labels in the test-model
specification. Similar to code-coverage criteria, coverage criteria for STATECHART

models aim to investigate different possible control flows (e.g. state and transition
coverage), as well as data-flow aspects (e.g. def-use coverage) of the implementation
under test [UL07].

For example, applying transition coverage to the xPPU test model in Fig. 7.2
ensures that a test suite contains at least one test case for investigating the correct
handling of each type of WP. The code parts corresponding to the three test goals
t1, t2, t3 correspond to the three transitions in the test model (see Fig. 7.2a) and
are marked with respective code labels (see Fig. 7.2b). For instance, a test-case
execution examining the handling of light plastic WP with adjustable pressure
requires as expected output the corresponding status lamp to be switched on (test
goal t9 in Line 14). After that, all types of WP are transported to the slide, where
they are finally sorted according to their specific type (test goals t9 and t8 in Line
14 and 16, respectively).

To summarise, a test suite achieving complete transition coverage on the xPPU
test model in Fig. 7.2a requires at least three test cases, for instance:

• Test case tc1 := (t0, t1, t8) for handling metal WP
• Test case tc2 := (t0, t2, t9) for handling light plastic WP using adjustable

pressure, and
• Test case tc3 := (t0, t3, t8) for handling dark plastic WP

Product Families Besides the particular xPPU variant described so far, the mod-
ular architecture of the xPPU supports many further variants in order to adapt to
different environments, platforms, and customer needs. Such a collection of similar
yet well-distinguished variants of the same core product is frequently called a
product family [Ape+13]. For presentation purposes, we limit our considerations
in the following to two further variants from the xPPU product family, referred to
as v2 and v3, and the previously described variant is denoted as v1, respectively.
In contrast to variant v1, variant v2 has reduced functionality; namely, it cannot
handle light plastic WP differently and always uses standard pressure for stamping.
Figure 7.3 shows the corresponding extract from the test model and the respective
implementation code of variant v2. Here, the handling of metal WP is equal to that
of variant v1, whereas the handling of light plastic and dark plastic are the same in
v2, contrary to different behaviours for each plastic WP in case of variant v1. Hence,
a test suite achieving complete transition coverage on the test model of variant v2
requires at least two test cases, for instance

• test case tc1 := (t0, t1, t8) may be (re-)used from the test suite of variant v1,
whereas

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 147

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected
&& !SensorMetal]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
&& SensorMetal]
/WPPushedOut = true;
WPMaterial = 1;

t0

t1

t4

t8
[!PressureAdjStatus && …]
/ slideSort()

(a) (b)

Fig. 7.3 A second xPPU variant. (a) Test model. (b) Code

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected]
/WPPushedOut = true;

t0

t8

t5

[!PressureAdjStatus && …]
/ slideSort()

(a) (b)

Fig. 7.4 A third xPPU variant. (a) Test model. (b) Code

• test case tc4 := (t0, t4, t8) is a new test case, additionally required to examine
equal handling of light plastic and dark plastic WPs in variant v2.

In contrast to the reusable test case t1, the other test cases t2, t3 derived for testing
variant v1 are not applicable for testing variant v2.

Finally, variant v3 constitutes a very basic xPPU, which is only able to handle
metal WP and which has no Stamp (see Fig. 7.4). As a consequence, for testing
variant v3 (again, aiming at transition coverage of the respective test model of
variant v3), only one single test case, for instance

• test case tc5 := (t0, t5, t8)

is required, which differs from all the previously derived test cases due to the
essential behavioural differences of variant v3, as compared with variant v1 and
v2. Next, we describe how principles from product-line engineering can help to
systematically exploit commonality among the members of a product family during
both software development and quality assurance (e.g. for reasoning about test-case
reuse among variants).

148 M. Lochau et al.

7.1.2 Model-Based Product-Line Engineering and Testing

Software product line engineering (SPLE) is an emerging methodology that has
been successfully applied in various industrial application domains [Wei08]. SPLE
offers a practicable possibility to handle the increasing variability during engi-
neering and quality assurance of automation-control software, as described for the
xPPU example. To this end, SPLE aims at systematically exploiting knowledge
about commonality and variability among all kinds of engineering artefacts (e.g.
design- and test models, implementation code, and test cases) in a family of
similar products [PBL05a, CN01]. An explicit specification of common and variable
parts among the different variants is based on their supported features, denoting
configuration parameters (i.e. user-visible characteristics of products) in the problem
space of a product family. For automated derivation of product variants complying
to a given configuration, features are further related to software building blocks by
means of reusable engineering artefacts in the solution space, being composable into
respective implementation variants. In the following, we first describe the idealistic
view on product-line engineering based on the assumption that the whole product
line is developed from scratch before finally being delivered to the customer.

Problem Space For the problem-space specification, SPLE usually employs fea-
ture models to describe the set of available features, together with constraints among
those features to be satisfied by a feature selection to constitute a valid product
configuration. Figure 7.5a shows the feature model for the xPPU product line
using the visual Feature Oriented Domain Analysis (FODA) notation (frequently
called feature diagrams) [Kan+90a]. A feature model organises the set of supported
features as nodes in a tree-like hierarchy, inducing dependencies of child features to
its parent features (i.e. the selection of a feature requires the selection of its parent
feature in a valid configuration). Singleton child features are either mandatory
(i.e. they must be selected whenever their parent features are selected in a valid
configuration) or optional. For instance, a valid xPPU configuration must contain
a Crane device and at least one Slide and must handle at least one type of Work
Piece, whereas the Stamp is optional. Besides singleton child features, mutually

Fig. 7.5 Extract from the xPPU feature model and valid configurations. (a) xPPU feature model.
(b) xPPU variants

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 149

dependent sibling child features may be assembled into feature groups, being
either or groups (i.e. at least one of its features must be selected if the parent
feature is selected), or alternative groups (i.e. exactly one feature must be selected).
For instance, a Crane either uses Standard Routing,or Extended Routing, whereas
the set of types of supported Plastic WP may include Dark, Light, as well as
both in combination. Finally, further dependencies between hierarchically unrelated
features can be expressed using cross-tree constraints (e.g. Work Pieces made
of Light Plastic require a Stamp with Adaptive Pressure). The set of all valid
configurations according to the xPPU feature model is given in Fig. 7.5b. Please note
that—due to space limitations—we omitted the second half of configurations, which
only differs from the given ones by having ERouting selected instead of SRouting.
Further note that the first three configurations correspond to the xPPU variants v1,
v2, and v3, as described above.

In the next step of SPLE, a mapping of configuration-specific solution-space
artefacts onto corresponding feature selections is defined, in order to relate con-
figurations to respective parts in configurable test models and implementation code
of the product line.

Solution Space Features not only denote configuration parameters in the problem
space but also refer to variation points within engineering artefacts in the solution
space, potentially at all levels of abstraction [Ape+13]. Here, we use an annotation-
based approach for a product-line representation of a product family, by integrating
variability information into solution-space artefacts (i.e. test models, implementa-
tion code, and test artefacts).

Presence Conditions for Variant-Knowledge At the level of design- and test
models like STATECHARTS, variant-specific model elements (here: transitions)
are equipped with annotations over propositional feature expressions, representing
presence conditions for well-defined variation points in the solution space. Those
model templates therefore virtually include (or superimpose) any possible model
variant of the product line into one model, constituting a so-called 150% model.
Hence, a configuration-specific model variant (i.e. a 100% model) can be obtained
from a 150% model by projecting only those model elements whose presence con-
ditions are satisfied by the respective feature selection of the configuration [CE00].
Figure 7.6a depicts the 150% test model for the xPPU product line, where the
respective test-model variants for the configurations v1, v2, and v3 correspond to
the model variants, as described above.

A similar principle is frequently used in practice for integrating variation points
into source-code artefacts of product-line implementations: conditional-compilation
directives such as #if macro, as provided by the C preprocessor, allow for marking
variable code parts (variation points), again, by using propositional formulae over
(Boolean) feature variables as presence conditions [Käas+11]. Figure 7.6b depicts
the variable implementation source code of the xPPU example corresponding to the
aforementioned 150% test-model extract.

150 M. Lochau et al.

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected
&& !SensorMetal
&& SensorLight]
/WPPushedOut = true;
WPMaterial = 3

[MatSensorDetected
&& !SensorMetal
&& !SensorLight]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
&& SensorMetal]
/WPPushedOut = true;
WPMaterial = 1;

[PressureAdjStatus]
/StatusLampBlue = true;
slideSort()

[MatSensorDetected
&& !SensorMetal]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
/WPPushedOut = true;

APressure

SPressure ||
APressure

APressure

SPressure

!SPressure &&
!APressure

t0

t1 t2

t3

t4
t5

t8

APressuret9

[!PressureAdjStatus &&
!(Cylinder.PushedOut &&
!MatSensorDetected)]
/ slideSort()

(a) (b)

Fig. 7.6 150% xPPU Test model. (a) Test model. (b) Code

Family-Based Product-Line Testing The additional knowledge in a product-line
representation provided by the feature model and corresponding feature mappings
onto a 150% test model provides opportunities for improving the efficiency of
quality assurance of product families. To this end, family-based product-line
analysis strategies aim at analysing whole product families at once instead of
using a variant-by-variant approach [Thü+14a]. In particular, family-based test-
suite generation potentially reduces the overall number of test-generator runs
and therefore the number of required test cases for covering all members of a
product family, as compared to considering every variant one by one, as described
above [Bür+15a]. For this, the additional information provided by the presence
conditions in 150% test-model specifications supports automated reasoning about
(re-)usability of derived test cases among different variants. To do so, the set of
presence conditions attached to those transitions located on the path being traversed
in the test model by a test case for reaching a particular test goals is conjugated
to form a presence condition for that particular test case (i.e. a so-called Software
product line (SPL) test case). The presence condition of an SPL test case, therefore,
characterises exactly the set of configurations for which that test case is applicable.
Based on this notion, we call a set of SPL test cases an SPL test suite, and an SPL test
suite is further called complete if for each test goal in the 150% test model (being
selected by a given coverage criterion as usual) and for each test-model variant there
exists at least one SPL test case covering that test goal and whose presence condition
is satisfied by the configuration of that variant (see [Bür+15a, Loc+14] for a precise
definition).

As an example, applying family-based SPL test-suite generation to the 150% test
model of the xPPU example (see Fig. 7.6) for transition coverage may result in the
following complete SPL test suite:

• SPL test case tc1 := (t0, t1, t8); [SPressure ‖ APressure]
• SPL test case tc2 := (t0, t2, t9); [APressure]
• SPL test case tc3 := (t0, t3, t8); [APressure]
• SPL test case tc4 := (t0, t4, t8); [SPressure], and
• SPL test case tc5 := (t0, t5, t8) [!SPressure&& !APressure].

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 151

Here, the feature expressions given in brackets denote the respective presence
conditions (i.e. test case t1 is applicable to the variants v1 and v2; test cases t2,
t3, t4 are applicable to variant v1; and test case t5 is applicable to variant v3).
Hence, the resulting test cases exactly correspond to those previously derived by
using a variant-by-variant approach but now carry additional information about
the respective implementation variants of the xPPU product line to which they are
applicable. Hence, test cases being reusable among different product variants are
generated only once using a family-based approach, thus reducing the number of
(redundant) test-generator calls, as compared to a variant-by-variant approach.

7.1.3 Product-Line Round-Trip Engineering and Artefact
Co-evolution

In practice, those idealistic 150% product-line representations, on which family-
based analysis strategies heavily rely, are usually not—or only partially—available.
This is due to the fact that product lines are, in most cases, not developed pro-
actively from scratch in a forward-engineering manner but rather continuously
evolve over time and therefore comprise not only variability in space (by means
of simultaneously existing variants) but also variability over time (by means of
sequences of subsequent versions). Hence, most product lines are developed re-
actively (i.e. by starting with an initial minimum product line comprising a small
set of core variants, which is then continuously revised throughout their life cycle to
adapt to ever-changing needs) or in an extractive way (i.e. by reverse engineering a
product-line representation from an existing product family) or by combining both
styles [Ape+13].

For instance, Fig. 7.1a illustrates a possible evolution scenario of the xPPU
product line: the core xPPU initially comprises a Stack with multiple Slides for
Sorting WP according to their types, as well as a Crane and a Stamp. Later on, in
evolution scenario 12, an alternative Standard Ramp without Sorting will become
available. As a consequence, all product-line artefacts (potentially) affected by those
changes have to be adapted to support the new variants, namely the feature model,
the 150% design- and test-model specification, the variable implementation code
artefacts, the respective model- and implementation variants, and the accompanying
model-based SPL testing artefacts.

Figure 7.7a provides an overview of the different model-based product-line engi-
neering and testing artefacts under consideration, together with possible evolution
step and resulting co-evolution scenarios (which will be referred to as 1©– 6© in
Sect. 7.3) corresponding to respective forward- and re-engineering steps potentially
arising during product-line round-trip engineering. To summarise, we consider three
different kinds of artefacts and use the following terminology for this different
artefacts throughout this article.

152 M. Lochau et al.

So�ware Product Line

#ifdef
.c

So�ware Variants

.c
.c

.c…

Round-Trip
Engineering

1

2

3

4

5

6

150%
Test Model

SPL Test Ar�facts

SPL Test Suite
SPL Test Case

SPL Test Case

SPL Test Case

Test Goal

Test Goal

Test Goal

… …

Test
Model

Test
Model

Test
Model …

(a)

.c 100% 125%

150% 175%
Variants

Versions
.c .c …

Product Revisions

.c.c
.c

Product Family

.c.c
.c

.c.c
.c …

Evolving SPL

(b)

Fig. 7.7 Overview of SPL evolution. (a) Product-line round-trip engineering. (b) Dimensions of
variability

• Software Product Line Artefacts. The problem-space artefacts of product lines
include the feature model, given as a feature diagram in FODA notation; the
solution-space artefacts consists of the 150% implementation, given as C code
with preprocessor macros over feature conditions, as well as a 150% test-model
specification, given as STATECHART models annotated with feature conditions.

• Software Variants. The set of software variants include variant implementations
given as (plain) C code, as well as corresponding test-model variants given
as (plain) STATECHART models, each of them related to a particular product
configuration of the product line.

• Product-Line Testing Artefacts. The set of model-based testing artefacts
include the set of test goals on the 150% test model, as well as a complete SPL
test suite with respect to the set of test goals.

Throughout the life cycle of a product-line, all three kinds of artefacts potentially
undergo continuous evolution in terms of changes imposing revisions of artefacts
and therefore new versions of the entire product line. Due to the complex inter-
relations between the different kinds of artefacts, an accompanying co-evolution
of other artefacts is required in order to ensure artefact consistency in handling
(potentially concurrent) evolution steps at any level throughout the entire life cycle
of the product line. Concerning model-based engineering and quality assurance of
evolving software product lines using model-based testing in particular, the major
challenge to be solved can be summarised as follows:

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 153

Every (supported) version of all valid software variants of an evolving product line has to
be sufficiently (re-)tested (covered) prior to its (re-)delivery to the customer and/or its initial
execution or restart.

As illustrated in Fig. 7.7b, we therefore distinguish three dimensions of integrated
representations of artefact variability in evolving software product lines based on the
initial artefact (i.e. 100% representation), namely:

• All existing versions of the same artefact in a 125% presentation
• All existing variants of the same artefact in a 150% representation, as well as
• All existing variants and versions of the same artefact in a 175% representation

In the following, we describe in detail the different possible scenarios of product-
line evolution (Sect. 7.2) and co-evolution (Sect. 7.3), as depicted in Fig. 7.7a.

7.2 Evolution

In this section, we discuss different possible evolution scenarios of model-based
product lines and describe techniques to properly handle the impact of those
evolution scenarios on the different kinds of product-line artefacts.

7.2.1 Evolution of Software Variants

Under idealistic circumstances, evolution of software product lines would be
conducted in a properly preplanned, offline, and forward manner as follows:

• Step 1: updating the feature model
• Step 2: adapting the solution-space and model-based testing artefacts and the

corresponding feature mappings affected by the update
• Step 3: deriving updates of software variants for those product configurations

affected by the changes, and
• Step 4: (re-)generating and (re-)executing test cases required for ensuring the

correctness of the changes on the affected software variants

In practice, evolution usually takes place at the level of particular variants rather
than at the level of the whole product-line representation [Nev+15]. For instance,
a clone-and-own approach is frequently used to make changes to a particular
model-/program variant and then to propagate those changes by copying and
pasting/replacing the affected model/code parts in other variants for which the
change is also relevant [Ape+13]. However, if not conducted carefully, such an ad
hoc approach is inherently prone to causing continuous decay of the overall product-
line structure (e.g. causing either redundant-code or missing-code anomalies in a

154 M. Lochau et al.

Version ≥ 2
t6

ErrorReac�on

t8[Cylinder.PushedOut &&
!MatSensorDetected]
/WPPushedOut = false;

/WPStockEmpty = true;
t7

entry / ErrorSet
do / Cylinder.pullIn()

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected
&& !SensorMetal]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
&& SensorMetal]
/WPPushedOut = true;
WPMaterial = 1;

t0

t1

t4

[!PressureAdjStatus
&& …]
/ slideSort()

(a) (b)

Fig. 7.8 Test model of variant 2 in version 2. (a) Test model. (b) Code

particular variant), which, in the worst case, may lead to inconsistent and erroneous
variant implementations and/or quality-assurance artefacts.

Figure 7.1b summarises the evolution steps of the xPPU product line considered
in the following examples. Consider variants v1, v2, and v3, as described in the
previous section, to constitute the initial version 1 of the xPPU product line. In a
first evolution step, leading to version 2 of the xPPU product line, a revision of the
xPPU functionality takes place, resulting in adding error-handling capabilities. To
this end, a new model fragment, comprising the additional state ErrorReaction and
corresponding transitions for error handling, is added to those test-model variants
affected by this change. In particular, the new behaviour is supposed to be added to
the existing variants v1 and v2 of the xPPU product line, whereas variant v3 remains
without error handling. Figure 7.8 depicts the updated version of the test model of
variant v2, now containing the newly added model fragment, where a similar change
is applied to the respective test model of variant v1 (e.g. by applying clone and own
of the new fragment from v2 to v1 or vice versa). In order to master those kinds
of product-line evolution scenarios in a model-based setting, we are faced with two
major challenges, namely:

• Evolution steps are often conducted in an ad hoc manner and without a proper
documentation. Hence, in order to understand and propagate those changes to
other affected variants as well, they have to be properly represented in a well-
defined way.

• Evolution steps are potentially conducted to all possible artefacts of product-line
representations. This may impact the integrity and consistency of further artefacts
at the same level, as well as at any other level of representation. Hence, in order to
make explicit those changes for subsequent engineering steps (e.g. family-based
quality assurance), they have to be properly integrated as additional knowledge
into product-line artefacts.

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 155

⇒ Rule createTransi�on(src, tgt, label)

src
: State

label+ tgt
: State

(a)

⇒ Rule removeTransi�on(src, tgt, label)

src
: State

label- tgt
: State

(b)

⇒ Rule integrateNewState(src, tgt, label)

src
: State

label+ tgt
: State

+

(c)

Fig. 7.9 Edit operations for statecharts (Abstract syntax). (a) Create transition operation. (b)
Remove transition operation. (c) Integrate state operation

To cope with these challenges, we utilise and combine two techniques, namely
(1) model differencing and model patching from model-based software engi-
neering [Men02] and (2) annotation of presence conditions from product-line
engineering [CE00] (Fig. 7.9).

Model Differencing and Model Patching Model-differencing approaches are
used for deriving and representing common and differing parts between model
versions/variants [Men02]. Here, we employ model differencing techniques for
handling variants and revisions of product-line modelling artefacts. To this end,
state-based differencing of two given versions/variants, v1 and v2, of a model aims
at identifying similar parts within v1 and v2 on the basis of the current states of both
models. We refer to Sect. 10.1.1 for an in-depth description of model-differencing
and patching techniques and will only briefly describe the corresponding notions
and concepts in the following.

There are various different techniques to decide whether element a of model v1
and element b of model v2 are considered similar. For instance, equality of (unique)
identifiers or names of elements are frequently used criteria for comparing model
elements. Based on those criteria, a pair (a, b) of model elements considered similar
is called a correspondence, where a and b are said to correspond to each other.
A matching between models v1 and v2 is a set of (all) correspondences between
the elements of v1 and v2. Given such a matching, a directed delta (difference)
comprising a set of change actions from model v1 to model v2 can be derived as
follows:

• Each model element of v1 (or v2, respectively) not matched to any other model
element leads to a change action that deletes (or creates, respectively) this
element.

• Each non-identical property (e.g. a name) of two corresponding elements yields
a change action overwriting this property with the value apparent in model v2.

Each change action derived this way into a directed delta corresponds to a low-
level change being observable between both models, where, however, the actual
modification may have been applied in a different way in case of ambiguity
(see Sect. 10.1.1 for details). In addition, those corresponding low-level changes
consider both models simply as plain directed graphs without considering any
further well-formedness rules or necessary abstractions needed for understanding
the impact of evolution steps. Instead, model differences should be represented in

156 M. Lochau et al.

Fig. 7.10 High-level model
differencing

Edit operations

diff

a structured and preferably human-readable way (e.g. in terms of edit operations
corresponding to editing commands in a visual modelling environment). To this
end, we further consider high-level differencing based on such edit operations for
a suitable representation of model differences [KKT11] (see Fig. 7.10). An edit
operation groups (several) change actions into one change set leading to a so-called
lifting of differences to a higher abstraction level. Hence, each edit operation obeys
an interface consisting of two parts:

• A difference �(v1, v2) consists of a sequence of edit steps s1 . . . sn that when
applied to model variant/version v1 in exactly this order will yield model
variant/version v2.

• An edit step invokes an edit operation and supplies appropriate actual parameters
for applying the respective changes to a given model.

Edit operations may be defined and implemented using recent techniques, for
instance, declarative graph transformation rules [KKT11]. Simplified rules for edit
operations on STATECHARTS are presented in Fig. 7.9, being depicted in their
abstract syntax. The first two atomic operations in Fig. 7.9a and b specify how to
create (delete) a given transition, labelled by label, between a source state src and a
target state tgt. Based on these atomic operations, a sample complex edit operation
for creating a new state and connecting this state by a new transition to an existing
one is presented in Fig. 7.9c. This complex operation therefore allows to integrate
and connect a new state into an existing model by one edit single operation.

For instance, regarding our xPPU example, the difference �(PPU2v1, PPU2v2)

describing the evolution from version 1 of the test-model variant v2 (see Fig. 7.3a)
to version 2 (see Fig. 7.8) may be given as follows:

• IntegrateNewState(S0,ErrorReaction,t6): A new state ErrorReaction is added and
integrated via the (new) transition t6.

• CreateTransition(ErrorReaction,Final,t7): A new transition t7 is created, from
the previously created state ErrorReaction to the existing final state.

• AddAnnotations(t6,t7, Version ≥ 2): Both new transitions t6 and t7 are annotated
with version information as the new error functionality is only available in
version 2 and subsequent versions (see below for more details).

Hence, a high-level difference allows for a proper representation of evolution steps.
Furthermore, such a representation can be used for propagating (parts of) changes
between different versions/variants, denoted as model patching [KKT13]. To this
end, we utilise difference �(v1, v2) between two models v1 and v2 as a patch (or
edit script) on a third model v3 as follows:

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 157

• Actual parameters for each edit step sk ∈ �(v1, v2) are to be adapted to model
v3 as elements and/or properties available in v1 may not be (identically) available
in model v3. To do so, a matching between models v1 and v3 is computed
for finding corresponding (and thus appropriate) parameter values, as described
earlier.

• Sequential dependencies between edit steps si, sk ∈ �(v1, v2) are to be derived
for computing a (partial) ordering among patch operations. For instance, in
�(PPU2v1, PPU2v2), the creation of state ErrorReaction has to precede the
creations of transition t7 requiring this state as a source state.

Based on this construction, we can apply an (adapted) patch to other models for
propagating changes among variants and/or versions [KKR14]. In case of the xPPU
example, we may apply patch �(PPU2v1, PPU2v2) to xPPU variants v1 and v3
for introducing error handling (see evolution steps in Fig. 7.1b), instead of manually
(re-)creating these changes for all variants [KKR14].

Presence Conditions for Version-Knowledge In the previous section, we already
explained the idea of using presence-condition annotations to represent variation
points as additional knowledge within solution-space artefacts of software product
lines. Based on this concept, a so-called 150% model (e.g. a STATECHART test
model for the whole product line) can be defined that superimposes all model
variants (i.e. all 100% test models of any derivable software variant) of the product
line. In this regard, presence conditions annotate variable model parts with variant-
information (i.e. propositional conditions over feature-selections), for which they
are relevant. In a similar way, presence conditions may be employed to denote
version-information and to propagate this information among engineering- and
quality-assurance artefacts throughout the whole life cycle of an evolving product
line. To this end, we introduce (atomic) presence conditions of the form

Version relop k,

where relop ∈ {<,≤,≥,>} as usual, to denote ranges of version numbers
(revisions), in which an annotated artefact is—or has been—present in a model-
or code fragment of the product line. In order to keep the following presentation
graspable, we limit our considerations to a globally consistent and linearly increas-
ing version-history, represented by a single (Integer-valued) meta-variable Version.
Starting at initial version 1, Version is constantly increased by the value 1 after
every new revision. We further assume that each revision may include multiple, yet
non-conflicting, changes to the same and to different artefacts. Based on the notion
of atomic presence conditions, arbitrary version-history intervals can be expressed
using logical connectives ∧ and ∨ as usual (please note that we will use ∧ and ∨ in
models and && and || in code interchangeably in the following). For instance, an
artefact annotated with the presence condition

(Version ≥ 2 ∧ Version < 6) ∨ Version ≥ 7

158 M. Lochau et al.

was not part of the initial version 1 but has been newly added to a model/code
artefact in version 2 but was later (temporarily) removed again in version 6 and is,
from version 7 on up to the current version, again part of the model/code artefact. As
a consequence, artefacts without version annotations are implicitly annotated with
the presence condition Version ≥ 1 (i.e. the artefact existed from version 1 until the
current version).

Similar to the integration of all 100% model/code variants of a product line
into one 150% model/code representation using presence conditions over feature-
selections, all 100% model/code versions of one single variant can be integrated
into one superimposed model using presence conditions over version-intervals. For
convenience, we will call the latter representation a 125% model/code artefact in
the following (assuming that differences among different versions are considerably
smaller than those between variants). Reconsidering the example in Fig. 7.8a, this
model constitutes the 125% test model of xPPU variant v2, including both initial
version 1 without error handling and version 2 (and all later versions up to the
current version) with error-handling capabilities. The model fragment for error
handling, consisting of the transitions t6 and t7, as well as the state ErrorReaction,
is therefore annotated with presence condition Version ≥ 2, whereas all other
model elements are not annotated and thus are present in all versions since the
initial version. The corresponding 125% code fragment of variant v2 is depicted in
Fig. 7.8b, where the #if block (Lines 9–14) marks the code parts for error handling
added during revision 2 of the implementation. Similar updates have been likewise
applied to the STATECHART model and respective implementation code of variant
v1, whereas variant v3 has not been affected by this revision.

Concerning the next evolution step, assume the new error handling later to
be considered useful also for variant v3 and therefore added to the respective
STATECHART model and implementation code of variant v3 during revision 3 of
the xPPU product line. As a consequence, the 125% test model of variant v3 now
also contains the model fragment for error handling, as previously added to variants
v1 and v2, whereas this fragment is now annotated with the presence condition
Version ≥ 3 and likewise for the implementation code of v3. In contrast, variants v1
and v2 remain unchanged during revision 3.

In revision 4 of the xPPU product line, however, error handling is removed, again,
but only from variant v2 as it has been shown to be inappropriate for this particular
xPPU configuration, whereas it remains in variants v1 and v3. Figure 7.11a shows
the 125% test model of variant v2 after revision 4, in which the presence conditions
of the transitions have been updated, accordingly, to

Version ≥ 2 ∧ Version < 4,

and, similarly, for the 125% implementation code of variant v2.
Finally, let us consider a special case of product-line revision in which the

presence/absence of entire variants changes as part of an evolution step. For
instance, as part of revision 5, it has been decided that variant v3 is no more
supported by the xPPU product line. Hence, all solution-space artefacts related to

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 159

Version ≥ 2
&&

Version < 4

t6

ErrorReact ion

t8[Cylinder.PushedOut &&
!MatSensorDetected]
/WPPushedOut = false;

/WPStockEmpty = true;
t7

entry / ErrorSet
do / Cylinder.pullIn()

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected
&& !SensorMetal]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
&& SensorMetal]
/WPPushedOut = true;
WPMaterial = 1;

t0

t1

t4

[!PressureAdjStatus
&& …]
/ slideSort()

(a)

Version ≥ 3
&&

Version < 5

t6

t8[Cylinder.PushedOut &&
!MatSensorDetected]
/WPPushedOut = false;

/WPStockEmpty = true;
t7

entry / ErrorSet
do / Cylinder.pullIn()

Standard Run

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected]
/WPPushedOut = true;

t0

t5
Version < 5

Version < 5

[!PressureAdjStatus
&& …]
/ slideSort()

(b)

ErrorReaction

Fig. 7.11 Further evolution steps of variants 2 and 3. (a) Test model of variant 2 in version 4. (b)
Test model of variant 3 in version 5

v3 are disabled from version 5 on for variant v3, as illustrated in the corresponding
125% model in Fig. 7.11b (and similarly, for the implementation code of variant
v3). In contrast, variants v1 and v2 are unaffected by revision 5.

To generalise, updating a presence condition ϕ of a product-line artefact of a
125% representation to presence condition ϕ′ as a result of a revision k consists of
three possible cases:

• ϕ′ := ϕ ∨ Version ≥ k if the artefact is added during revision k

• ϕ′ := ϕ ∧ Version < k if the artefact is removed during revision k, and
• ϕ′ := ϕ if the artefact remains unchanged during revision k

which can be automatically derived from respective model/code difference-rule
applications, as described above.

7.2.2 Evolution of Software Product Lines

As described before, an idealistic view on product-line evolution should always
start with the evolution of the problem-space specification (i.e. the feature model),
followed by necessary adaptations to solution-space engineering artefacts (i.e. 150%
models and code).

Evolution of Problem-Space Artefacts Based on the syntactic differences
between a feature model and its revised version due to a feature-diagram edit applied
during product-line evolution, the semantic impact may be classified in terms of
the potential changes of those edits caused on the set of valid configurations
(i.e. depending on whether valid configurations may become valid and/or vice
versa) [Bür+15b, TBK09].

160 M. Lochau et al.

Fig. 7.12 Feature-model evolution scenarios. (a) Feature model version 2. (b) Feature model
version 3

{{fp,f1}, {fp,f1}, {fp,f2}, {fp,f1,f2}}

{{fp}, {fp,f2}, {fp,f1,f2}}

Feature Diagram Valid product configurations

citcatnyS
e cneref fid

Sem
antic

difference

f1 f2

fp

f1 f2

fp

reqrequuireire

(a)

{{fp,f1}}

{{fp,f1}, {fp,f2}}

Feature Diagram Valid product configura�ons

citcatnyS
ecnereffid

Sem
antic

difference

f1

fp

f1 f2

fp

(b)

Fig. 7.13 Feature-model edit operations. (a) Operation 1. (b) Operation 2

As a first example of feature-model evolution, consider the feature-diagram edit
from the initial model version in Fig. 7.5a to the new version in Fig. 7.12a. Here,
the additional cross-tree constraint Sorting ⇒ Dark has been added to restrict the
set of valid configurations of the xPPU product line. Semantically, this edit removes
variant v3 from the set of valid configurations, which has been referred to as revision
4 from the perspective of software-variant evolution in the previous subsection. A
corresponding model-differencing rule for this kind of (atomic) edit operation (see
Fig. 7.13a) is therefore classified as specialisation step.

As a second example, consider the feature-diagram revision from the model
version in Fig. 7.12a to the new model version in Fig. 7.12b. This change consists
of a complex edit operation involving two atomic edits: (1) adding a new feature
node Straight to parent feature Slide and (2) converting the two sibling singleton
feature node Straight and Sorting into an alternative group. This edit now enables
customers, in addition to the previous variants, to further configure xPPU variants
having a Standard Ramp with only one Slide (i.e. without Sorting of WP). The
corresponding model-differencing rule for this kind of (complex) edit operation (see
Fig. 7.13b) is therefore classified as generalisation step.

In addition to the classification of the semantic impact of feature-model edits, the
differencing information can, again, be used to annotate model parts with version-
information in a similar way, as already described above for STATECHART models
and implementation code. The resulting feature model, unifying variant, and version
information at the same level of abstraction are also referred to as Hyper-Feature-
Models [SSA14].

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 161

Standard Run
!SPressure &&
!Apressure &&

Version < 5

SPressure ||
APressure

ExtractWP

do / Cylinder.pullOut()

[MatSensorDetected
&& !SensorMetal
&& SensorLight]
/WPPushedOut = true;
WPMaterial = 3

[MatSensorDetected
&& !SensorMetal
&& !SensorLight]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
&& SensorMetal]
/WPPushedOut = true;
WPMaterial = 1;

[PressureAdjStatus]
/StatusLampBlue = true;
slideSort()

ErrorReac�on

entry / ErrorSet
do / Cylinder.pullIn()

[Cylinder.PushedOut &&
!MatSensorDetected]
/WPPushedOut = false;

/WPStockEmpty = true;

[MatSensorDetected
&& !SensorMetal]
/WPPushedOut = true;
WPMaterial = 2

[MatSensorDetected
/WPPushedOut = true;

APressure

APressure

SPressure

t0

t1 t2

t3

t4
t5

t6

t7

t8 t9

APressure

(Version < 5) ||
((SPressure || APressure) && Version ≥ 5)

((SPressure || APressure) && Version ≥ 2 && Version < 4) ||
(APressure && Version ≥ 4) ||

(!SPressure && !APressure && Version ≥ 3 && Version < 5)

[!PressureAdjStatus &&
!(Cylinder.PushedOut &&
!MatSensorDetected)]
/ slideSort()

(a) (b)

Fig. 7.14 175% test model. (a) Test model. (b) Code

Evolution of Solution-Space Artefacts The evolution of solution-space artefacts
can be handled with similar techniques, as already described for software-variant
evolution (i.e. by combining model differencing and presence-condition anno-
tations). However, during the evolution of entire product lines, solution-space
representations following the idea of 150% models/code now have to integrate all
versions of all model variants by superimposing the 125% model-/code-parts of all
variants. In those models, presence conditions have to relate variant- and version-
information in a consistent way, in order to express which model-/code parts are
(or have been) present in which model-/code variant in which version of the product
line. Consequently, we call this kind of representation 175% model/code. We, again,
refer to Fig. 7.7b for an overview of the terminology for the different kinds of
representations described so far.

As an example, reconsider the five revisions of the xPPU product line, as
described previously at the level of software variants, now being applied at the
level of the product-line representation. The resulting 175% STATECHART model,
including all five revisions of all three variants, is depicted in Fig. 7.14. Most
remarkably, the presence conditions

((SPressure ∨ APressure) ∧ Version ≥ 2 ∧ Version < 4) ∨
(APressure ∧ Version ≥ 4) ∨
(!SPressure ∧ !APressure ∧ Version ≥ 3 ∧ Version < 5)

of the transitions t6 and t7 precisely reflect the version-history of error handling in
the xPPU product line from version 1 to version 5 as follows:

• The clause in row (1) states that error handling is available in product configura-
tions corresponding to variants v1 and v2 from version 2 to version 3.

162 M. Lochau et al.

• The clause in row (2) states that error handling is no more available in the product
configuration corresponding to variant v2 from version 4 but remains available
in variant 1.

• The clause in row (3) states that error handling is available in the product
configuration corresponding to variant v3 from version 3 to version 5 (in which
the entire variant is finally removed from the xPPU product line).

Similarly, transition t5 is annotated with the presence condition

(!SPressure ∧ !Apressure) ∧ Version < 5

to denote that this transition is present in variant v3 from the initial version up to
version 4 as it is removed during revision 5. Finally, the annotation

(Version < 5) ∨ ((SPressure ∨ APressure) ∧ Version ≥ 5)

ensures that transition t8 will be removed from variant 3 in version 5 but will remain
in variants 1 and 2.

The 175% implementation code in Fig. 7.14b shows the corresponding code parts
of transitions t6, t7, t8, and t9. Here, the code parts nested in the #if block in Lines
5–10 are present in all versions of all variants having feature APressure selected,
whereas the #if block in Lines 11–22 conditionally adds code for error handling,
depending on the particular variant and version under consideration.

7.2.3 Evolution of Model-Based Testing Artefacts

Concerning model-based testing artefacts of evolving software product lines, we
have to adapt the notions of SPL test case and (complete) SPL test suite [Bür+15a],
accordingly, to also take version-information into account, as provided by a 175%
test model. To this end, the presence condition of an SPL test case now incorporates
both variant- and version-information, thus denoting the set of variants together with
a sub-range of their versions required for the test case to be applicable.

As an example, instead of using an automated test-generation tool, consider a
tester to manually add a test case to a test suite for the xPPU product line. Based on
the 175% test model, the corresponding presence condition for that test case can be
derived by conjugating the corresponding presence conditions of those transitions
traversed by this test case. For instance, the test case

tc3 := (t0, t3, t8)

corresponding to the path t0, t3, t8 with presence condition true from transition t0,
APressure from transition t3, and

(Version < 5) ∨ ((SPressure ∨ APressure) ∧ Version ≥ 5)

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 163

from transition t8 results in the conjugated presence condition:

(t0) (true) ∧
(t3) (APressure) ∧
(t8) ((Version < 5) ∨ ((SPressure ∨ APressure) ∧ Version ≥ 5)).

In addition, the notion of complete SPL test suite has to be likewise enhanced, now
requiring that every test goal is covered on every variant and version, including this
test goal, by at least one SPL test case being applicable to this particular version of
that variant. Table 7.1 shows a minimal set of test cases required for complete test
coverage of the 175% test model, as shown in Fig. 7.14b. Each row corresponds to
a test case, represented by a path through the test model, together with the presence
condition and the set of test goals covered by that test case in the respective variants
and versions. For example, test case tc1 covers the test goals t0, t1, and t8 on variants
v1 and v2 in all their versions. Hence, test goal tc1, which is only present in variant
v1 and v2, is completely covered by this test case on all versions in which it occurs.
In contrast, test goals t0 and t8 are also present in version v3, thus requiring a further
test case tc6, covering test goals t0 and t8 on variant v3 in all of its versions. In
addition, the test case also covers test goal t5. The further test cases of the given test
suite can be derived accordingly.

As illustrated by this example, the derivation and evolution of model-based test-
ing artefacts (i.e. test goals and corresponding SPL test suites) requires additional
knowledge as provided by the feature model and the 175% test model, which will
be described in the following section about co-evolution.

7.3 Co-evolution

In this section, we discuss the co-evolution scenarios 1©– 6© of model-based product
lines, as depicted in Fig. 7.7a, and describe how to ensure consistency among the
different product-line engineering- and quality-assurance artefacts involved.

7.3.1 Co-evolution of Software Product Lines and Product
Variants

Co-evolution scenario 1© is concerned with the evolution of software variants due
to changes in the software product line. Following a brute-force approach, all
existing model/code variants might be simply re-generated by deriving from the
respective 175% model/code the corresponding 100% representations according to

164 M. Lochau et al.

T
ab

le
7.
1

17
5%

te
st

su
it

e

Te
st

ca
se

Pr
es

en
ce

co
nd

it
io

n
V

ar
ia

nt
s

V
er

si
on

s
G

oa
ls

tc
1

=
(t

0
,
t 1

,
t 8

)
(S

Pr
es

su
re

∨A
Pr

es
su

re
)
∧

v1
,v

2
1,

2,
3,

4,
5

t0
,t

1,
t8

((
V

er
si

on
<

5)
∨(

(S
Pr

es
su

re
∨A

Pr
es

su
re

)
∧V

er
si

on
≥

5)
)

tc
2

=
(t

0
,
t 2

,
t 9

)
A

Pr
es

su
re

v1
1,

2,
3,

4,
5

t0
,t

2,
t9

tc
3

=
(t

0
,
t 3

,
t 8

)
A

Pr
es

su
re

∧
v1

1,
2,

3,
4,

5
t0

,t
3,

t8

((
V

er
si

on
<

5)
∨(

(S
Pr

es
su

re
∨A

Pr
es

su
re

)
∧V

er
si

on
≥

5)
)

tc
4

=
(t

0
,
t 4

,
t 8

)
SP

re
ss

ur
e

∧
v2

1,
2,

3,
4,

5
t0

,t
4,

t8

((
V

er
si

on
<

5)
∨(

(S
Pr

es
su

re
∨A

Pr
es

su
re

)
∧V

er
si

on
≥

5)
)

tc
5

=
(t

0
,
t 1

,
t 6

,
t 7

)
(S

Pr
es

su
re

∨A
Pr

es
su

re
)
∧

v1
2,

3,
4,

5
t0

,t
1,

t6
,t

7

((
(S

Pr
es

su
re

∨A
Pr

es
su

re
)
∧V

er
si

on
≥

2
∧V

er
si

on
<

4)
v2

2,
3

t0
,t

1,
t6

,t
7

∨(
A

Pr
es

su
re

∧V
er

si
on

≥
4)

∨
(!

SP
re

ss
ur

e
∧

!A
Pr

es
su

re
∧V

er
si

on
≥

3
∧V

er
si

on
<

5)
)

tc
6

=
(t

0
,
t 5

,
t 8

)
(!

SP
re

ss
ur

e
∧

!A
Pr

es
su

re
)
∧V

er
si

on
<

5)
∧

v3
1,

2,
3,

4
t0

,t
5,

t8

((
V

er
si

on
<

5)
∨(

(S
Pr

es
su

re
∨A

Pr
es

su
re

)
∧V

er
si

on
≥

5)
)

tc
7

=
(t

0
,
t 5

,
t 6

,
t 7

)
(!

SP
re

ss
ur

e
∧

!A
Pr

es
su

re
)
∧V

er
si

on
<

5)
∧

v3
3,

4
t0

,t
5,

t6
,t

7

((
(S

Pr
es

su
re

∨A
Pr

es
su

re
)
∧V

er
si

on
≥

2
∧V

er
si

on
<

4)

∨(
A

Pr
es

su
re

∧V
er

si
on

≥
4)

∨
(!

SP
re

ss
ur

e
∧

!A
Pr

es
su

re
∧V

er
si

on
≥

3
∧V

er
si

on
<

5)
)

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 165

the corresponding product configuration and the new version number of the evolved
product line.

For instance, in the first evolution step applied to the 150% xPPU test model
shown in Fig. 7.6a, error handling has been added to the variants v1 and v2 (see
Fig. 7.1b). As a consequence, one may simply re-generate the corresponding 100%
model variants of all possible configurations to ensure consistency with the product
line. However, in this way, also those model variants not affected by any changes
would be re-generated, which becomes highly inefficient in case of larger product
lines with hundreds or even thousands of possible configurations. To avoid this,
the additional information gained from model differences and respective presence
conditions in 175% representations allow for a more fine-grained change-impact
analysis, as will be described in the following.

Problem-Space Co-evolution Scenario 1© As described in the previous section,
a semantic classification of syntactic feature-model edits can be helpful in proving
the potential impact of problem-space evolution on the validity of existing software
variants:

• Generalisation indicates that (1) all existing variants still correspond to a
valid configuration and (2) new variants corresponding to previously invalid
configurations may be derivable after the feature-model update.

• Specialisation indicates that (1) some existing variants may become invalid and
(2) no new variants are derivable after the feature-model update.

• Refactoring indicates that the set of valid variants does not change after the
feature-model update.

• Arbitrary edit indicates that (1) some existing variants may become invalid and
(2) new variants may be derivable after the feature-model update.

Based on this information, further investigations on the change impact with respect
to the validity or invalidity of particular configurations can be conducted in a
systematic and automated way (e.g. using constraint solvers [TBK09]). For instance,
the edit applied to the initial version of the xPPU feature diagram in Fig. 7.5a,
leading to the new version in Fig. 7.12a, constitutes specialisation as variant v3
becomes invalid. In contrast, the second feature-diagram evolution, leading to the
version in Fig. 7.12b, is generalisation as we add the new optional kind of Straight
slide, which leads to a new set of variants having this slide, optionally in addition
to the old ones. In these cases, where new variants arise, the 175% test model can
be used to derive additional test cases for specifically assuring the corresponding
implementation variants. Otherwise, in cases of variants becoming invalid, the
presence-condition information attached to existing test cases can be used to remove
invalid test cases from SPL test suites.

Solution-Space Co-evolution Scenario 1© As described in the previous section,
evolution of solution-space artefacts potentially causes changes in parts of 175%
model/code representations. Hence, assuming that an evolution scenario yields a
new version k of the product line, a closer investigation of the presence conditions
after updating 175% models/code to version k provides information about affected

166 M. Lochau et al.

software variants. In particular, for an artefact annotated with a presence condition
having a newly added sub-clause of the form

(ϕ ∧ Version relop k),

with ϕ being a propositional formula over features as described previously, two
cases arise:

• If relop is equal to <, then the artefact has been removed during revision k

from all variants satisfying ϕ

• If relop is equal to ≥, then the artefact has been added during revision k to all
variants satisfying ϕ, respectively.

Based on this information, the overall subset of variants affected by changes on
solution-space artefacts performed in revision k can be obtained without additional
effort. In addition, the corresponding updates to 100% model/code representations
of the affected variants can be conducted automatically (e.g. by means of patches
derived from this information).

For instance, consider the transitions t6 and t7 added for error handling to the
150% test model in Fig. 7.14. For variant v3, these transitions become present in
versions 3 and 4 due to the sub-clause

(!SPressure ∧ !APressure ∧ Version ≥ 3 ∧ Version < 5)

in the presence condition of t6 and t7 in the updated 175% model.
In contrast to co-evolution scenario 1©, scenario 2© is concerned with the

evolution of software product lines due to changes directly applied to individual
software variants. Again, we consider co-evolution of both problem-space and
solution-space artefacts.

Problem-Space Co-evolution Scenario 2© Given an (evolving) set of software
variants corresponding to a set of all valid configurations of a product family, the
problem of deriving a corresponding configuration model (e.g. a feature diagram)
that precisely captures this set of valid configurations is frequently known as feature-
model mining or product-line extraction. We will not go into detail about this
particular evolution scenario but rather refer to recent literature about different
techniques addressing this problem [Alv+08, MBB16].

Solution-Space Co-evolution Scenario 2© Given a set of N software artefacts
(e.g. models or code) corresponding to a set of valid software variants of a
product family, the problem of deriving an integrated representation superimposing
similarities among those representations is frequently referred to as N-way merg-
ing [RC13].

N-way Model Merging and Model Integration An overview of the three steps
performed during N-way merging in general is depicted in Fig. 7.15 and can be
described as follows.

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 167

v2

v1

vn

…

Compare Match Merge

N-Way Merging
#ifdef

.c

So�ware
Variants

Superimposed
Representat ion

Fig. 7.15 N-way merging

• Compare. In this step, elements (e.g. code lines or model parts) of the dif-
ferent models are compared and their similarity is measured with respect to
a given similarity criterion. Thus, for each possible set of presumably similar
elements originating from different models, a similarity value between 0 and
1 is computed. To this end, the same element properties may be used, as
already previously described for model differencing (e.g. the types and names
of elements).

• Match. Based on the compare values, those subsets of elements are being
matched (i.e. considered to be same) that constitute the (presumably) most
similar elements among the different models. As a result, a complete match
contains a complete partitioning of all model elements from all N models.
Although various different matching algorithms can be used in this step, a
frequently applied greedy-based heuristic incrementally selects further subsets of
unmatched elements having the best remaining similarity value, until all elements
are finally matched. Similar to the notions already described in the previous
section about model differencing, elements matched for merging are referred to
as corresponding (see Sect. 7.2).

• Merge. In the merge step, all previously matched elements are integrated into
the resulting merged model. To this end, the union-merge operator is frequently
used in practice, which is based on the assumption that all matched elements
are complementary (i.e. being literally the same element appearing in different
variants and/or versions) and should therefore be unified into one element within
the superimposed representation. In contrast, unmatched elements (i.e. residing
in singleton subsets after matching) are inserted as singleton elements without
any unification with other elements.

As described previously, one key aspect of our approach is to use presence
conditions for representing variant- and version- information in a uniform and
declarative way. In order to facilitate consistency-preserving artefact co-evolution,
we automatically integrate presence conditions during the merging step of N-
way merging. In particular, we integrate variability information using variation

168 M. Lochau et al.

vk

v1

…

Software Variant
Subsets

Complete
Superimposed

Program

N-Way
Merging

Partial
Superimpositions

vn

vl

… PartialZ

Partial1

…

… …

N-Way
Merging

N-Way
Merging

#ifdef
.c

Fig. 7.16 Incremental N-way merging of software variants

points/revision points in terms of conditional model/code fragments over presence
conditions rather than (meta-)annotations, as described previously. This alternative
representation enables a seamless application of many recent family-based analysis
techniques and tools, which are mostly based on this so-called variability encod-
ing [Ape+13].

Based on the technique of N-way merging, the following basic co-evolution
scenarios can be handled in an automated way:

• Given a set of N 100% models/code artefacts corresponding to the different
versions of the same model/code variant, N-way merging results in a 125%
representation.

• Given a set of N 100% models/code corresponding to the different variants of
the same model/code version, N-way merging results in a 150% representation.

In the case of multiple subsequent versions of either a software variant or an entire
product line, the set of N representations is usually not available all at once but
rather emerge over time due to evolution scenarios. Hence, merging has to be
applied incrementally and/or on subsets (see Fig. 7.16). To this end, the availability
of integrated variability-information in terms of variation points/revision points
within (partially merged) models allows for incrementally matching and merging
further variants and/or versions into product-line representations throughout the
entire life cycle of evolving product lines. Based on the technique of incremental
N-way merging, advanced co-evolution scenarios can be handled, such as the
following:

• Given a 125% representation comprising the different versions of one particular
variant up to revision k − 1 and a 100% representation as a result of revision k of

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 169

that variant, their merging yields a 125% representation comprising all versions
of that variant up to revision k.

• Given a set of N 125% representations comprising the different versions of a set
of N variants, their N-way merging yields a 175% representation comprising all
variants with all their versions.

• Given a set N 150% representations comprising the different versions of a
product line, their N-way merging yields a 175% representation comprising all
these variants with all their versions.

As an example, recall the evolution scenario of version 1 of the 150% test model
in Fig. 7.6, leading to version 2, which shall be now conducted at the level of
variants. During the revision leading to version 2, the test models of the variants
v1 and v2 (see Fig. 7.8) are evolved to now contain error handling, whereas the
test model of variant v3 (see Fig. 7.4) remains unchanged. We now consider this
evolution scenario at the level of the implementation code, and we focus on the
code parts implementing the transitions below the so-called standard-run state (see
Fig. 7.14). To this end, we consider the representation of source code in terms
of CFA, constituting a program abstraction frequently used by many program-
analysis and testing tools [Bür+15a]. States (or nodes) of a CFA correspond to
control-flow locations (i.e. lines of source code) in a given program, whereas
edges denote different kinds of basic imperative control flows (i.e. control-flow
sequences, control-flow branches, and control-flow loops) as usual, being either
labelled with (basic blocks of) program statements or expressions, respectively. This
representation allows us to apply principles from model differencing and model
merging, as described above, to STATECHART models, as well as to implementation
code in a similar way. Figure 7.17d shows the corresponding extract from the CFA of
the 175% code of the product line in version 1, whereas Fig. 7.17a–c shows similar

version ≥ 2

10

11

12

17

19

slideSort()

[Cylinder.PusedOut
&& SensorMetal]

WPStockEmpty = true

[!PressureAdjStatus && …]

…
…

WPPushedOut = false
Cylinder.pullIn()

14

15
slideSort()

StatusLampBlue
= true;

[PressureAdjStatus]

(a)

version ≥ 2

10

11

12

15

17

slideSort()

[Cylinder.PusedOut
&& SensorMetal]

WPStockEmpty = true

[PressureAdjStatus
&& …]

…
…

WPPushedOut = false
Cylinder.pullIn()

(b)

7

11

slideSort()

…
…

(c)

slideSort()

StatusLampBlue = true;

10

11

12

15

17

slideSort()

[!PressureAdjStatus
&& …]

…
…

[PressureAdjStatus]
20

V
P[APressure]

[else]

(d)

(APressure || SPressure)
&& Version ≥ 2

10

11

12

17

19

slideSort()

[Cylinder.PusedOut
&& SensorMetal]

WPStockEmpty = true

[PressureAdjStatus && …]

…
…

WPPushedOut = false
Cylinder.pullIn()

14

15
slideSort()

StatusLampBlue
= true;

[PressureAdjStatus]

APressure

(e)

Fig. 7.17 Incremental N-way CFA merging. (a) CFA of v1 in Version 2. (b) CFA of v2 in version
2. (c) CFA of v3 in version 2. (d) 175% CFA in version 1. (e) 175% CFA in version 2

170 M. Lochau et al.

extracts from the 100% CFA representations of variants v1, v2, and v3 after revision
2. Figure 7.17e therefore depicts the 175% CFA resulting from merging the 175%
CFA representation and the 100% CFA representation, thus yielding the 175% CFA
representation after revision 2. Hence, by (incrementally) applying N-way merging
in this way, similarities among variants and/or versions are reflected in the resulting
175% CFA. For instance, path 10-17-19 is present in all variants and all versions,
whereas path 10-14-15-19 is present in all versions of variant v1 (having feature
APressure), and path 10-11-12-19 (for error handling) is only present in version 2
of variants v1 and v2.

7.3.2 Co-evolution of Software Product Lines
and Model-Based Testing Artefacts

Concerning scenario 3©, the co-evolution of model-based testing artefacts according
to evolving product-line representations can be conducted in a straightforward
manner. Based on the combined variant/version-information in the updated 175%
test-model specification, family-based test generation can be applied for updating
the SPL test suite in order to become consistent with the latest revision. Concerning
the application of test cases selected for retesting variant implementations being
potentially affected by the changes, again, the additional information in the updated
175% implementation code can be used for change-impact analysis similar to
principles known from regression testing [Loc+12].

For instance, concerning the SPL test suite, as shown in Table 7.1, the additional
test case tc5 has to be added to the test suite after adding error handling to variants
v1 and v2 during revision 2. In addition, after removing variant v3 during revision
5, test cases tc6 and tc7 both become invalid as they are only executable on that
variant.

Concerning scenario 4©, co-evolution of manual updates of SPL test suites
and corresponding product-line representations can be conducted by deriving
variant/version-information for newly added test cases from the the 175% test
model.

For instance, a tester may decide to add the additional test case tc8 = (t0, t1, t9)
into the SPL test suite, as shown in Table 7.1, to test the correct interplay between
transitions t1 and t9 in variant v1. The corresponding presence condition obtained
from the respective path in the 175% test model is given as

(SPressure ∨ APressure) ∧ APressure,

thus being valid for any version of all variants having feature APressure selected. In
contrast, test case tc9 = (t0, t4, t9) is invalid as the presence condition (SPressure∧
APressure) contradicts the feature model in all versions of the xPPU product line.

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 171

Similarly, the impact of manual removals of test cases from SPL test suites on
the test coverage can be investigated on the 175% test model. For instance, if test
case tc2 is removed from the SPL test suite, as shown in Table 7.1, test goal t0 is no
longer covered in any version of all variants containing this goal.

7.3.3 Co-evolution of Product Variants and Test Artefacts

Finally, co-evolution scenarios 5© and 6© can be handled by sequentially composing
the different scenarios for co-evolving product-line representations, as described
above, namely:

• Scenario 5© can be handled by first conducting scenario 4© and then scenario 1©.
• Scenario 6© can be handled by first conducting scenario 2© and then scenario 3©.

7.4 Conclusion

In this chapter, we described a model-based framework for systematic round-
trip engineering and quality assurance of continuously evolving software product
lines. The presented methodology utilises two major techniques from model-based
software engineering, namely:

• Model differencing and model merging for automated comparison and integration
of software variants and versions of an evolving software product line, and

• Knowledge-carrying software for the integration of additional information about
variant- and version-specific software artefacts into engineering and quality-
assurance processes.

This combination ensures consistency among engineering and quality-assurance
artefacts throughout the entire life cycle of evolving product lines and facilitates the
application of efficient family-based product-line analysis strategies to both variant-
and version-rich software systems, as well as arbitrary combinations thereof.

To conclude this chapter, we briefly outline a road map for possible future
research directions based on the proposed framework.

Besides the model/code artefacts and the corresponding knowledge on product-
line representations, as discussed throughout this chapter, further types of artefacts
and meta-information annotations might be considered in a similar way due to the
generality and generic nature of the presented approach and tools.

In addition to model-based testing, further quality-assurance techniques (e.g.
model checking, NFP analysis, etc.) might be lifted in a similar way to become
applicable for family-based analyses of both variants and versions in a unified way.

Finally, other kinds of evolution scenarios and co-evolution scenarios might be
taken into account. For instance, in practice, a large repository of continuously

172 M. Lochau et al.

evolved legacy test cases exists for which corresponding variant-/version-knowledge
is often not available, incomplete, and error prone. Hence, precise techniques for
reverse-engineering (or learning) variant-/version-information from those existing
artefacts is a crucial open issue for future research.

7.5 Further Reading

Further details about tool support and experiences gained from experimental
evaluation results obtained for the different techniques can be found in recent
publications summarised in the following. In addition to the references already
provided in the different subsections of this chapter, the following references
also contain further information about related work on the different approaches
considered in this chapter.

A survey about different product-line analysis techniques, including family-
based Analysis, can be found in [Thü+14a]. In particular, a tool implementation
of the family-based test-suite generation approach based on the software model
checker CPACHECKER [Bey+04, D B+13] can be found in Bürdek et al. [Bür+15a],
and evaluation results for applying the approach to the PPU case study can be
found in Lochau et al. [Loc+14]. The evaluation results show remarkable gains in
efficiency under stable effectiveness of applying family-based test generation, as
compared to a variant-by-variant approach. This tool can be extended, accordingly,
to handle combinations of variant- and version-knowledge, as described in this
chapter.

The representation of variability information by means of presence-condition
annotations has been initially proposed by Czarnecki et al. as part of their template-
based approach for product-line modelling [CE00].

An alternative approach for conceptually integrating variant- and version-
information into one representation based on the delta-modelling approach has
been proposed by Lity et al. in [Lit+18]. A detailed description of re-engineering
the xPPU case study as a product line for model-based testing can be found
in [Lit+15]. A general description of challenges in testing product lines can be
found in [McG01].

An overview on model-versioning techniques and tools may be found
in [ASW09]. Concerning model differencing techniques, in particular as described
in this chapter, a dedicated overview can be found in [Kol+09]. Among others, the
SILIFT framework allows for a rule-based specification of corresponding model-
transformation operators, being applicable to arbitrary input models in a generic
way [KWN05]. Among others, this tool has been successfully applied to efficiently
and effectively compute and classify differences between FODA feature diagrams,
as described in this chapter [Bür+15b]. This approach is, in general, adaptable
to any Eclipse Modeling Framework (EMOF)-based modelling language, such as
STATECHART test models, as considered in this chapter. This tool can be extended,
accordingly, to also compute model differences and N-way model merges of other

7 Model-Based Round-Trip Engineering and Testing of Evolving Software. . . 173

product-line artefacts like STATECHART test models and CFA-based representations
of implementation code, as described above. Finally, further reading on model-
merging notions and techniques can be found, among others, in [Men02] as well as
in [RC13].

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	7 Model-Based Round-Trip Engineering and Testing of Evolving Software Product Lines
	7.1 Foundations
	7.1.1 Model-Based Software Development and Testing
	7.1.2 Model-Based Product-Line Engineering and Testing
	7.1.3 Product-Line Round-Trip Engineering and Artefact Co-evolution

	7.2 Evolution
	7.2.1 Evolution of Software Variants
	7.2.2 Evolution of Software Product Lines
	7.2.3 Evolution of Model-Based Testing Artefacts

	7.3 Co-evolution
	7.3.1 Co-evolution of Software Product Lines and Product Variants
	7.3.2 Co-evolution of Software Product Lines and Model-Based Testing Artefacts
	7.3.3 Co-evolution of Product Variants and Test Artefacts

	7.4 Conclusion
	7.5 Further Reading

