Chapter 11 )
Formal Verification of Evolutionary Shethie
Changes

Bernhard Beckert, Jakob Mund, Mattias Ulbrich, and Alexander Weigl

In this chapter, we elaborate how formal verification techniques can be used to
ensure safety properties of automated production systems during their evolution.
First we discuss the opportunities that formal methods offer, particularly when
dealing with the evolution of automated production systems, but also which special
needs this particular domain requires from the formal methods to be applied. We
argue that evolution allows the seamless combination of experiential knowledge
with formally founded reasoning.

We exemplarily present three approaches that successfully incorporate a formal
verification technique for analysis, modelling, or reasoning, into the system evo-
lution process, namely, regression verification, generalised test tables, and model
checking of holistic (multidomain) models.

All three approaches contribute to the guiding theme Methods and Processes for
Evolution of the priority programme.

While formal verification methods have the potential of being used in several
application fields, we concentrate on the aspect of ensuring correctness (in the form
of maintaining safety properties or consistency with earlier versions). We focus on
techniques that operate on the actual implementation (the code executed on a plant)
rather than on more abstract behavioural descriptions. Here, we describe the logical
foundations and technical aspects of the applied formal verification techniques
and their applications; their benefits for the user, as far as system and model
comprehensibility are concerned; and the embedding into development processes
are discussed in Sect. 10.
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11.1 Verifying Production Systems: Assessment
of Opportunities

System analyses based on formal methods are powerful techniques to ensure that
a system has desired properties. Formal methods provide a versatile toolbox that
can be used for many reliability- or safety-enhancing tasks like formal verification,
advanced testing, modelling, formal specification and design, etc. Formal methods
are known for being very thorough analysis techniques since they import mathemat-
ical rigour into the analysis process.

As in the case for many very general notions, the question of when a technique
is to be called formal has no definite answer. Moreover, different people from
different communities are likely to give very different answers. Within this chapter,
by “formal verification method”, we denote a formal technique that mathematically
proves that a system or component satisfies its specified requirements [[EE90]. Such
a formal technique usually comprises a formal description of the system (i.e. a
model of the system expressed using a formal notation), a formal specification of the
requirements, and rigorous (formal) rules that allow one to reason that the system
satisfies the requirements. In addition, we focus on techniques that allow automated
verification, where the actual verification step is conducted by a computer program
requiring as little guidance to user input as possible.

11.1.1 Peculiarities of Automated Production Systems

For the remainder of this chapter, instead of discussing the application of formal
verification in general, we will focus on the application of a particular kind of
systems, namely, automated production systems. Distinctive characteristics of such
a system are as follows:

1. They are long running. Oftentimes, the plants that a software drives are designed
to run for several decades, which makes a thorough design-time analysis
worthwhile that takes potential evolutionary developments into consideration.

2. They are often mission or safety critical. Due to immense forces and speeds
that can build up in a plant, a malfunctioning automated production system may
cause considerable damage to products or production systems and may even
bring people to harm. Damaged systems may cause immense costs if plants stand
still.

3. They are multidisciplinary in the sense that their design spans several engineering
disciplines that must work together to achieve the desired system behaviour
and heterogeneous in the sense that they comprise analogue as well as digital
components. For instance, a software engineer may be responsible for developing
the software that controls a conveyor belt installed by a mechanical engineer. The
controller actions are based on sensor information obtained from a bus system
designed by an electrical/electronical engineer.
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4. While automated production systems remain in service for a long time, their
requirements often are not cast in stone, but change over time: New types of
products are to be manufactured, systems are upgraded to increase throughput
or to keep up with technological development, etc. Moreover, flaws in the
controlling software or the hardware design may have to be fixed. Production
systems therefore frequently evolve during their lifetime. Thus, methods and
means that accompany the transition induced by evolution must be put into
action. One has to ensure that a revision does not break existing intended
behaviour while achieving the intended change effect.

Based on these peculiarities, we subsequently identify and describe both the general
intricacies and the opportunities for formal verification in the domain of automated
production systems on an abstract level and come back to these points in the sections
on the individual approaches.

11.1.2 Intricacies of the Application of Formal Verification

Formal methods have been the subject of scientific investigation for decades.
However, the industry is very reluctant to incorporate them into their development
processes. Only in recent years have formal methods gained reputation, for instance,
by being added as acceptable verification techniques for avionics [GP12] or
for the automotive industry [ISO11a]. Based on our experience in the priority
programme, we see the following intricacies (or challenges) for formal verification
of evolutionary changes in automated production systems:

Specification efforts One of the main reasons for reluctance to adopt formal
methods in industrial contexts is that many of their use cases have in common that
they require a formal description of the properties to be established (a “formal
specification”). Obtaining for formal specifications or models is hard [Pak+16],
as this requires training in the formal system and due to the additional workload
it puts on industrial-sized projects. During evolution, specifications have to
be consistently co-evolved alongside the code, which increases the required
overhead even more.

Cyber-physical systems Automated production systems have an interdis-
ciplinary nature which combines discrete software-driven controllers with
continuous physical dimensions. Hence, hybrid systems that combine models
for both types of behaviours are a natural fit to represent automated production
systems. For instance, the geo-spatial translation of workpieces may be modelled
in terms of a function from continuous time to a continuous variable, i.e. the
position, by means of differential equations. Continuous behaviour inherently
induces that the system state space becomes infinite. Checking correctness thus
becomes a more difficult problem and inaccessible for explorative techniques like
many model-checking approaches. Hence, finding suitable (finite) abstractions
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that model physical phenomena both correctly and sufficiently precisely becomes
a key challenge for verification.

Large state space As areactive system running for long periods of time, automa-
tion software must always be validated by analysing traces of system responses;
it does not suffice to analyse individual cycles of the software individually. The
state space that needs to be considered during verification grows exponentially
in the number of steps that are analysed. Moreover, the output of the software
also depends on the behaviour of the hardware on which it operates. The (often
nondeterministic) hardware models which are often used in the validation make
the state space grow even larger.

Specific languages/tools Control software for automated production system
is typically written in languages fairly different from commonplace pro-
gramming languages used for other embedded systems, e.g. C/C++. The
IEC61131 [Com02] standard defines five different textual and graphical
languages to program automated production systems. As a consequence, the
use of existing approaches and tools requires adaptation.

11.1.3 Opportunities for the Application of Formal Verification

Based on our experiences from our research on formal methods within the priority
programme, we also see potential for the application of formal methods in the
practice of automated production system development and evolution.

Existing older system versions Due to the evolutionary aspect, we can assume
the existence of older revisions of the system (the plant and the software).
Such existing system versions can be leveraged for formal verification in
several ways. For instance, the analysis can be restricted to investigating the
difference (structural or behavioural difference) of the new revision w.r.t. the old
revision. Furthermore, old revisions allow obtaining precise models of the system
efficiently using observations and model learning techniques.

Limited structural complexity Typically, due to the cyclic behaviour of the
programmable logic controller and the imposed timing restrictions, the structural
complexity of the software of an individual controller is rather limited compared
to other software programs such as database management systems. For instance,
program loops with complex exit conditions and algorithmic traversal of complex
data structures are rarely found in control software of automated production
systems.

Economically justifiable efforts Due to the longevity of automated production
systems, initial efforts put into formalisation have a longer period to break even.
Hence, higher efforts typically associated with formal verification are more likely
to be economically justified for automated production systems.

Infeasibility of alternatives Common alternatives to verification, first and fore-
most testing, are often economically or technically infeasible since neither the
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actual testing environment nor the system under test can be used, since that would
require to either hold production at the customer site or install a prototypical
machine for testing purposes. Hence, the value of testing, i.e. the ability to find
bugs in an efficient way, is diminished. In turn, formal verification operates solely
on the controller software code and, thus, does not suffer from these drawbacks
and may therefore be a suitable addition or alternative (especially in early stages
of the development process) to verification by testing of automated production
systems.

In conclusion, while the applicability of formal verification depends on the spe-
cific system and engineering context, the above opportunities suggest that it is
particularly well suited for engineering automated production system, compared to
engineering software systems in general.

11.1.4 Addressed Software Evolution Challenges

To illustrate the applicability and benefits of formal verification, this chapter reports
on three formal approaches that each verifies a distinct aspect of the correctness of
automated production systems. They address two complementary questions from
the collection of general challenges regarding software evolution in Chap. 3.

How to model, specify, and verify that a system retains desired behaviour
during system evolution? In Sect.11.2, we present an approach to verify that
defined aspects of the behaviour of the system software are preserved during system
evolution.

The approach takes the code of two versions of the system software as input and
a formal condition under which the two should behave equivalently and a formal
definition of when two behaviours are considered equal. Using a state-of-the-art
model checker, the verification approach then asserts that for all admissible input
sequences, the two revisions satisfy the required equivalence condition.

This kind of equivalence checking is called regression verification and particu-
larly helpful since it reduces the need for specification: The old software versions
serve as (partial) specification for the new version. The verification transfers the
trust in the correctness of the old software revision onto the new one. Regression
verification does not require formally specified system properties: The old revision
defines the functional property to be verified for the new revision.

How to model, specify, and verify intentionally changed behaviour during sys-
tem evolution? In Sect. 11.3, a novel temporal specification language is introduced
which allows a comprehensible specification of reactive systems like the software
of automated production systems. For those parts of the software behaviour which
are intended to change, this temporal specification language can be used to describe
the new behaviour.
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Sometimes, a specification of the software changes alone does not suffice. To
answer the question for cases in which not only the software but entire systems
evolve, we present in Sect. 11.4 an approach to verify that the integrated plant
behaviour, i.e. the composition of software, automation platform, and mechanical
components, satisfies the system requirements. Specifically, the approach is based
on creating multidomain models of automated production systems in a coherent
model that represents the results of several involved engineering disciplines by using
a common (formal) modelling language. By translating those models into formal
representations, model-checking tools give us qualitative or quantitative results that
can be used to decide whether the system meets the specified requirements.

11.2 Regression Verification

One of the main bottlenecks for using formal methods in practice is coming up with
suitable system and requirement specifications. This problem is particularly severe
in the domain of automated production systems as formal specifications are even
less common in this domain than in other software disciplines. In the following,
we give a brief introduction to the concept of regression verification which exploits
existing software revisions as specifications of new releases of the system—thus
severely reducing the need to formulate specifications. In this section, we explain
our application of regression verification to PLC software (more details are given
in [Bec+15]). The embedding into the software development process is outlined in
Sect. 10.2.2. The idea of regression verification is to formally prove that a version
of code driving a plant after an evolution step shows the same reactive input/output
behaviour as the code version before evolution. Only desired deviations that are
explicitly stated are allowed. Thus, the original code serves as a formal specification
for the new implementation, and formal verification techniques like model checking
or deductive theorem proving can be applied to prove that the behavioural effect
of the code remains the same. Regression verification covers all parts of system
behaviour that are intended to remain untouched during an evolution step.

In this and the following sections, we consider PLCs to be reactive systems with
a periodic cyclic data processing behaviour, repeating the same control procedure
indefinitely. A PLC cycle consists of the following steps: (1) read input values (input
space 1), (2) execute task(s), (3) write output values (output space O), and (4) wait
till next cycle starts. This leads to the following formal definition using infinite
sequences over inputs and outputs (/* and O®):

Definition 11.2.1 The semantics of a PLC program P is a causal-deterministic
function b(P) : I¥ — O®.Thatis, i1, = iz, implies b(P)(i1){n = b(P)(i2)n
forall n € N, where x|, denotes the finite initial subsequence of x of length n.

PLCs are modelled as causal-deterministic systems as we assume they are
stateful, deterministic programs whose output is a function of the inputs received
since system start—but that cannot depend on the input which is still to come.
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The aim of regression verification is to formally prove that the existing (good)
behaviour of PLC code is retained during system evolution—which is (as a verifi-
cation goal) different to proving that PLC code satisfies a functional specification
and different to showing that the whole production system works correctly. We
assume that the old software revision has proved its value during its lifespan and
has thus gained “trust by experience”. Regression verification formally transfers
this trust to the new revision. The main advantage of regression verification is that
no functional/behavioural specification is required for the part of the behaviour
to be retained (besides the old code version). The application area of software
in automated production systems is particularly well suited for a treatment with
regression verification for the following reason: During the lifespan of a plant,
its software usually needs to adapt to changing requirements. As a rule, the
requirements for the machine behaviour do not change entirely but only in certain
well-defined aspects while most parts are to be retained in an evolution step.

In an ideal verification scenario, regression verification and regression testing
should go side by side as both approaches have their particular advantages.
Regression verification provides a formal equivalence proof for all considered input
sequences and not only for the (usually restricted) set of selected test cases. Also,
while regression testing of PLC software requires either a hardware test bed or an
executable hardware model, this is not needed for regression verification. It suffices
to provide a formal relational description of how the hardware has changed during
the evolution step (if it has changed at all). Testing, on the other hand, is not limited
to an analysis of the software alone but allows comprising the physical entities of
the machine.

We define a notion of reactive conditional and reactive relational equivalence
together with a proof methodology, also in the presence of environment models.
Our method concentrates on the PLC software that runs on the controller and for
now disregards all effects outside the software (in particular the context and the
platform). Some additional measures for incorporating models of effects outside the
software into the verification are discussed below.

A core element of our verification method is a translation of PLC code into
the input language for model checkers. Using this translation on both the old and
the new software revision, we can specify the retained behaviour. Our technol-
ogy targets PLC code written in Structured Text (ST) and Sequential Function
Chart (SFC), two languages of the IEC 61131 standard [Com02]; an adaptation
to other languages is easily possible. A further core element is the use of a
model checker supporting invariant generation. It is an important insight that this
allows the automatic generation of coupling invariants, which in many cases make
regression verification more efficient than symbolic or explicit state model checking.
Accordingly, we have adapted the concept of coupling invariants to the world of
reactive systems. We have implemented our approach in a tool chain using the
model checker nuXmv [Cav+14]. It supports techniques for predicate abstraction
and invariant generation by interpolant inspection [Brall, McMO3].
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The first notion of equivalence we define is that of perfect, bit-wise equivalence
of two PLC programs in which both systems always answer with the same response
to sensor stimuli:

Definition 11.2.2 (Trace Equivalent PLC Programs) Two PLC programs P, Q
whose variable declarations contain the same input/output variables are called
perfectly equivalent if they produce the same output sequence when presented with
the same input sequence, i.e. b(P)(i) = b(Q)(i) foralli € I®.

When considering the semantics of programs to be sets of traces, this definition is
equivalent to requiring that b(P) = b(Q).

This first definition of trace equivalence is too strong a condition in most cases
since software re-factorisation is the answer to changed requirements and the
software is indeed intended to behave differently. Hence, we introduce a second
notion of equivalence: conditional equivalence:

Definition 11.2.3 (Conditionally Equivalent PLC Programs) Two PLC pro-
grams P and Q are called conditionally equivalent modulo the condition ¢ : [ —
bool if they produce the same result for all input sequences that satisfy condition ¢,
i.e.if (i) then b(P)(i) = b(Q)(i) forall i € I®.

During evolution, the behaviour of the system’s sensors and actors may be
changed in addition to software changes. Then, the notion of conditional equiv-
alence may still be too strong and needs to be further relaxed. This leads to the
notion of relational equivalence:

Definition 11.2.4 (Relationally Equivalent PLC Programs) Two PLC programs
P, Q are called relationally equivalent modulo relations ~;,C I x [ 5 and ~ ;-
0% x 05 if they produce related output sequences when presented with related
input sequences, i.e.

if i~y i then b(P)(i) ~pu b(Q)(') foralli € If,i" € Iy,

With these notions we have established the different proof obligations for
regression verification. Figure 11.1 shows how the approach is realised. After
processing the program code of the two revisions to be compared into formal models
(“SMV”), these two models are combined into one product automaton, which
is then—together with the properties to be checked—encoded into a combined
model that is sent to a model checker tool. The program code is translated into
an automaton by first normalising the code to a restricted programming language
STp with limited feature set and then symbolically executing it. The model checker
either proves the equivalence property (v), finds a counterexample that exposes that
the two versions are not equivalent (X), or times out (®).
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Fig. 11.1 Overview of the regression verification method

11.2.1 Environment Models

There are realistic software evolution steps which would, in general, change the
behaviour of an automated Production Systems (aPS), but which do not change
the behaviour of a particular plant since not every sequence of input signals is
possible. For instance, two software versions may behave differently, if two signals
movingLeft and movingRight are simultaneously set. Since this will never be
the case in reality (at least in normal operation), the software revisions can still be
called equivalent if they behave equivalently in all other cases.

To make the approach more precise by allowing such verification cases, we
include a mechanism to incorporate models of the plant environment into the
verification chain. By definition, equivalence needs to hold for all conceivable
sequences of input values, which is a very strong requirement. However, it suffices
that the systems behave equivalently for all input sequences that can occur in
practice. It is therefore sensible to add knowledge on the possible sensor inputs as
assumptions to the process and perform a conditional regression verification, where
the condition not only excludes inputs for which the systems are intended to behave
differently but also inputs that cannot occur in practice. Our methodology allows
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incorporating environment models either as LTL formulas or as automata. In both
cases, the models are added as assumptions.

For example, the crane of the Pick-and-Place Unit (PPU) (Sect. 4.3) can never be
in more than one of the positions Magazine (M), Stamp (5), and Conveyor Belt (C)
at the same time. Assuming correctly working sensors, at most one of the Boolean
input variables M, S, C can be true at the same time. Thus, it is irrelevant whether
the two program revisions react differently in case, e.g. M and S are signalled
simultaneously, but still are equivalent for all other inputs. This assumption adds the
implicit precondition that sensors never fail. If they fail, no guarantees are made.
The regression verification approach is flexible in the sense that it allows one either
to add such assumptions or to show equivalence also for failure cases.

11.2.2 Case Study: PPU

For evaluation, we have applied our regression verification tool chain to the PPU
case study introduced in Sect.4.3 in this book. The case study covers different
aspects of evolution, containing pure software changes as well as changes that
incorporate adaptations to the mechanics and automation hardware in their 16
different variants. In the largest of the original scenarios, the PPU has 22 digital
input, 13 digital output, and 3 analogue output signals and defines a number of
simple discrete event automation tasks.

We discovered some unintentional regressions in the PPU using our approach. In
four cases, a regression by delaying the system answer one cycle for each workpiece
has been caused by newly added code blocks. Due to the short cycle time of the
PPU (4 ms), the discrepancy between the programs was not revealed during testing.
Moreover, regression verification discovered that a fix for a safety violation had not
been ported to an earlier version in the PPU evolution sequence. It is possible that
the crane tries to grab a workpiece while it is still in motion which might under very
unfortunate circumstances cause damages.

In the following, we discuss two evolution scenarios from the PPU and show how
they can be subject to regression verification. More details can be found in [Weil5];
see Table 11.1' for the time required for verification. Not all evolution scenarios
include a software modification or have an intentional behaviour difference. The
scenarios for which the equivalence verification is trivial have been omitted from
the table.

In the evolution scenario Ev3, the new stamping hardware for metallic products
brings with it a new emergency stop button E, (triggering the same emergency
logic as the existing button E;) and a new start switch S3 (complementing S; and $>
already present). Only after all three start switches have been pressed does the plant

!Verification with nuXmv in version 1.0.1 on an Intel Dual-Core with 2.7 GHz and 4 GB RAM
running OpenSUSE 12.2; see [Weil5, Bec+15] for detail information.
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Table 11.1 Results of the experiments

Scenario In State Min Max Scenario In  State  Min Max
Evl 10 140 4s 8s Ev6+EM 11 299  2min 21 min
Ev1+EM 12 146 7s 12s Ev8 20 289 13.7min 20.9 min
Ev2 11 141  4s 8s Ev9 20 305 50.5min 1.3h
Ev3 19 246 9s 17s Ev10 23 365 13s 24s
Ev6+A 19 284 15.1min 1554h Evll 28 576 3.5h 6.3h
Evo+An 19 284 89min 9.1h Evi2 34 860 22.2h 56.4h
Evo+Aym 19 284 18.1min 13h Ev13 34 1225 21.9h 21.9h
Ev6+AEM 11 299  257min 104.1h Evli4 47 1663 22.1h 22.1h

“Scenario” is the name of the evolution scenario in [Vog+14b], “In” is the size of the sensor input
space in bits, “State” is the size of the state space in bits, and “Min/Max” show the minimum and
maximum time needed for verification using nuXmv in seconds (s), minutes (min), or hours (h).
+EM indicates that an environment model has been used

start processing workpieces. Trace equivalence between the two revisions of this
evolution step can only be shown for traces where these new components do not
influence the flow of signals already present in the old software. This is the case
if (1) no metallic workpiece is ever detected in the plant, (2) button E; is only
pressed if simultaneously E; is also pressed, and (3) S3 is not activated after the
other switches S7 and S> have been pressed. Under these assumptions, conditional
equivalence can indeed be proved by our tool chain.

In evolution scenario Ev14, the three position sensors at Crane A, Magazine B,
and Stamp C are replaced by a single angle transmitter that reports the angular
position of the crane (in degrees). Now, the PLC programs take their input from two
different value domains such that we need to express the relationship between these
input spaces by a predicate ~;, which relates each Boolean position switch (A, B,
and C) to a 5° interval in the angular input space represented by the continuous
value a:

(A,B,C) ~pa=(A<0<a<5A(B<90<a<9))
A(C < 180 <a < 18)5) .

11.3 Generalised Test Tables

In the last section, an approach is presented which permits one to prove that a
software revision behaves (partially) equivalently to an earlier revision. But when
a system evolves, regression verification presented in the last section can cover
validation for inputs where system behaviour does not change. But how to deal
with the part of the behaviour which is intended to change? For those inputs
where different behaviour is expected, we cannot simply specify by reference
to the old version. A formal specification is needed to fill this unspecified gap.
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We fall back to assurance of functional correctness, with the same application issues
as mentioned in Sect. 11.1.2, especially the specification efforts. A specification
language and methodology are needed which are accessible and applicable to
engineers. To address the challenge of lacking languages and tools for formal
specification of automated production systems, we introduced generalised test
tables, a practical specification methodology with which PLC systems can be
conveniently formally specified and verified. We present syntax and semantics of
the specification technique and show how they can be used to model check reactive
system behaviour.

Test cases are commonly written in the form of fest tables, in which each
row contains the input stimuli for one cycle and the expected response of the
reactive system. Thus, the whole table captures the intended behaviour of the system
(the sequence of actuator signals) for one particular sequence of input signals.
Generalised test tables extend the concept of test tables, which are already frequently
used in quality management of aPS. The main idea is to allow more general table
entries, thus enabling a table to capture not just a single test case but a family of
similar behavioural cases.

In Sect. 10.2.2, the shape of generalised test tables and their generalisation
concepts have already been introduced. Here, we describe the formal foundations
of generalised test tables and reports about their principal suitability for formal
specification and automatic verification.

11.3.1 Formal Syntax

Formally, a generalised test table is a finite sequence of rows. Each row consists
of three constraining formulas: symlIn for the inputs, symOut for the outputs, and
symDur for the duration (the number of repetitions) of that row. The constraints are
formulated in a generalisation of the expression language of Structured Text (see
Sect. 10.2.2 for details).

Definition 11.3.1 (Generalised Test Table) Let T be a generalised test table with
m rows; let #r and O7 be the set of input variables resp. the set of output variables
of T; and let 9r be the set of global variables occurring in 7. Then T is identified
with the sequence

(symln,, symOut,, symDury) - - - (symln,,, symOut,,, symDur,,) ,

where symlin; is the conjunction of all constraints contained in cells in row i that
correspond to input variables, symOut; is the conjunction of all constraints contained
in cells in row i that correspond to output variables, and symDur; is the interval
contained in the duration column at row i.
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The constraint symln; on the input values is the precondition of the ith row,
and analogously symOut; is its post-condition. The duration constraint symDur;
describes how often the ith row is allowed to be repeated successively.

11.3.2 Semantics

The semantics of generalised test tables is discussed in detail in [Bec+17a]; here,
we give a summary. The definition of the semantics is based on a two-party game—
between a challenger and the system—for which a generalised test table describes
the allowed moves. The challenger tries to force the system to violate the generalised
test table, whereas the system tries to conform to the generalised test table.

Like any two-party game, this game is played alternately. At each turn, the
challenger provides a set of input values, and the system replies with output values.
If the challenger has played an invalid input value not allowed by the generalised test
table, then the system wins. Analogously, the challenger wins if the system provides
an output that is in conflict with the generalised test table. In addition, the system
wins if the generalised test table has been played to the end, such that there are no
more valid input values available.

We define the conformance of a system to a generalised test table based on the
outcome of the plays against any possible challenger.

Definition 11.3.2 (Conformance) The reactive system P strictly conforms to the
generalised test table T if it wins against every possible challenger for all instanti-
ations of the global variables in T. The reactive system P weakly conformsto T if
its strategy never loses.

11.3.3 Model-Checking Generalised Test Tables

The first step towards formally verifying the conformance of a reactive system to a
generalised test table T is the normalisation of T such that the normalised version T’
represents the same family of concrete test tables, but the duration column in 7’
only contains the constraints [0, 1] (at most one cycle), [1, 1] (exactly one cycle),
and [0, —] (arbitrary number of cycles).

The second step then is to generate input for a model checker that represents
the game to be played w.r.t. T’. The system is, in particular, modelled using the
set R of rows of T’ to which a given system state can correspond To keep track
of R, in every move of the game, the constraint pairs (symlIn;, symQOut;) for i €
R need to be considered in the current state of the game. After each move of the
challenger or the system, the row set R is adapted. Rows that violate the pre- or
post-condition are removed. Rows that can be reached by the system in this move are
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added. If R becomes empty, the last party to have moved has violated the generalised
test table and loses the game.

Technically, we use the state-of-the-art model checker nuXmv [Cav+14] to verify
that R becomes empty only through the violation of the input constraint. For this we
encode both, the software and the generalised test table automaton, into the SMV
format. On the concept level, a product automaton is built. For strictly conformance
we assert via an LTL that the software reaches the end of the table, represented by the
sentinel, under assumption of a fair challenger. The checking of weak conformance
is more efficient, as it can be asserted with an invariant.

11.3.4 Application Example

As an example, we consider a function block MinMaxWarning that is commonly
used in safety-critical applications (more details may be found in [Bec+17a]). The
purpose of this function block is to watch over the input values and to raise a warning
if they repeatedly, for a certain number of cycles, exceed a range of allowed values
that is fixed during an initial learning phase.

More precisely, the system under test is a function block MinMaxWarning,
written in ST, with input variables mode, learn, and I and output variables
Q and W. It operates in two modes, Active and Learn, as selected by the caller
via input mode. During the learning phase, it learns the minimum and the maximum
of the input I that occur while the 1earn flag is activated. When switched into the
active phase, the function block checks that the input I stays within the previously
learned interval. The output Q is equal to I if I is within the learned interval;
otherwise, the nearest value from the interval is returned. If the input value keeps
being out of range for a specified number of cycles, then the function block raises an
alarm via the variable W. The alarm is reset after a certain cooldown time if the input
value falls back into the learned interval. An unlearned function block always signals
a warning. The expected behaviour of MinMaxWarning is partially described in
Fig. 11.2.

Input Output (C] Input Output €]

# | mode learn I Q W # | mode learn I 0 w

1 ‘ Active ‘ 0 TRUE ‘ 1| Learn TRUE q ‘ 0 TRUE ‘ 1
2| Learn TRUE q 0 raLse | 1 2| Learn TRUE p 0 TRUE 1
3| Learn TRUE P 0 rFaLse | 1 3 | Active - >q qg rFaLsE | 10
4 | Active - p,q] | [p.g) FaLSE | * 4 | Active - >q q TRUE | >1
5 | Active - >q q FALSE | b 5 | Active - p.ql | [p.d TRUE | 5§
6 | Active - <p p FALSE | b 6 | Active - p.ql | [p.q) FaLse | >1

Fig. 11.2 Two generalised test tables for the specification of the function block MinMax-
Warning
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Fig. 11.3 MoDEMMICAS approach for model-checking interdisciplinary systems (simplified)

Using the implementation of our approach, we were able to prove that a given
implementation of MinMaxWarning conforms to the tables shown in Fig. 11.2.
The MinMaxWarning function block consists of 61 lines of source, translated into
a space of 131 bits (state and input variables) in the model checker. The verification
needs 0.53 CPU seconds for proving weak conformance of the first generalised test
table and 0.63 CPU seconds for the second one (median, n = 6). With the same
setup, the verification of strict conformance takes 1.35 resp. 1.39 CPU seconds.
Proving strict conformance requires an additional fairness condition to avoid infinite
stuttering on the nondeterministic input variables.?

11.4 Model-Checking Changes in Multidisciplinary Systems

aPS are cyber-physical systems which can be best formally analysed by not only
considering there software. In this section, we present an overview of techniques
to verify such interdisciplinary systems by means of model checking. The general
idea behind those approaches is illustrated in Fig. 11.3. First, we model the aPS by
means of a formal modelling language and leveraging model abstractions (step 1).
Second, for a property of interest, we select an alternative model and specification
language and apply a model-to-model transformation (step 2). Finally, we run the
model checker on the resulting model and for the property under consideration and
obtain a quantitative or qualitative verification result (step 3).

In the remainder of this section, we present the modelling approach in more detail
and exemplarily illustrate its use for verifying the system’s availability based on the
probabilistic model checker PRISM [KNP11] for the PPU case study [LFV13].

2The experiments were run on a 3.20 GHz system with Intel Core i5-6500 and 16 GB RAM with
version 1.1.1 of the model-checker nuXmv. The files are available the companion website: https://
formal.iti.kit.edu/ifm2017.


https://formal.iti.kit.edu/ifm2017
https://formal.iti.kit.edu/ifm2017
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11.4.1 Modelling Interdisciplinary Systems
Formal System Model

The fundamental system model used in our approach is based on the FocuUs
theory [BSO1] to provide a strict formal semantics. Central to the FOCUS system
model is the notion of components and their interfaces. Firstly, a component’s
static interface, i.e. its typed input and output ports, defines what signals the
component may receive and send. The interfaces can be used to ensure structural
compatibility between composed components. Secondly, the behaviour observable
at a component’s interface regarding those ports is called semantic interface. It is
defined in terms of behavioural functions that map input streams to output streams.
Intuitively, a stream is a sequence of messages sent or received over time on an input
and output port, respectively.

Originally, the FOCUS theory was primarily conceived for modelling distributed
embedded systems based on a discrete time execution. Modelling automation sys-
tems holistically by considering software and mechanical aspects originate the need
of a common language for the description of physical processes and phenomena. For
this reason, the FOCUS theory was extended to support continuous time elaboration
and data types [Cam13, Bro12]. The behaviour of hybrid components is defined by a
modified version of the hybrid automaton, called I/O hybrid state machine [Cam13].
Components that have discrete as well as continuous interfaces are referred to as
hybrid components.

Formally, given a set of (typed) input ports / and output ports O with /N O = ¢

and types Tjeruoc0, @ continuous stream 7 e _I> is a function € : Ry — T;u{d}
that maps logical time instants to messages of type 7;. The symbol [J ¢ T; denotes
that no message occurred. In contrast, discrete streams are represented as partial
functions Ry -— T; U {{J}. The interface behaviour is then defined as a function

F: 71 - 8, and we denote the set of all behaviour functions with input ports /
and output ports O as [/> O]. Input/output state machines (e.g. Mealy machines) are
one particular means to specify behavioural functions which is commonly regarded
as suitable for describing the system’s behaviour [De +09].

Furthermore, as presented in more detail in [Mun+17], we use the probabilistic
extensions developed in [Neul2] to model faulty behaviour of individual compo-

nents. To this end, we generalise behaviour functions to F : _I> — p(Pl‘(g)),

where Pr(g) denotes probabilistic spaces of output streams. Intuitively, it refers
to a set of possible outputs and their associated probability. As input streams are
mapped to sets of probabilistic spaces, generalised behaviour functions enable both
nondeterministic (due to the superset) and probabilistic (due to the probabilistic
spaces) behaviour specifications. To specify those behaviour functions, we extend
the state machine transitions with probability values.

Finally, individual components are connected by input and output ports via
channels. The respective interface types must be compatible, i.e. T; = T, for input
interfaces i € I and outputinterfaces o € O. The well-defined composition operator
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Fig. 11.4 Focus in a nutshell: two components connected via channel ¢ forming a composite
with semantic interface F : {i} — {01, 02}

® ensures that a set of interfaces and channels form a composite component, where
the composite component’s interface is derived from the member components and
their channels, thus enabling hierarchical specifications (see Fig. 11.4).

To avoid the anomalies described in [Kel77], for any set of mutually recur-
sive components, we demand at least one component to be strongly history-
deterministic,’ i.e. require its output at time ¢ + 1 to be solely determined by inputs
up to time ¢ for any # > 0.

This formal modelling extends from the one in Definition 11.2.1. In the former
definition input, sequences are infinite sequences of signal values 1, with one value
for each PLC cycle. In this section, to model physical effects more adequately, the

inputs are not given as discrete traces but as continuous streams / in which every
point in time may provide a value.

Model Abstractions

We apply the above formalism to model interdisciplinary systems such as automated
production systems as outlined in Sect. 5.3.3. However, to cope with the inherent
complexity of (continuous) physical processes, we require model abstractions which
are suitable to find design errors, on the one hand, but are also amenable to
automated verification on the other hand.

To this end, we model the (mechanical) context and the automation platform (e.g.
bus systems, programmable logic controllers (PLCs)) using discrete abstractions
obtained by combining two techniques. First, discrete time and variables behaviour
can be obtained by prior simulation (see [Vog+15b]) and the use of non-uniform
sampling techniques (see [Cam13]). Second, given a specific component that can
be precisely specified by a function S, we may rely on a (more abstract) function
S1, if Sy is a behaviour refinement of S;. This is denoted as S; ~» S and formally
defined as:

e — —
Si~~8SH Vi el SH(i)csSi(i).

3See Definition 11.2.1, also called causal.
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In addition, our model may also incorporate more abstract input and/or output ports
(data types) by means of interface abstractions, defined as:

512 55 6 8w (DR S;QU)

with 1,8 € [I>0]and S3 € [I't>0'],D € [I > 1'],U € [0’ 1> O]. For more
details on those refinement relations, see [BSO1].

While those techniques can be used to obtain a model of various size (and
accuracy), the level of detail of the resulting model we relied on can be seen in,
e.g. [Leg+14].

11.4.2 Verifying Availability Requirements Using Probabilistic
Model Checking

Based on the modelling approach described in the previous section, we now outline
how model-to-model transformations can be applied to automated verification in
terms of an example. In this example, we translate the interdisciplinary model to
Markov Decision Processes (MDP), as supported by the probabilistic model checker
PrisM [KNP11], to verify the specified system satisfies its availability constraints.

Translation to PRISM

A specification of an MDP consists of a set of global variables and modules. Each
module defines a set of variables and a set of commands consisting of guards
and probabilistic actions, i.e. updates on variables associated with a probability
distribution. The standard composition of modules in PRISM is composition by
interleaving; from the set of commands, at most one action is executed in each step.
However, synchronous composition can be achieved by attaching a common label to
commands that should always synchronise. In addition, PRISM supports to associate
a number, called reward, with transitions and states (specified by logical formulas
over the model’s variables). Rewards can be used to quantitatively query the model.

We automatically translate our system model (extended with availability models;
see also [Mun+17]) into an MDP as follows: We translate each software, platform,
and context component into a PRISM module. For the syntactic interface, we
introduce variables for input and output ports. For the behaviour, we encode state
machines in PRISM using internal variables and commands to represent their current
state and state transitions, respectively. The same translation is applied to the
components of the availability models of our approach, with the sole exception of
availability metrics, for which the output is mapped to rewards instead of variables.
For instance, the uptime metric associates a failure-free state with a reward of 1 and a
failure with 0. Finally, to achieve synchronisation among all modules, we introduce
a common action label.
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Verification of Availability Constraints

Based on this translation, we can use the Rmin=? [C<=t] query in PRISM to
compute the cumulative reward up until ¢ steps of the system have been executed.
This corresponds to the system’s uptime, i.e. the expected time the system is
operating without failure in the time interval [O; ¢[.

11.4.3 Application to PPU Case Study

We now illustrate the approach on a concrete example of the PPU case study. For
a more comprehensive presentation of this case study, the reader is referred to its
publication [Mun+17].

Model As an example for the microswitch sensors used for crane positioning, we
describe the particular sensor that observes whether a workpiece is pushed out of
the stack and is ready for pickup by the crane. Therefore, the sensor has an input
port that specifies whether a workpiece is indeed located there (as a consequence of
the mechanical processes of the context model) and a single output port that outputs
an electrical voltage. If a workpiece is present, the sensor outputs 24 V. Otherwise, it
outputs 0 V. Consequently, in this mode, the sensor is perfectly reliable and available
all the time.

To account for availability issues, we extend this with a deviation model that
models two failures, namely, temporal unavailability (e.g. due to pollution) and
permanent unavailability (e.g. permanent damage due to wear out). This deviation
model is illustrated in Fig. 11.5. Therein, we introduce an activation function
(Micro-switch Failure Activation),aninputfilter (IF: Identity),
and an output filter (OF : Missing WP). The activation function signals whether
the microswitch failed to the input and output filter by means of a probabilistic
state machine illustrated at the bottom of the figure. Initially, it is in the “Available”
state. The output filter outputs OV in case of a failure or behaves as specified
above otherwise. Therefore, the failure activation causes the sensor to potentially
miss workpieces located at the stack. In contrast, the physical phenomenon of
the workpiece position is not altered by the deviation model. The input filter is
modelled as an identity function for the sake of illustration which merely forwards
the workpiece position.

Verification To analyse the availability of the crane’s transportation function, the
model can be translated to the PRISM model checker. Essentially, we provide a
component that represents an uptime metric which associates rewards of 1 and
0 with a timeliness or (potentially infinitely) delayed transportation, respectively.
Then, we can verify that the required availability is achieved by querying

Rmin=? [C<=36000],
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Fig. 11.5 The extended system model of the microswitch sensing whether a workpiece is available
for pickup by the crane at the stack position using a probabilistic state machine for activation
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where Rmin refers to the cumulative rewards associated with the uptime metric
within 1h (i.e. 36,000 ticks with a 100 ms cycle time), and comparing the resulting
value to the availability requirement, e.g. 0.9965 if an 99.65% availability of the
transportation function is required.

11.5 Related Work

The verification of PLC programs w.r.t. temporal logic specifications (for safety,
liveness, and time properties) has been subject of a number of publications already.
The paper [YFO03a] gives an overview of the field, and the survey [Lam+99b] dis-
cusses transformation processes for program languages to verifiable models. Various
translations from IEC 6113-3 languages into the input languages of model checkers
have been presented: Brinksma et al. [BMFO02] present a translation of SFCs into
Promela input for the SPIN model checker [Hol97]; De Smet et al. [Sme+00]
translate all languages within IEC 61131-3 into input for the symbolic model
checker Cadence-SMV [Bur+92]; and Bauer et al. [Bau+04b] translate SFCs into
timed automata to be used with UPPAAL [Beh+01]. This model checker is also
used to verify properties of continuous function charts (CFC) in [WFV09]. In
[Bau+04a, BHLOO] a unifying semantics for SFC is given where the ambiguities
of the standard are addressed in a formal fashion.

Siiflow and Drechsler [SDO8] present a framework to verify that the same
program behaves equivalently on different PLC platforms, a scenario closely related
to ours. The authors employ a SAT solver to verify the arising proof conditions.

Strichman and Godlin [GS13] coined the term regression verification and pre-
sented a verification methodology based on replacing function calls by uninterpreted
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function symbols within a bounded software model-checking framework for C
programs. In [GS08] they define “reactive equivalence”, which is closely related
to our notion of perfect trace equivalence. In earlier work [Fel+14], we presented an
automated approach to regression verification based on invariant generation using
Horn clauses. Many other approaches [Ver+10, VIB12, Haw+13, BCK11, WP12]
exist on regression verification for imperative programming languages.

Equivalence checking is an established issue for the verification of hardware
circuits. In sequential equivalence checking, the perfect trace equivalence between
clocked circuits is analysed; see [HC98] or [KEO02] for an overview. Lu and
Cheng [LCO09] present an approach based on inferred invariants, in which condi-
tional or relational equivalence is not considered.

Table-based languages for visualisation of mathematical are common. For
example, Parnas tables are a tabular representation of relations. Lorge et al. [PMI94]
use them in addition to first-order logic for the specification of procedure contracts.

Also, Software Cost Reduction approach (SCR) [Hei+05] claims to be under-
standable and comprehensible by exploiting table-based syntax. SCR is a method
for managing formal requirements, which was successful applied in practice,
e. g. mission-critical systems from the NASA [HJO7]. It bases synchronous state
machines to describe the behaviour of a system. The state machine is specified
by tables, similar to the Parnas tables, to define the transition relation and the
output relation. SCR benefits from a various tools that are built upon the formal
semantics: the simulation and validation of specifications, the generation of system
invariants and source code, and the formal verification of application properties. A
commonality between an SCR specification and generalised test table is that both
describe an automaton. For generalised test tables, this automaton is given by the
transformation rules and is therefore restricted. Otherwise, generalised test tables
are optimised for specification of sequential stimulus and responses. They allow the
direct access to past values via back references or global variables; SCR requires an
encoding of these values into the state.

CocoSpec [Cha+16] is a specification language for reactive programs that are
written in the Lustre programming language. CocoSpec follows assume-guarantee
paradigm using Boolean expression for specifying assumptions and assertion on the
current in every time step. Like SCR, CocoSpec exploits a state machine to make
these assertions and assumptions time-dependent. The state machine is written in
Lustre. In contrast, the assumptions (input) and assertions (output) of a generalised
test table are always time-dependent, i.e. they depend on the table rows.

Moszkowski [Mos85] follows with his Interval Temporal Logic (ITL), a different
approach to the classical temporal specification languages CTL and LTL. ITL bases
regular expression and therefore it is w-regular. For concatenation, ITL introduces
the chop operator (71; r2) which — similar to our concept of rows — divides a given
trace into a suffix and prefix, where rq has to be valid on the suffix, resp. r, on the
suffix. An unbounded repeated application concatenation is denoted by star operator
r*, identical to our “~” in the duration column. A generalised test table can be
expressed as an ITL formula, under the costs of an exponential blow-up [Bec+17a].

The idea of using regular expression can be combined with Linear Temporal
Logic (LTL) as ForSpec Temporal Logic (FTL) proves. FTL was developed by
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Intel [Arm+02]. In addition to LTL operators (until, always, eventually), it supports
the corresponding past operators, regular events and time windows. A regular event
is a finite regular language in a similar fashion as ITL or generalised test tables.
Time windows are helpful to specify that certain events need to occur with a defined
time window (bounded LTL operators). Additionally, FTL allows the composition
with temporal connectives (a composition of generalised test tables is possible on
the automata level). In [Lju+10], Ljungkrantz et al. propose ST-LTL, which enriches
LTL with the arithmetical operators of Structured Text, syntactical abbreviations for
specifying the rising or falling edges of variables, and access to previous variable
value.

Becker et al. [Bec+12] present the MechatronicUML language for modelling
and analysing component-based software for mechatronic systems, which supports
links between engineering disciplines. SysML4Mechatronics [KV13] is a language
for interdisciplinary modelling, which addresses mechanical, electrical/electronic,
and software aspects explicitly. A formal semantics for automatic verification
of structural compatibility has been proposed [FKV14], but verifying functional
conformance is not considered yet. Shah et al. [Sha+10] present a multi-discipline
modelling framework based on SysML.

Various lines of research are meant to analyse the reliability and availability of
technical systems. Several established modelling techniques, such as Reliability
Block Diagrams (RBD) [Bir10, DP09] and Fault Trees [DBB92], are based on
combinatorial models. In both cases, the diagrams model which elementary faults
lead to a failure of the whole system or a system function. A problem with these
kinds of models is that only rather simple scenarios can be captured [Birl0].
Besides those combinatorial approaches, several approaches for an architecture-
based availability prediction have been proposed (see, e.g.[Kub89, Lap84, Lit79]).
More recently, availability analysis also gained widespread attention for the domain
of aPS. In [Lai+02], a general model is built based on the Markov model to predict
the availability of distributed software and hardware systems. The authors use the
Kolmogorov differential equations to calculate the probability that a system process
is in a certain state and then derive the availability function for the respective system.

11.6 Conclusion

In this chapter, we have presented the opportunities and challenges for the appli-
cation of formal verification during system evolution of automated production
systems that we identified from our experiences in the projects MoODEMMIiCAS
and IMPROVE APS within the priority programme.

In addition, we have presented three approaches for formal verification of
evolutionary steps that exploit the opportunities that automated production systems
provide and address the challenges that arise:

Regression verification  uses an older revision of the PLC software as specification
for a newer release and allows one to prove that desired aspects of the system
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behaviour are retained by the evolution step. It thus leverages evolution by using
the old code revision as specification. Model checking is feasible due to the
limited structural complexity.

Generalised test tables  allow specifying desired system behaviour as tables. They
thus address the challenge of reducing the specification efforts by providing a
user-friendly specification technology.

Model-checking interdisciplinary models  translates multidomain models of auto-
mated production system, composed of software, automation hardware, and
mechanical components into representations amenable to model checking. To
verify that the software achieves the intended behaviour at the system level,
we rely on a common formal modelling approach for all system components,
which may also include continuous behaviour and make extensive use of model
abstractions. We claim that the initial modelling effort may be justified by
the longevity of such systems and the lack of effective alternatives, while the
software’s limited structural complexity benefits model checking despite the
potentially large space state.

All techniques perform a full verification of the properties they claim to be true by
using modern model-checking tools. Automated production systems have a limited
state space by design and are thus suitable targets for such formal verification
systems.

One cross-cutting challenge for all three presented techniques is that they need to
make assumptions about the behaviour of the physical plant on which the software
is deployed. The interdisciplinary approach relies on an explicit model for the
environment as part of the verification input. Generalised test tables have columns
for input signals such that signal sequences can be restricted to those occurring in
practice. Thus, a plant model is specified implicitly. Regression verification often
works without environment models, but not always. There are cases where parts of
the plant behaviour need to be added as an explicit.

The presented approaches exemplarily demonstrate the ability of formal verifi-
cation to provide valuable support and feedback in engineering long-living systems,
especially automated production systems, thus suggesting a promising field of
application for future research and motivating transfer into engineering practice.

11.7 Further Reading

The interested reader is invited to find more and more detailed information about
the presented verification approaches in the following scientific publications:

The idea of regression verification for PLC programs developed in the project
IMPROVE APS within the priority programme has originally been presented by
Beckert et al. [Bec+15]. Ulewicz et al. [Ule+15] have shown how the presented
regression verification approach can be extended to comparing different variants
of PLC software in order to reduce unneeded variant diversity. Moreover, we show
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in [Ule+16] how the regression verification approach for PLC code can be embedded
into the development process for aPS software.

Regression verification can not only be applied to PLC software, but a similar
approach has been presented by Kiefer et al. [Fel+14, KKU16] for the automatic
regression verification of C programs. The tool LLREVE compares two C routines
for various types of equivalence. It can be applied to programs with certain heap
data structures [KRU17] and combines static and dynamic analyses to extend the
reach of the regression verification approach [KKU17]. LLREVE can be accessed
as a publicly available web application: https://formal.iti.kit.edu/projects/improve/
reve/. The tool semantic slicer [Bec+17b] employs LLREVE to produce very precise
slices that a syntactical analysis cannot find. In [BKU15] Beckert et al. reduce Java
regression verification problems to equivalent secure information flow problems on
the JML* specification language and the KeY prover [Ahr+16].

Generalised test tables were first introduced by Weigl et al. [Wei+17], and
their formal semantics was defined by Beckert et al. [Bec+17a]. The automatic
verification tool GETETA that proves that a PLC program behaves as specified in
a generalised test table is an open source project hosted at github. Current releases
and more information can be found on the companion webpage https://formal.iti.
kit.edu/geteta/.

The ST Verification Studio (STVS) is a tool that provides a user-friendly frontend
for the specification and verification of PLC software using generalised test
tables. It is presented in Fig. 10.11, and details can be found on the companion
webpage https://formal.iti.kit.edu/stvs/.

The multidisciplinary modelling approach of our verification is based on a
model-based development for cyber-physical systems [Bro97, Hub+98, Sch+02,
Bro+10], which is extended to automated production systems by [Leg+14]. Essen-
tially, it extends the FOCUS theory described in [Bro86, BSO1] with notions of
discrete and dense time [Brol2], spatio-temporal systems [Hum09, Bot+09], and
using dynamic sampling [Cam13]. Finally, those concepts were implemented in the
AutoFOCUS 3 tool, which is described in more detail in [Hub+96, SHT12, Ara+15]
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