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Abstract. Contour tracking methods such as Live Wire and Riverbed
have been widely used for several medical imaging applications such as
tissue and tumor segmentation. Several variations of these methods have
been proposed, but none of them is better than the others for all kind
of tasks and image modalities. In this paper, we propose an interactive
framework for medical image segmentation with four different contour
tracking methods with an intuitive interface for visualizing and choosing
the best option for each contour segment. The framework also includes
a classifier which indicates the most appropriated method in both auto-
matically and semi-automatically fashions. Our experiments employ a
robot user which simulates the human behavior and was able to indicate
the correct method for 67% of the segments.
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1 Introduction

Image segmentation consists of recognizing and delineating the edges of a par-
ticular object contained in an image. Several approaches accomplish this task
employing distinct strategies such as region-growing or clustering algorithms [10].
Human interaction during the segmentation or database training are often
required in order to achieve better results.

Within the medical area, image segmentation is key to an efficient diagnosis
and treatment of diseases [14,15]. It may be used to isolate or highlight objects
contained in an image of interest such as organs, tissues, and tumors. For that
purpose, it is mandatory to provide an user-friendly interface that enables the
specialist to visualize desired information without understanding unnecessary
technical concepts employed by image processing and analysis techniques.

This work presents an implementation of a user-friendly framework with an
interface in which a specialist may perform segmentations using four different
kinds of contour tracking methods: Live-wire, Riverbed, Lazywalk, and straight
lines. It runs all implemented methods simultaneously, allowing the user to select
the most suitable for each segment. A classifier suggests the best method as the
default, based on the contour segment features. Quantitative validation of the
proposed framework employs a robot user which simulates human interaction.
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2 Technical Background

2.1 Image Foresting Transform - IFT

The Image Foresting Transform (IFT) [8] is a methodology extensively used
for implementing several image processing operators including image segmenta-
tion [4–7]. In its context, the image is defined as a weighted graph G ∈ {V,E,w}
where V is a set of vertexes composed by each pixel, and E is an edge set defined
based on a binary adjacency relation A between pairs of pixels. w : E → � is a
function which assigns a weight value for each edge e ∈ E. The goal is to com-
pute an optimum path forest from G by apply a generalized version of Dijkstra
algorithm [3] with multiple source vertexes defined by a set of seeds S ⊂ V and
a smooth path propagation function f(π) for all paths π = {v0, v1, ..., vn} ∈ Π,
vi ∈ V , with eij = 〈vi, vi+1〉 ∈ E. This way, seeds compete among themselves
for the most connected pixels in the entire image domain according to a greed
path-propagation function.

The most commonly used adjacency relations are symmetric defining edges for
small neighborhoods around each vertex in the image domain, so that eij , eji ∈ E
if and L2 distance function d(vi, vj) ≤ α, for a small value of constant α.

The path propagation function has two components: an initial value for triv-
ial paths of only a single vertex and a propagation value for extended paths
during the algorithm computation. Equations 1 and 2 contain two commonly
used functions for several image processing problems. In these equations, δ is an
initial value assigned to a trivial path {v}, π · v is the concatenation of a vertex
v to the end of a path π.

fsum(〈v〉) = δ

fsum(π · vj) = fsum(π) + w(〈vi, vj〉) (1)

fmax(〈v〉) = δ

fmax(π · vj) = max{fmax(π), w(〈vi, vj〉)} (2)

Algorithm 1 describes IFT execution. The inputs are an image I, an adjacency
relation A, a path propagation function f , and a seed set S. The outputs are a
predecessor expressed as a function of the vertexes P : V → V, nil and a value
map given by function C : V → �. The predecessor map stores the predecessor
of each vertex in the optimum forest, that is, if P (vi) = vj , vj is the predecessor
of vi, and if P (vi) = nil, vi is a root of the forest. The value map contains the
optimum value of the path arriving at each vertex. The auxiliary structures are
a priority queue Q that sorts the path values in non-decreasing order and the
temporary variables prop val, status, vi, and vj .

In line 1, the initial graph is constructed based on the image dimension
and the adjacency relation. Then, in the first loop (lines 2–8) the seeds are
distinguished from the other vertexes. δ = 0 is assigned to all seed vertex values
(line 4) and δ = +∞ for the others (line 8). Also, all seeds are inserted into the
priority queue (line 5) and their predecessor function is set to nil (line 6). Finally,
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in the second loop (lines 19–17), the paths are propagated and the optimum-
path forest generated. The loop ends when the priority queue is empty, meaning
that all vertexes have been processed (line 9). A vertex vi with minimal value
is removed from the queue (line 10) and propagates its path to each adjacent
vj (line 11). The path is only propagated if the proposed value (computed in
line 12) is lower than its current value (line 13). In this case, the path value
and predecessor of vj are updated (lines 16 and 17) and the conquered pixel is
inserted into the queue (line 15) if it was not there yet (test in line 14).

Algorithm 1 – IFT algorithm

Input: Image I; adjacency rel. A; seed set S; path prop. function f .
Output: Predecessor function P ; Path Value function C.
Auxiliary: Priority queue Q; variables prop val, status, vi, vj .

1. Generate graph G = (V, E) from I,A
2. For each vi ∈ V
3. If vi ∈ S then
4. C(vi) ← 0
5. Q.insert(vi)
6. P (vi) = nil
7. Else
8. C(vi) ← +∞
9. While Q! = ∅
10. vi ← Q.remove minimum()
11. For each vj A(v)
12. prop val = f(πvi · 〈vi, vj〉)
13. If prop val < C(vj) then
14. If C(vj) == ∞ then
15. Q.insert(vj)
16. P (vj) = vi
17. V (vj) = prop val

2.2 Contour Tracking Algorithms

Live Wire (LW) is a contour tracking technique which is most commonly used
in a semi-automatic fashion [9]. It may be implemented using the IFT algorithm
by utilizing the path-propagation function f sum in Eq. 1. The edge weight
function w is defined by the complement of the gradient (e.g. Sobel, Canny)
of the image. The seed set consists of vertexes (or pixels) on the contour to be
delineated. Finally, the adjacency relation is normally symmetric with d(vi, vj) ≤√

2. After running the IFT algorithm, the contour is given by walking path
vertexes backwards using the predecessor map P . The same strategy is also
employed by Riverbed (RB) contour tracking technique [12], which simulates
the water flow going down a riverbed. The only difference of RB with respect to
LW is the usage of fl max in Eq. 3 as the path-propagation function.

Because of the summation in f sum function, LW is robust to the presence
of weak contours with small discontinuities and it tends to favor shorter tracks.
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RB, on the other hand, will follow paths with local maximal value despite of its
origins. As a result, RB is capable of following strong contours with unlimited
length, but it does not have a good behavior in the presence of small gaps or
high-frequency noise.

fl max(〈v〉) = δ

fl max(π · vj) = fmax(π) (3)

Lazywalk (LZ) algorithm was proposed to estimate the level of water bodies in
Remote Sensing Images [1]. It employs the path propagation function fmax in
Eq. 2. The idea of this method is to overcome the weakness of both the LW and
the RB. Nevertheless, LZ fails to follow paths with several discontinuities.

Most of the times, the contour detected by these algorithms is not acceptable
to a variety of applications. The solution used since the first implementation of
LW was to track sections of the contour running the algorithm more than once.
The final pixel of the first execution is the seed of the second. In this context,
seeds are called anchors. Figure 1 shows an example of the execution of LW, RB,
and LZ to track the external contour of the brain in a magnetic resonance image.

2.3 Supervised Classifiers

Descriptors. Image descriptors are used in machine learning algorithms for
a series of distinct tasks such as image classification and content based image
retrieval [11]. Descriptors summarize important information related to color, tex-
ture, intensity, and shape from images allowing a faster and more comprehensive
evaluation of their content. As medical images such as computed tomography,
ultrasound, and magnetic resonance only have one color channel, the focus of
this paper will be on intensity, texture and shape descriptors.

Quantized image histogram is an intensity descriptor which removes all spa-
tial distribution information and summarizes the frequency in which intensities
appear in the image. A vector bin stores the quantity of pixels in intensity ranges.
If the histogram is normalized, each bin contains the probability of the intensity
range for a pixel chosen randomly.

Texture based descriptors may be derived from statistics by computing the
moments of the histogram given by Eq. 4, where L is the number of bins of the
histogram, zi is the intensity of the pixel, p(zi) is the probability of intensity zi,
and n is the number of the moment. For instance, with n = 1 Eq. 4 computes
the average of intensities and for n = 2 it denotes their variance.

μn =
L−1∑

i=0

(zi − m)np(zi) (4)

m =
L−1∑

i=0

zip(zi)
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The Local Binary Pattern (LBP) is another texture descriptor [13]. It employs
a sliding window over the image setting to 1 the pixels with intensity greater
than or equal to the central pixel and setting to 0 the others. Then, each pixel is
multiplied by a power of two given by its position inside the window. The sum of
these multiplications is the LBP descriptor for the central pixel of the window.
Histogram, statistical moments, and LBP may be used as global descriptors,
extracted from the entire image, or as a local descriptor from a limited area.

An example of a local shape descriptor is the eccentricity of a region. It
consists of the ratio between the longest and the shortest axises of an object.
The longest axis is the largest distance between any two points of the object and
the shortest axis is the smallest distance between any two points in its boundary,
perpendicular to the longest axis.

A border segment of an object may also be described by its curvature: the
ratio between the diameter and the distance between its initial and final points.

Support Vector Machine. Support Vector Machine (SVM) [2] is a method-
ology applied for data classification, regression, and outlier identification. Given
data belonging to two distinct classes, linear SVM classifier tries to locate the
best hyper plan which separates the samples of the classes maintaining a small
margin between them. The algorithm may also be modified to allow a few out-
liers to lay inside the margin or in the opposite side of its class. There are also
variations of non-linear SVM which separates classes using more complicated
geometries than hyper planes [16].

There are some solutions for multi-class problem using classification including
the one-vs-one with N(N −1)/2 classifiers, given N distinct classes, and the one-
vs-all with only N classifiers. In the later case, the classifier which outputs the
highest confidence is selected as indicating the correct class.

3 Proposed Framework

An environment was firstly implemented for interactive contour tracking in C++
using Qt Graphical Toolkit. 2D and 3D images may be loaded and presented
in canvasses. Then, the user clicks on the desirable contour inserting anchors
through out the track. Figure 1 shows an example of the usage of the interface
on a sagittal slice of a human brain in which green circles represent anchors and
the contours in different colors represent distinct path of: LW in green; RB in red;
LZ in cyan; and a straight line in yellow. The purple contours are consolidated
tracks of previous iterations.

At each iteration the user moves the mouse over the contour in order to find
the longest correctly tracked segment by at least one of the methods. When such
segment is found, the right mouse button switches among the methods and the
left mouse button establishes the anchor. The straight line is useful for segments
with low contrast and high noise in which all other methods behave poorly.

The next step was to automatically suggest the best contour tracking method
as the default option to the user, reducing the number of clicks and consequently,
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Fig. 1. Contour tracking interface: green circles: anchor points; and segments: pink:
previous iterations; yellow: straight line; red: RB; green: LW; and cyan: LZ. (Color
figure online)

the execution time. It employs a SVM classifier over descriptors extracted from
segments computed by each method and the minimum rectangular region encom-
passing them. This procedure reduces the number of user interactions since the
software suggests the best method most of times. The following descriptors are
extracted from the paths given by each method and then concatenated into a
single descriptor:

(1) Perimeter; (2) Euclidean distance between anchors; (3) Curvature; (4)
1st moment of contour segment; (5) 2nd moment of the contour segment; (6) 3nd

moment of the contour segment; (7) 4nd moment of the contour segment; (8)
LBP descriptor of the contour segment; (9) Global histogram of the minimum
rectangular region quantized in four bins; (10) Histogram of the intensities of
the contour segment pixels, quantized in four bins; and (11) Histogram of the
path values of the contour segment pixels, quantized in four bins.

SVM was trained and validated utilizing two separated sets of brain image
slices with ground-truth segmentation of the human brain. From a random initial
contour pixel, the best method is selected, being the one that outputs the longest
correct contour. The concatenated descriptor of all methods is extracted and

Table 1. Best results among feature combinations

Linear SVM

Features Feature set Accuracy (R2)

1 6 0.625 0.054

2 6, 10 0.64 0.008

6 4, 6, 7, 8, 10, 11 0.707 −0.001

10 1, 3, 4, 5, 6, 7, 8, 9, 10, 11 0.735 0.03

11 All 0.731 0.04
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used for training and validation. Sets containing any number from one to all
descriptors were used to investigate their relevance. The mean accuracy and
the correlation coefficient R2 were computed and the best generated results are
shown in Table 1. It shows that only descriptor 2 is irrelevant for classifying the
best method for tracking a given contour.

4 Experiments

The dataset used in our experiments consists of 360 2D slices extracted from
18 3D magnetic resonance images of human brains (6 sagittal, 6 axial, and 8
coronal slices from each 3D image) from the International Brain Segmentation
Repository (IBSR)1. The slices used for this experiment were different from the
ones used for descriptor evaluation. Figure 2 shows a sample axial slice and its
corresponding segmented brain mask.

Fig. 2. (Left) Original MRI T1 axial slice. (Right) Binary segmentation brain mask.

To verify the efficiency of the framework, we implemented a robot user which
simulates the human behavior for the problem. The task is to segment the human
brain using the contour tracking tool. It selects a random initial pixel and then
increases the size of the contour while at least one of the methods is following the
correct contour according to the ground-truth. Note that the ground-truth is just
used to select the segment length. After that, the descriptors from the segment of
all methods are extracted, concatenated, and classified by SVM classifier using
the leave-one-out method. For each round of the experiment, the segments of 17
images are used for training leaving the segments of the other image for test. If
SVM outputs the correct method, this counts as a hit. Table 2 shows the amount
of hits over the total amount of segments. In total, we used 7048 test segments.

Table 2. Accuracy results of experiments with robot user. X is the average value.

Test img 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 X

Linear SVM .67 .62 .60 .77 .57 .63 .71 .75 .65 .68 .71 .71 .71 .62 .64 .64 .71 .69 .67

RBF SVM .67 .62 .59 .77 .57 .63 .71 .75 .65 .68 .71 .70 .70 .62 .63 .64 .69 .69 .67

1 Their images and manual segmentations are provided by the Center for Morpho-
metric Analysis at Massachusetts General Hospital (http://www.cma.mgh.harvard.
edu/ibsr/).

http://www.cma.mgh.harvard.edu/ibsr/
http://www.cma.mgh.harvard.edu/ibsr/
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5 Conclusion

In this paper, we propose a novel interactive framework for contour tracking
which allows a more precise execution based on three techniques that comple-
ment each another. The user may choose the most accurate method for each
segment of the contour by pressing a mouse button. Also, we developed an
automated classifier which suggests the best technique with more than 67% of
accuracy. Future works include testing other classifiers and descriptors.

Acknowledgment. The authors would like to thank FAPESP (2016/21591-5) for
funding.

References

1. Barreto, T., Almeida, J., Cappabianco, F.: Estimating accurate water levels for
rivers and reservoirs by using sar products: a multitemporal analysis. Pattern
Recogn. Lett. 83, 224–233 (2016)

2. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

3. Dijkstra, E.: A note on two problems in connexion with graphs. Numerische Math-
ematik 1, 269–271 (1959)

4. Falcão, A.X., da Cunha, B.S.: Multiscale shape representation by the image forest-
ing transform. In: Proceedings of SPIE, vol. 4322, pp. 1091–1100 (2001)

5. Falcão, A., Bergo, F.: Interactive volume segmentation with differential image
foresting transforms. IEEE Trans. Med. Imaging 23(9), 1100–1108 (2004)

6. Falcão, A., Costa, L., da Cunha, B.: Multiscale skeletons by image foresting trans-
form and its applications to neuromorphometry. Pattern Recogn. 35(7), 1571–1582
(2002)

7. Falcão, A., Cunha, B., Lotufo, R.: Design of connected operators using the image
foresting transform. In: Proceedings of SPIE, vol. 4322, pp. 468–479 (2001)

8. Falcão, A., Stolfi, J., de Lotufo, R.: The image foresting transform: theory, algo-
rithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 19–29
(2004)

9. Falcão, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch, B., Lotufo, R.: User-
steered image segmentation paradigms: live wire and live lane. Graph. Models
Image Process. 60(4), 233–260 (1998)

10. Haralick, R., Shapiro, L.: Image segmentation techniques. Comput. Vis. Graph.
Image Process. 27(3), 389 (1984)

11. Liu, Y., Zhang, D., Lu, G., Ma, W.: A survey of content-based image retrieval with
high-level semantics. Pattern Recogn. 40(1), 262–282 (2007)

12. Miranda, P., Falcao, A., Spina, T.: Riverbed: a novel user-steered image segmen-
tation method based on optimum boundary tracking. IEEE Trans. Image Process.
21(6), 3042–3052 (2012)
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