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Abstract. The segmentation and characterization of the ovarian struc-
tures are important tasks in gynecological and reproductive medicine.
Ultrasound imaging is typically used for the medical diagnosis within
this field but the understanding of the images can be difficult due to
their characteristics. Furthermore, the complexity of ultrasound data
may lead to a heavy image processing, which makes the application of
classical methods of computer vision difficult. This work presents the first
supervised fully convolutional neural network (fCNN) for the automatic
segmentation of ovarian structures in B-mode ultrasound images. Due
to the small dataset available, only 57 images were used for training. In
order to overcome this limitation, several regularization techniques were
used and are discussed in this paper. The experiments show the ability
of the fCNN to learn features to distinguish ovarian structures, achiev-
ing a Dice similarity coefficient (DSC) of 0.855 for the segmentation of
the stroma and a DSC of 0.955 for the follicles. When compared with
a semi-automatic commercial application for follicle segmentation, the
proposed fCNN achieved an average improvement of 19%.

Keywords: Ovarian structures segmentation · Ultrasound imaging ·
Convolutional neural network (CNN)

1 Introduction

Diseases of the female reproductive system can cause pain and discomfort, hor-
monal dysfunctions, infertility and even death, representing around 16% of all
the cancers diagnosed in women worldwide and affecting annually more than
1.85 million women [10]. Due to the difficulty of distinguishing between benign
and malignant tumors and to a high interobserver variability, ovarian malignant
tumors result in a 68% fatality rate in the European Union [10]. A better char-
acterization of the ovarian structures can have an important role in the early
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detection of pathologies (e.g ovarian cyst, polycystic ovarian syndrome or even
ovarian cancer), while it can also help the monitoring of follicle growth and
distribution, important features for assisted reproductive treatments.

The brightness mode (B-mode) ultrasound imaging is commonly used in the
gynecological clinical practice because it allows a visualization of the ovary and
its structures. In B-mode images, follicles are represented as hypo-echogenic
elliptical structures, while the stroma of the ovary exhibits a slight variation
in texture relative to its surrounding tissue and has partially hyper-echogenic
boundaries. Figure 1 shows an example of a gynecological B-mode image con-
taining an ovary with three follicles, and their manual segmentation.

Image segmentation methods are often used to automatically extract objects
from images, reducing the time of analysis and also diagnostic errors. However,
ultrasound image segmentation is not easy due to the presence of several image
artifacts and noise [6]. According to the latest review in follicles detection [7],
the methods used to segment ovarian structures can only detect and measure
large follicles. To the best of our knowledge, the segmentation of the stroma has
not received enough attention, being only used to reduce the search space for
follicle detection [1].

Neural network techniques have been achieving impressive results in visual
recognition systems. Among them, fully convolutional neural networks (fCNN)
are specially good at learning image features from training data and have proved
to be a powerful tool for segmentation of biomedical images [8]. The herein
presented research aims to explore the use of fCNNs for the segmentation of the
ovarian structures, namely stroma and follicles, in a single process.

Fig. 1. B-mode image of an ovary and three follicles, and their segmentation.

2 Methodology

This section presents the methods implemented in this work to segment the
ovarian structures in B-mode images. In the following subsections, the proposed
system, its fCNN architecture and loss functions used are detailed.

2.1 Architecture

An overview of the proposed system is shown in Fig. 2. Switches S1 and S2 can
be triggered to change the input data of the network and the tasks to be trained,
respectively. These changes can work as regularization of the fCNN.
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Fig. 2. Overview of the proposed system with multiple tasks.

When switch S1 is turned on, the B-mode image is preprocessed by a contrast
limited adaptive histogram equalization (CLAHE) [11] in order to enhance local
contrast and improve the visualization of the ovarian structures. Both CLAHE
and original images can be used as input data, as represented in Fig. 2, left side.

For the training, the switch S2 can be used to activate the multi-task learning,
which consists of using the same network to simultaneously solve multiple tasks.
In this work, a mask of the ovary is used as ground truth of an auxiliary task
in order to prevent the network to classify elements outside the ovary as follicles
or from classifying pixels inside of the ovary as background. The auxiliary task
acts as regularization during the training of the network [9], and can help the
network to focus the attention on difficult cases [3].

The fCNN architecture used in this work (Fig. 3) is based on the U-net [8].
This architecture consists of a downsampling stream (left side) followed by a
symmetric upsampling stream (right side). Data from downsampling stream are
skip connected to the corresponding layer in the upsampling stream. The convo-
lutional layers are followed by a batch normalization layer and ReLu activation
layer; also a dropout layer is inserted between them, when pooling or concate-
nating operations are performed. The last layer is a 1 × 1 convolution followed
by a softmax, which produces a pixel-wise discrete probability distribution of
the three classes of interest (follicle, stroma of the ovary or background).

2.2 Loss Function

The proposed loss function can be decomposed into the main and the auxiliary
tasks. Also, weight maps can be applied as regularization, in order to penalize
wrong classifications. The details of each step are explained below.

The average Dice Similarity Coefficient (DSC) of each class, as proposed
in [5], is the main component of the loss function. The average DSC can be
defined as DSC(Y, Ŷ ) = 0.5[DSC(Yf , Ŷf ) + DSC(Ys, Ŷs)], where Y represents
the predictions and Ŷ represents the ground truth (GT); the indexes f and
s represent the follicles and the stroma, respectively. The background was not
considered in the loss function because it is the largest region in the image and,
so, the results can be heavily influenced by it.

In addition, two weight maps were computed to be applied with the DSC.
The first one (Wf ) intends to penalize wrong classifications between nearby
follicles, as in w(x), defined by U-net [8]. The value of Wf (i) is calculated using
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Fig. 3. Architecture of the implemented fCNN.

the distance between the ith pixel and the borders of the two nearest follicles.
The second one (Wo) is applied to penalize false detections of ovarian structures
in the background region, and is defined for each pixel as:

Wo(i) =

⎧
⎪⎨

⎪⎩

0 if i is inside the ovary
1 if Δo(i) > ln(10)σ2

0.1 · exp(Δo(i)
σ2 ) otherwise,

(1)

where Δo(i) is the distance from pixel i to the nearest pixel of the ovary, and σ
is a constant that controls the distribution of the weights around the ovary.

Then, the loss function of the main task is computed as:

L1(Y, Ŷ ) = 1 − λ1DSC(Y, Ŷ ) + λ2

∑
i Yf (i)Wf (i)
∑

i Yf (i)
+ λ3

∑
i Ys(i)Wo(i)
∑

i Ys(i)
, (2)

where λ1,2,3 ∈ R
+ are constants used to adjust the influence of each weight map.

The loss function of the auxiliary task is given by:

L2(Yo, Ŷo) = 1 − DSC(Yo, Ŷo), (3)

where Ŷo is the GT mask of the ovary and Yo is the predicted ovary.
Finally, the total loss function is defined as:

L(Y, Ŷ ) = α1L1(Y, Ŷ ) + α2L2(Yo, Ŷo) ∀α1,2 ∈ R
+|α1 + α2 = 1, (4)

where α1,2 are constants used to adjust the influence of each component.

2.3 Implementation Steps

The proposed system was evaluated using six variations. The input data of the
fCNN (Fig. 2) is changed by the switch S1; and the switch S2 controls the multi-
task learning. When S2 is “off”, the Eq. (4) is written with α1 = 1 and α2 = 0,
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otherwise α1 = 0.75 and α2 = 0.25. Finally, the values of λ2 and λ3, in Eq. (2),
determine if the weight maps are added or not to the loss function. For all these
experiments λ2 = λ3 ∈ [0, 1], and λ1 = 1. The values of α, λ and σ were defined
empirically and were not changed during each train.

All original B-mode images were converted to gray-scale and cropped to
512 × 512 pixel. Aside from the batch normalization layers, no regularization or
normalization to zero mean and unit variance were applied to the input images.
To increase the training set, a data augmentation process using random linear
transformations such as rotation, translation, flip and zoom was applied in each
iteration of the training. Each iteration was performed with a batch of 4 images.

The network was trained using Adam (Adaptive Moment Estimation) opti-
mizer [4] with an initial learning rate of 10−2. In this state-of-the-art stochastic
optimization method, there is a learning rate for each weight of the network, and
the learning rates are adapted during the training. To reduce the probability of
overtraining, an early stopping callback is set to stop the training if the improve-
ment of the validation loss is less than 10−3, during 50 epochs. This work was
implemented in Python 2.7 using Keras 1.2.2 framework with TensorFlow 1.0.0
as backend.

3 Results

This section presents the dataset, the evaluation methodologies and the obtained
results.

3.1 Dataset

The dataset consists of 87 B-mode images. Each image contains one ovary of a
woman in childbearing age with at least one follicle. The images were acquired
with an Ultrasonix SonixTouch Q+. During acquisition, the medical doctor per-
formed semi-automatic segmentations using the Ultrasonix Auto Follicle seg-
mentation (AF) tool [2]. It must be noted that not all of the follicles were seg-
mented by the doctor, leading to, for instance one ovary with 4 follicles and
only one semi-automatic segmentation. Posteriorly, a medical expert manually
segmented each ovary and each follicle to produce the GT. The images were
randomly divided as: 57 for training, 15 for validation and 15 for testing.

3.2 Evaluation

The quantitative evaluation of the results was divided into two different valida-
tion methodologies. First, the DSC between the GT and the predicted segmen-
tations, obtained by the different trained networks, are presented. Secondly, a
single follicle evaluation (SFE) was performed and then compared with the AF
segmentation, mentioned in Sect. 3.1.

The motivation for SFE lays on the fact that a GT mask may have more
segmented follicles than the ones annotated by the doctor using the AF tool
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during the acquisition. For example, while the GT of the test set has 44 follicles
manually segmented, only 25 follicles were annotated with the AF tool. The SFE
verifies if a follicle segmented by the AF has a corresponding follicle in the GT
and in the fCNN segmentations. Then, for each follicle present in the AF data,
the DSC of GT vs AF and GT vs fCNN are computed.

In Fig. 4 two scenarios of SFE are illustrated. Figure 4(a) represents a SFE
with a larger overlay while Fig. 4(b) represents an incorrect segmentation. In this
case, the fCNN and the AF segmented a large single follicle which merged the
existing two follicles into one, leading to an inaccurate detection.

Fig. 4. Illustration of SFE for GT (green) vs AF/fCNN (red); yellow represents the
agreement with GT. The correspondences between the GT and the predictions are
represented by the arrows. (a) Successful case where a single follicle in GT corresponds
to a single follicle segmented by AF and fCNN; (b) an incorrect segmentation since
two follicles were merged. (Color figure online)

3.3 Results

The overall DSC results for the six trained networks are shown in Table 1. The
fCNNs #1 and #4 show the best overall DSC for the follicles and the stroma. In
Fig. 5, four examples of the segmentation performed by the developed fCNNs are
shown. The highest DSC achieved for follicles was 0.955, with the fCNN #1 –
Fig. 5(a), and for the stroma was 0.855, with the fCNN #3 – Fig. 5(b). Also,
a standard case and the image with the worst segmentations are presented in
Fig. 5(c) and (d), respectively.

Table 1. Overview of DSC for the predicted segmentations of the fCNN trained.

Architecture Follicle DSC Stroma of ovary DSC

# S1 S2 W. Maps Median Mean Std. Median Mean Std.

1 Off Off λ2,3 = 0 0.839 0.757 0.207 0.695 0.657 0.138

2 Off On λ2,3 = 0 0.844 0.691 0.331 0.651 0.525 0.251

3 Off On λ2,3 = 1 0.779 0.739 0.221 0.678 0.624 0.195

4 On Off λ2,3 = 0 0.826 0.784 0.197 0.687 0.677 0.085

5 On On λ2,3 = 0 0.809 0.765 0.172 0.612 0.632 0.088

6 On On λ2,3 = 1 0.783 0.763 0.111 0.623 0.619 0.107
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Fig. 5. Examples of segmentation results: (a) the best follicle DSC, (b) the best stroma
DSC, (c) a standard case, (d) the worst image.

In a qualitative analysis, the application of multi-task learning prevented
follicles for being classified outside the ovary. This approach obtained a fast
convergence in training and the smallest validation errors. However, for three
test images with low contrast – e.g. Fig. 5(d), the ovarian structures were poorly
or not detected, which impaired the overall results. The application of CLAHE
improved the results and the use of the weight map Wo solved the problem
of false positive ovaries. However, weight map Wf did not significantly reduce
misclassification of the pixels between too close follicles; in addition, it produced
the wrong classification of the outer boundary of the follicles as background.

The results of the SFE are presented in Table 2. The AF was overcome by
all architectures except the fCNN #2. The best overall results for the SFE were
obtained with the simplest architecture. Although the CLAHE improved the
contrast in boundary regions, the SFE did not improve when CLAHE was used.

Table 2. Overview of DSC for single follice evaluation (SFE).

Method Median Mean Std. Max.

fCNN #1 0.823 0.735 0.206 0.961

fCNN #2 0.575 0.556 0.321 0.972

fCNN #3 0.817 0.723 0.237 0.952

fCNN #4 0.755 0.659 0.299 0.972

fCNN #5 0.775 0.691 0.237 0.971

fCNN #6 0.773 0.729 0.176 0.927

Auto Follicle (AF) 0.712 0.615 0.271 0.948

4 Conclusions

In this paper, the first supervised fCNN for the segmentation of the stroma and
follicles of ovaries in B-mode images, in an end-to-end fashion, was presented.
Despite being trained with a small dataset, the developed method does not
depend on heavy preprocessing or post-processing strategies. The visual results
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show that a fCNN can learn features that allow to distinguish the ovarian struc-
tures in B-mode images. This functionality could allow a better characterization
of the overlooked stroma region. Also, the proposed method proved to be more
accurate than a commercialized semi-automatic method for follicle segmentation.

Despite presenting slightly better results in the validation set, the proposed
regularization techniques show worse overall DSC results for the test set, when
comparing with the simplest fCNNs (#1 and #4). This may have been caused
by the increasing of the complexity of the segmentation task and by the over-
whelming of the data information by the regularization terms. An improvement
of the proposed regularizations should be investigated to yield better results.

For future steps of this investigation, the proposed fCNN will be extended to
a deeper architecture, increasing the number of learnable features. Due to the
scarcity of data, a k-fold cross-validation should be applied to better evaluate
the consistency of each architecture. Also, a more efficient loss function will be
elaborated in order to force the network to learn the boundaries of the follicles.
Finally, the increasing of the dataset is fundamental to improve the variability
of the training set.
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7. Potočnik, B., Cigale, B., Zazula, D.: Computerized detection and recognition of
follicles in ovarian ultrasound images: a review. Med. Biol. Eng. Comput. 50(12),
1201–1212 (2012)

8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-319-24574-4_28


End-to-End Ovarian Structures Segmentation 689

9. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv
(2017). http://arxiv.org/1706.05098

10. Stewart, B.W., Wild, C.P.: IARC World Cancer Report 2014. International Agency
for Research on Cancer, Lyon (2014)

11. Zuiderveld, K.: Contrast limited adaptive histogram equalization. In: Heckbert,
P.S. (ed.) Graphics Gems IV, pp. 474–485. Academic Press Professional Inc, USA
(1994)

http://arxiv.org/1706.05098

	End-to-End Ovarian Structures Segmentation
	1 Introduction
	2 Methodology
	2.1 Architecture
	2.2 Loss Function
	2.3 Implementation Steps

	3 Results
	3.1 Dataset
	3.2 Evaluation
	3.3 Results

	4 Conclusions
	References




