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Abstract. Deep brain stimulation (DBS) is a neurosurgical method to
treat symptoms of Parkinson’ disease. Several computational models,
mostly based on finite element method (FEM) have been employed to
describe the interaction of electromagnetic waves in brain tissues dur-
ing DBS. Also, for planning the DBS, it is necessary to estimate with
precision the neural response generated by electrodes in the stimulated
region, what it is known as volume of tissue activated (VTA). However,
this estimation should consider the intrinsic properties of each patient,
therefore DBS parameters must be adjusted individually. In this work,
we propose a 3D interaction module for estimating the DBS parameters
(amplitude, contacts, among others) from a desired VTA using support
vector machines (inverse problem). Also, we developed an interactive
application for analyzing the VTA generated by DBS in the subthalamic
nucleus (STN) combining medical imaging and non-rigid deformation
models. This module is a part of the NEURONAV software, previously
developed for clinical support during postoperative therapy of neuro-
modulation performed in Colombian PD patients. Outcomes show that
it is possible to estimate with high accuracy the DBS parameters for
different subjects.

1 Introduction

Deep brain stimulation (DBS) is a well-established treatment for Parkinson’s dis-
ease, dystonia and essential tremor [1]. To investigate the therapeutic effects and
undesirable side effects, it is necessary to estimate the neural response of brain
tissue during DBS, known as volume of tissue activated (VTA) [2]. Currently,
DBS devices operate in an open loop, where the stimulation parameters are
configured in the surgical planning. For this reason, patients are stimulated with
fixed values of amplitude, frequency and other stimulation parameters previously
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set by neurosurgeon [3]. Therefore, the selection of DBS-parameters performed
by the neurosurgeon is an empirical and complex process that requires great
skill and clinical experience, and for some cases the therapeutic results are not
optimal [4,5].

Nowadays, the methodology for programming the DBS device is based on
changing the amplitude and frequency until some symptoms disappear. How-
ever, this procedure may cause side effects and a rapid deterioration of device
batteries [6,7]. To avoid side effects, it is necessary to make a good adjustment
of DBS-parameters and determine the VTA previously defined by the neurosur-
geon [8]. Some procedures have been proposed in literature to deal with this
issue. For example, in [9], a methodology is proposed to clarify the mechanism
of DBS by using computer simulations and finite element method (FEM). This
first attempt allowed to relate the VTA with therapeutic results in PD patients.
Nevertheless, it did not resolve the inverse problem: to find optimal parameters
from a desired VTA. Then, the authors of [10] developed an interesting app-
roach to find optimal parameters of DBS through detailed models of electrode-
tissue interface, achieving interesting clinical outcomes and proving that opti-
mal parameters can be found by analyzing the VTA. On the other hand, due
to technological advances, it is possible to collate information on electrode posi-
tions with clinical effects, providing a visual representation of the electrical field
related to the stimulated nucleus. It allows to incorporate patient-specific com-
puter models to customize DBS parameter settings for each patient. Any exam-
ples include frameworks closed-source such as: the Boston Scientific Guide DBS
system, Medtronic Optimise system and Renishaw NeuroInspire system [5,11],
and frameworks open-source such as: DBSproc [12]. However, these systems do
not identify with acceptable accuracy the parameters of neuromodulation in the
treatment of Parkinson’s disease. For this reason, the VTA analysis and optimal
parameters of DBS are research topics with considerable gaps, because there are
not significant studies regarding the inverse problem of the DBS.

The proposed methodology is performed from initial settings of the DBS,
coupled with medical images obtained in the surgical procedure and brain atlas
established in a previous work within the Research Group in Automatics of the
Universidad Tecnológica Pereira, called NEURONAV [1]. The main objective
is to estimate configuration parameters in the DBS device during postopera-
tive therapy of PD patients. To do this, we developed a graphical model

with deformable registration of medical images, where the neuro-

surgeon can set the desired VTA to achieve good therapeutic results and
minimal side effects in patients with PD. Then, the proposed system based on
a support vector machine (SVM) defines a configuration of the DBS device that
adjusts the desired electrical propagation. This proposal focuses on the solution
of the inverse problem, which consists of estimating and setting the stimulation
parameters for DBS electrodes (voltage/current, electrode impedance, frequency,
pulse widths, and contacts), given a previous VTA set by the neurosurgeon.
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2 Materials and Methods

2.1 Toolboxes

To build the graphic module, we use open source tools written in c++. To
achieve an interactive tool where the neurosurgeon can identify, visualize and
manipulate the VTA, we employed the visualization tool kit VTK1. To build
a graphical user interface compatible with VTK and 3D graphics support via
OpenGL, we used FLTK2 toolkit that incorporates a GLUT emulation. Finally,
to simulate the geometric variations of the VTA, we use the GetFEM3 tool,
which offers a framework for solving potentially coupled systems of linear and
nonlinear partial differential equations with the finite element method (FEM).
GetFEM is interconnected with languages such as python and allows to solve
problems in 1D, 2D and 3D.

2.2 Surface Reconstruction

The 3D representation of VTA is done with tetrahedral mesh elements using the
Delaunay method. This technique connects polygons to plot the surface of the
VTA previously estimated with a GetFEM. In the bipolar configuration, it is
necessary to take into account the electrode dimensions to decide which are the
points corresponding to the active contacts that interact with the VTA surface.
Figure 1 illustrates the pipeline of surface reconstruction inside the graphical
module. The data objects (source) represent and provide access to data, and
the process objects (filter) operate over data objects. Here, the connections are
made using the methods setInput()/getOutput(). Once the model is built, the
execution of the pipeline must be carefully controlled. In this regard, VTK uses
a process of implicit distributed update.

SOURCE

vtkPolyData

vtkPoint vtkCell

Read - Write VTA

FILTER

vtkDelaunay3D

vtkDataSetSurfaceFilter

MAPPER

vtkDataSetMapper

ACTOR

vtkActor

vtkTransform

RENDER

vtkRender

vtkRenderWindowInteractor

vtkRenderWindow

Fig. 1. Pipeline for the reconstruction of a VTA previously estimated with GetFEM.

1 http://www.vtk.org/.
2 http://www.fltk.org/.
3 http://download.gna.org/getfem/html/homepage/.
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2.3 Geometric Variations

The typical procedure to represent a point in a 3D environment is through
cartesian vectors of three elements, p = (x, y, z). The geometric transformations
are represented in homogeneous coordinates by a 4 × 4 transformation matrix
denominated T, such that homogeneous coordinates of a point P = (x, y, z, 1),
becomes geometrically at point P′ = (x′, y′, z′, 1) with the following operation
P′ = T×P, known as affine transformation:
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To find the area of stimulation expected within the STN region, we apply
the affine transformation to the actor object for simulating the neural activation
desired by the neurosurgeon. Accordingly, we perform a transformation operation
(vtkTransform) over the object (vtkActor). To apply a scaling matrix on the
actor object, we center the object in the coordinates (0, 0, 0) of the render
window.

2.4 Parameters Estimation with Machine Learning

We train a set of machine learning algorithms using 1000 isotropic VTA models
validated by the medical team of The institute of epilepsy and Parkinson of the
eje cafetero-Neurocentro, Colombia. Specifically, we train a SVM-regressor for
the amplitude and pulse width. For active contacts (C0 − C3) we employ SVM
classifiers. In this context, the labels y are the parameter values. While, the
numeric flag of VTA (0 refers to non-VTA and 1 is VTA positive) concatenated
with the spatial coordinates correspond to the training features X.

2.5 Experimental Setup

For the graphical module of VTA analysis, we use the Universidad Tecnologica
de Pereira (DB-UTP) database. It contains recordings of MRI studies (T1 and
T2 sequences with 1×1×1 mm3 voxel size) from four patients with Parkinson’s
disease. The STN region in MRI studies was labeled for specialists of Neuro-
centro. We use the DBS electrodes 3387 and 3389 manufactured by Medtronic4

(Medtronic, Inc. USA). Both electrodes consist of four contacts with a length of
1.5 mm separated by 1.5 mm (3387) and 0.5 mm (3389). The diameter is 1.27 mm
and the contact area has 6 mm2. Each contact can be used as anode or cathode
in bipolar electrode configuration or as cathode in monopolar stimulation setting
[13]. The electric field was simulated in the neighboring of STN, with an electric
potential in a range of 0.5 V to 10.5 V with steps of 0.5 V, and pulse width of

4 http://professional.medtronic.com/pt/neuro/dbs-md/prod.

http://professional.medtronic.com/pt/neuro/dbs-md/prod
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60µs to 450µs (steps of 30µs). Active contacts are C0, C1, C2, C3. GetFEM is
used to solve specific VTA models for each patient.

Figure 2 shows the flow diagram to run experiments with isotropic models.
First, it is performed the data acquisition: medical imaging, VTA points, and
the database for training the learning algorithms (to identify the stimulation
parameters for a new geometric variation of the VTA). Second, we observe the
processes performed to modify interactively the VTA: reconstruction of the sur-
face and affine transformation used for the deformation of the VTA. Finally, we
have the output data (desired VTA) and the corresponding parameter values
given by the SVMs.

ACQUISITION PROCESS MANAGEMENT

Load DB pre-trained

     Surface
Reconstruction

      Affine
Transformation

    Apply
Configuration Desired VTALoad VTA

    Machine learning
     technique SVM
    for estimation of
stimulation parameters

Load CT and MRI Image

Fig. 2. Flow diagram for identifying DBS parameters given a desired VTA (inverse
problem solution).

3 Experimental Results and Discussion

3.1 Parameters Estimation

In Table 1, we show accuracy results for the DBS parameters estimated with the
SVM. The dataset for training the SVM has 1000 VTA models. We employ a
hold-out validation scheme, where 70% of data is used for training, and 30% is
kept for validation. We repeat the experiment 100 times, with a random selection
of training and validation samples. These results show high accuracy to identify
the parameters for a desired VTA. Therefore, the inverse solution problem can
be solved with machine learning techniques.

In Fig. 3, we observe a simulated monopolar VTA given a geometric variation
desired by a neurosurgeon. This procedure allows to control and visualize the
neural activation, reducing side effects and minimizing the battery consumption
of the implanted pulse generator. The electrode is located within the subthalamic
region and the first contact is active and it stimulates a large section of the STN.
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Table 1. Table of results of the accuracy in estimating the parameters.

Parameter Accuracy

Amplitude 95,3 ± 4,1 %

Pulse width 96,9 ± 3,1 %

C0 88,13 ± 1,95 %

C1 84,67 ± 2,11 %

C2 88,20 ± 1,99 %

C3 89,13 ± 1,73 %

Fig. 3. VTA monopolar within the STN for a desired configuration. The blue cylinder
is the stimulating electrode (Medtronic-3387) with four contacts (green areas), the
VTA corresponds to the red surface and the STN is the cyan colored structure. (Color
figure online)

3.2 Surface Reconstruction and Geometric Variations

Best computational performance of the module with an affine transformation
to the vtkActor in the render window. We can see in Fig. 4 the points cloud
which returns the GetFEM software, which constitutes a discrete estimation
of VTA. For a simulation neural response generated by DBS in the brain, the
Laplace equation describes the mathematical model. For this reason, a partial
differential equation must be solved with finite element method. Once, the VTA
points (spatially distributed) are estimated with GetFEM, we transform them
in a surface depending of the type of stimulation (monopolar or bipolar).
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Fig. 4. Monopolar and bipolar VTA, (A) Point cloud, which returns GetFEM. (B)
Reconstruction delaunay as from the point cloud. (C) Geometric variations on applying
affine transformation vtkActor.

4 Conclusions and Future Work

In this work, we presented an interactive module for DBS parameters identifica-
tion through supervised machine learning. The estimation of these parameters
depends on a geometric variation of isotropic VTA models given by a neurosur-
geon. This is known as the inverse problem of DBS. This module is integrated
to the previously developed software: NEURONAV [1].

Results demonstrated that inverse problem can be successfully solved using
machine learning methods. Also, the geometric variations allows to estimate
monopolar and bipolar configurations of parameters. In addition, The module
allows to visualize the variations of VTA without considerable delays. This prop-
erty could be used in DBS therapy for controlling therapeutic outcomes and side
effects in PD patients.

Three main tasks are established as future works: First, the proposed scheme
can be used with anisotropic models studies using diffusion tensor imaging (DTI)
of each patient. Second, to apply volume reduction techniques for generating
representative models instead of a manual manipulation of the VTA. Third, to
use codifications of GPU through the API of CUDA for improving processing
times.
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