
Enhanced Graph Cuts for Brain Tumor
Segmentation Using Bayesian

Optimization
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Abstract. Brain tumor segmentation is a difficult task, due to the shape
variability that malignancy brain structures exhibit between patients.
The main problem in this process is that the tumor contour is usually
computed from parametric models that need to be well-tuned to perform
an accurate segmentation. In this paper, we propose an enhanced Graph
cut on which the model parameters are selected through a probabilistic
approach. Here, we use Bayesian optimization to find the optimal hyper-
parameters that segment the tumor volume accurately. The experimental
results show that by using Bayesian optimization, the graph cut model
performs an accurate segmentation over brain volumes in comparison
with common segmentation methods in the state-of-the-art.
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1 Introduction

Brain malignancies are the most dangerous pathologies in neurological diseases.
These malignancies present different degrees of aggressiveness, different progno-
sis and heterogeneous histological sub-regions (i.e., peritumoral edema, necrotic
core, enhancing and non-enhancing tumor core). This variability (due to intrin-
sic heterogeneities of gliomas) poses a challenging task in which the imaging
phenotype is described by varying appearance and shape profiles across mul-
timodal MRI scans, reflecting varying tumor tissue properties. This variability
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poses a challenging task in which the imaging phenotype is described by varying
appearance and shape biological descriptors across neurological scans, reflecting
varying tumor tissue properties [12].

Localizing tumor areas is a crucial procedure for brain surgery planing. One
of the main problems in this case is in fact the time, in practice, radiation oncol-
ogists spend a substantial portion of their time performing the segmentation
manually using segmentation and visualization tools. Besides, in the literature
survey, several techniques are proposed to overcome the challenges of brain tumor
segmentation. Specifically, brain tumor segmentation algorithms based on con-
volutional neural networks (CNNs) have been shown to be at least as effective
as other automated tumor segmentation methods [8].

In recent years, the researchers focused on exploring the entire field related
to neural networks, a fully automatic pipeline that involves chaining together
several unique 3D U-Net, a type of 3D patch-based convolutional neural network
[1]. In general, state of the art focuses on models that initiate a process of forced
learning given by iterations that cause specific weights to vary until an acceptable
result is reached (i.e., to find a plausible tumor contour) [12]. The main problem
of these approaches is that although the results are relevant, it is difficult to
extract clinical information from these learning processes (i.e., to capture tissue
properties from hidden layers as in CNNs) [9].

Patch-based methods make use of energy functions to define a given contour
that matches plausible shape structures (i.e., tumor contour) [10]. These energy
functions allow us to define the tumor contour from appearance and shape con-
straints based on the tumor properties [3]. However, the resulting performance of
these approaches depends on the correct selection of the model parameters (i.e.,
graph cuts (GC) for image segmentation) [6]. Global optimization is an essential
task in any complex problem where design and choice of model parameters play
a key role. In the machine learning field, such problems are found in the tuning
of hyperparameters [15] and experimental design [7].

Bayesian optimization (BO) [7,15], proves to outperform state of the art for
global optimization algorithms on many challenging optimization benchmark
functions [11]. In this context, Bayesian optimization assumes that the objective
function is sampled from a Gaussian process, maintaining the posterior distri-
bution for this function as observations (by running learning algorithm experi-
ments with different hyperparameters are observed). In this paper, we propose
an enhanced Graph cut on which the model parameters are selected through a
probabilistic approach. Here, we use Bayesian optimization to find the optimal
hyperparameters that segment the tumor volume accurately. Our contribution
is based on the Bayesian optimization process that finds the model parameters
for controlling the energy function of the graph cut in a probabilistic way. The
rest of the paper proceeds as follows. Section 2 provides a detailed discussion
of materials and methods. Section 3 presents the experimental results and some
discussions about the proposed method. The paper concludes in Sect. 4, with a
summary and some ideas for future research.
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2 Materials and Methods

2.1 Database

In this work we used the Brain Tumor Image Segmentation Challenge (Brats)
2015 [12]. This Database contains high-grade tumors, Low-grade tumors and
labels maps made by experts based on landmarks. The tumors of this database
are located in different brain regions. The label map showed in Fig. 1, have four
different labels 1- for Necrosis (Green), 2- for the Edema (Yellow), 3- for Non-
enhancing tumor (Red) and 4- for Enhancing tumor (Blue). We used the MRI
T1 images with resolution of 240 × 240 pixels and 1 mm × 1 mm × 1 mm voxel
size.

(a) Axial View (b) Sagital view (c) Coronal view

Fig. 1. Sample of a given abnormal tissue for the Brast2015 Database. (Color figure
online)

2.2 Graph Cuts

We use a fast approximate energy minimization approach with label costs, that
uses the alpha-expansion algorithm [5]. This algorithm is commonly used to min-
imize energies that involve unary, pairwise, and specialized higher-order terms
that describes given appearance contour [3]. The segmented image can be mod-
eled as an energy minimization that finds a labeling f (i.e., estimated contour)
as,

E(f) = Esmooth(f) + Edata(f) + Elabel(f), (1)

where, Esmooth(f) is a measure of the smoothness by parts of the labeling f , and
Edata(f) measures the discrepancy between f and the observed data. As in [5],
the term Edata(f) is computed as,

Edata(f) =
∑

pεP

Dp(fp), (2)

where Dp measures how well the label fp fits the pixel p. Generally, this is
evaluated using a quadratic standard, which can be given by (fp − ip)2 where
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ip is the original intensity of the pixel. The smoothness cost Esmooth(f), is a
standard regularizer which can be modeled as,

Esmooth(f) =
∑

p,qεN
Vp,q(fp, fq), (3)

where each Vp,q weights all fp �= fq. A simple use of this function can be given
by Vp,q(fp, fq) = K · |fp − fq| (with K being an arbitrary constant). Hence, if
each Vp,q define a metric, then the minimization of the Eq. (1) it is known as
the problem of metric labeling and can be effectively optimized with the alpha-
expansion algorithm [5]. The label cost penalize each unique label that appears
in f as Elabel(f) =

∑
L⊆L hL · δL(f), where hL is the non-negative label cost of

labels L and the indicator function δL(.) is defined on a label subset L as,

δL(f) def=
{

1 ∃p : fp ∈ L
0 otherwise

(4)

2.3 Bayesian Optimization with Gaussian Process Priors

Since we want to compute the graph cuts hyperparameters in a probabilistic
way, our goal is to find the minimum of a cost function f(x) (i.e., the perfor-
mance index between the ground truth labels and the segmented tumor) on
some bounded set X that controls the model parameters. To this end, Bayesian
optimization builds a probabilistic framework for f(x) with the aim to exploit
this model to make predictions of the model parameters X evaluated in the cost
function [15]. The main components of the Bayesian optimization framework are
the prior of the function to optimize, as well as the acquisition function that will
allow us to determine the next point to evaluate the cost function [13]. In this
work, we use a Gaussian process prior, due to its flexibility and tractability. A
Gaussian Process (GP) is an infinite collection of scalar random variables indexed
by an input space such that for any finite set of inputs X = {x1,x2, · · · ,xn},
the random variables f Δ= [f(x1), f(x2), · · · , f(xn)] are distributed according to
a multivariate Gaussian distribution f(X) = GP(m(x), k(x,x′)). A GP is com-
pletely specified by a mean function m(x) = E [f(x)] (usually defined as the
zero function) and a positive definite covariance function given by k(x,x′) =
E

[
(f(x) − m(x))(f(x′) − m(x′)T )

]
(see [15] for further details).

Let us assume that f(x) is drawn from a Gaussian process prior and that our
observations are set as {xn, yn}N

n=1, where yn ∼ N (f(xn), ν) and ν is the noise
variance. The acquisition function is denoted by a : X → R

+ and establishes the
point in X that is evaluated in the optimization process as xnext = arg maxxa(x).
Since the acquisition function depends on the GP hyperparameters, θ, and the
predictive mean function μ(x; {xn,yn}, θ) (as well as the predictive variance
function), the best current value is then xbest = arg minxn

f(xn).
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2.4 Enhanced Graph Cuts with Bayesian Optimization

Our approach is based on the Bayesian optimization process for estimating the
model parameters of the graph cut model that segments a given brain tumor
accurately in a probabilistic way. In this work, we choose to optimize the fore-
ground seed, Ω1 = {xf , yf , zf}, the background seed Ω2 = {xb, yb, zb}, and the
α-parameter of the swap algorithm Ω3 = α [5]. For the graph cuts implemen-
tation we use the imcut1 toolbox. Besides, as for the Bayesian optimization
process, we use as a cost function, the Euclidean distance between the labels of
the segmented tumor and the ground truth labels. We use the GPyOpt2 tool-
box for python, developed by the Machine Learning group of the University of
Sheffield. In this work, we report results for the expected improvement (EI), and
the probability of improvement (PI) and some other relevant acquisition func-
tions [15]. Figure 2 shows the block diagram of the proposed model used in this
work.

Ω : [Ω1, Ω2, Ω3]

f(Ω)

J(T, T̂ )
MRI volume

Graph Cut Model

Bayesian Optimization

Ω̂best

Ω̂

Fig. 2. Block diagram of the proposed approach for the enhanced graph cuts with
Bayesian optimization

3 Results and Discussions

In this section, we show the results of our framework for optimizing the graph
cuts hyperparameters. We show a comparison between a given manual tuning
and an automatic tuning using Bayesian optimization. Besides, we report a com-
parison of the different segmentation performances of the acquisition functions,
as well as some qualitative and quantitative results compared with relevant works
in the state-of-art.

1 imcut is a Segmentation tool based on the graph cut algorithm available at https://
github.com/mjirik/imcut.

2 Gpyopt is a Bayesian optimization framework in python available at http://github.
com/SheffieldML/GPyOpt.

https://github.com/mjirik/imcut
https://github.com/mjirik/imcut
http://github.com/SheffieldML/GPyOpt
http://github.com/SheffieldML/GPyOpt
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As we can see in Fig. 3, Bayesian optimization can eliminate certain inconve-
niences that arise for manual tunning of the graph cuts. The figure shows that the
optimal parameters allow us to segment the tumor contour more appropriately
(i.e., avoiding false negatives derived from the segmentation process).

(a) GC (b) GC-BO (c) GT

Fig. 3. Comparison between Bayesian optimization (middle) and manual adjustment,
of graph cuts hyperparameters (left). The figure shows that the manual tuning of the
graph cut model (left) derived in more false negatives in comparison with ground truth
tumor (GT right).

Figure 4 shows the convergence of each acquisition function of the BO pro-
cess. The red plots show the distance between the hyperparameters on each iter-
ation. As a result, we can differentiate the stages of exploration and exploitation
of the hyperparameters. Here, the more variation found between each consec-
utive hyper-parameter indicates the stage of exploration and small distances
between consecutive hyperparameters indicates the stage of exploitation. The
figures outlined in blue indicate the error convergence of each method. Fur-
thermore, the results also show that the acquisition functions: integrated lower
confidence bound and integrated probability improvement perform the tumor
segmentation more accurately (see bottom row of Fig. 4).

Figure 5 shows the curvature computed for three different tumors: ground
truth volumes (left) and segmented tumors with BO (right). The results show
that regions with high saliency (red areas in the tumor volumes), matches the
segmented tumors with the optimal hyperparameters (the segmentation process
preserves the relative curvature of the original tumor). Finally, Table 1 shows a
comparison of different approaches reported in the state-of-the-art (BraTS 2017
challenge [12]). The results show that our approach outperforms some relevant
methods in the state-of-art, which are based on deep learning approaches. Hence,
since our approach performs the segmentation in an unsupervised manner, the
probabilistic tuning of the model parameters sets an important result for these
image segmentation approaches.
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(a) Expected Improvement (b) Probability improvement

(c) Int. Lower confidence bound (d) Int. probability improvement

Fig. 4. Convergence of the Bayesian optimization process for different acquisition func-
tions. The figure shows the distance between values of x selected consecutively (red
plots), and the minimum value of the performance index obtained in each iteration
(blue plots). (Color figure online)

(a) Ground truth (b) GC-BO

Fig. 5. Curvature comparison of three different subjects (left to right). The bottom
row shows the curvature obtained from the segmented tumors with GC-BO. The figure
shows the curvature obtained from the ground truth volumes. The figure shows that
regions with high saliency (i.e., red colors) match the ground truth data. (Color figure
online)

Table 1. Comparison with different methods proposed in [12] for brain tumor segmen-
tation. We report the results as in the BRATS challenge: Dice coefficient, Hausdorff
distance, sensitivity, and specificity (Some articles do not report some metrics, so they
are assigned to N.R).

Method Dice Hausdorff Sensitivity Specificity

3D U-Net [12] 0.9111 19.8741 N.R N.R

Tensor based feature extraction [2] 0.833 N.R 0.815 N.R

Volumetric Multi-modality Neural Network [4] 0.87 21.32 0.87 0.99

Label Distribution Learning [14] 0.86771 N.R 0.88816 0.99208

3D-SegNet architecture [12] 0.79767 23.64621 0.91027 0.97916

Our approach 0.88664 33.73749 0.88765 0.99849
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4 Conclusions and Future Work

In this paper, we propose a Bayesian optimization framework for tuning the
model parameters of a graph cuts method. Our method seeks to find the best
parameters that segment a given tumor contour in a probabilistic way. The exper-
imental results show that our approach derives in more accurate contours than a
given classical procedure in image segmentation with graph cuts. Besides, since
the model parameters are optimized, the resulting curvature of the segmented
tumor preserves main saliency regions that match the ground truth data. Finally,
our approach outperforms some important methods in the state-of-art that use
deep learning frameworks.

As for the future works, we plan to extend the classical Energy minimization
problem of the region growing approaches to propose a new function that can
be optimized with probability black-box functions.
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