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Abstract. Nowadays, Convolutional Neural Nets (CNNs) have become
the reference technology for many computer vision problems, including
facial landmarks detection. Although CNNs are very robust, they still
lack accuracy because they cannot enforce the estimated landmarks to
represent a valid face shape.

In this paper we investigate the use of a cascade of CNN regressors
to make the set of estimated landmarks lie closer to a valid face shape.
To this end, we introduce CRN;, a facial landmarks detection algorithm
based on a Cascade of Recombinator Networks. The proposed approach
not only improves the baseline model, but also achieves state-of-the-art
results in 300W, COFW and AFLW that are widely considered the most
challenging public data sets.
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1 Introduction

Facial landmarks detection is a fundamental problem in computer vision with
applications in many real-world tasks such as attributes and pose estimation [1],
facial verification [8], etc. Current state-of-the-art methods are based on deep
Convolutional Neural Nets (CNNs). Lv et al.’s [7] approach uses CNNs to set up
a global and a set of local face parts regressors for fine-grained facial deformation
estimation. Xiao et al. [10] is one of the first approaches that fuse the feature
extraction and regression steps into a recurrent neural network trained end-to-
end. Kowalski et al. [5] and Yang et al. [11] are among the top performers in
the Menpo competition [12]. Both use global similarity transform to normalize
landmark locations followed by a VGG-based and a Stacked Hourglass network
respectively to regress the final shape.

CNN approaches are very robust to face deformations and pose changes due
to the large receptive fields of deep nets. However, they lack accuracy because
of two factors. First, the loss of feature maps resolution in the concatenation of
many convolutional and pooling layers. Second, the difficulty in imposing a valid
face shape on the set of estimated landmark positions.
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The Recombinator Network addresses the first factor by combining features
computed at different scales [3]. This is achieved by processing the image in a set
of branches at different resolutions. Finer and deeper branches pass information
to the coarser ones allowing for the net to combine the information at different
levels of abstraction and scales.

In this paper we address the issue of making the set of estimated landmarks
look like a valid face. To this end we present a method called Cascade of Recom-
binator Networks (CRN) that uses cascade of deep models to enforce valid face
shapes on the set of estimated landmark positions. We also introduce a new
loss function robust to missing landmarks and an aggressive data augmentation
approach to improve Honari et al.’s [3] baseline system.

2 Cascade of Recombinator Networks

In this section we present the Cascade of Recombinator Networks (CRN) (see
Fig.1). It is composed of S stages where each stage represents a network that
combines features across multiple branches B based on Honari et al.’s [3] archi-
tecture. The output of each stage is a probability map per each landmark pro-
viding information about the position of the L landmarks in the input image.
The maximum of each probability map determines the landmarks positions.

The key idea behind our proposal is to employ a cascade of regressors that
incrementally refine the location of the set of landmarks. The input for each
regressor is the set of probability maps produced by the previous stage of the
cascade. Between each cascade stage, we introduce a map dropout layer that
deletes, with probability p, the map of a landmark (see red-crossed map in
Fig.1). In this way we force the net to learn the structure of the face, since it
must predict the position of some landmarks using the location of its neighbors.
This idea of ensemble of regressors has been extensively used within the so-called
Cascade Shape Regressor (CSR) framework [4,5,11].

In our implementation we use a loss function that is able to handle missing
landmarks. In this way we can use data augmentation with large face rotations,
translations and scalings, labeling landmarks falling outside of the bounding box
as missing. It also enables us to train with data sets where some landmarks are
not annotated, such as AFLW.

Our loss function, £, is given by

L
£=> <‘ T 2 (W) 1) log<mi<z>>>> , (1)
i v =1

i=1

where m; (/) and m?(l) represent the predicted probability map and the ground
truth respectively, w/(I) the labeled mask indicator variable (takes value “1”
when a landmark is annotated, “0” otherwise), N the number of training images
and L the number of landmarks.

We have further improved the accuracy of the Recombinator Network base-
line by replacing max-pooling layers with convolutional layers with stride 2.
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Fig. 1. CRN framework architecture diagram. Each stage is a RCN [3] where C1, C2
and C2' represent a stride 1 conv layer, stride 2 conv layer and a transpose convolution
with stride 2 respectively. The output of each stage is the input to the next one. Between
each stage we introduce a map dropout layer. (Color figure online)

Finally, we found that locating each landmark at the position with maximum
probability is very sensitive to noise. We propose to apply a Gaussian smoothing
filter to each probability map to improve the robustness of the predictions. Thus,
large areas are favored with respect to single pixels with high probability.

3 Experiments

We perform experiments using 300W, COFW and AFLW that are considered
the most challenging public face alignment data sets. To train our algorithm we
shuffle each training subset and split it into 90% train-set and 10% validation-set.
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We use common evaluation metrics to measure the shape estimation error.
We employ the normalized mean error (NME), the average euclidean distance
between the ground-truth and estimated landmark positions normalized with
the constant d;. Depending on the database we report our results using different
values of d;: the distance between the eye centers (pupils), the distance between
the outer eye corners (corners) and the bounding box size (height). The NME
is given by

N L

_ 100 1 wi (1) - |Pxi(t) =<7 (D]
NME = — Z<|wg|1z< ) >> (2)

i=1 =1

where x;() and x7(1) denote respectively the predicted and ground truth land-
marks positions.

In addition, we also use a second group of metrics based on the Cumulative
Error Distribution (CED) curve. We calculate AUC, as the area under the CED
curve for faces with NME smaller than € and F' R, as the failure rate representing
the percentage of testing faces with error greater than e.

For our experiments we train the CRN stage by stage, selecting the model
parameters with lower validation error. We crop faces using the bounding boxes
annotations enlarged by 30%. We augment the data in each epoch by applying
random rotations between +30°, scaling by £15% and translating by +5% of
bounding box size, randomly flipping images horizontally and generating random
rectangular occlusions. We use Adam stochastic optimization with parameters
B1=0.9, B = 0.999 and € = 1e~8. We train each stage until convergence. Initial
learning rate is & = 0.001. When the validation error levels out for 10 epochs,
we multiply the learning rate by 0.05. The cropped input face is reduced from
160 x 160 to 1 x 1 pixels gradually halving their size across B = 8 branches
applying a stride 2 convolution with kernel size 2 x 2!. All layers contain 68
filters to describe the required landmarks features. We apply a Gaussian filter
with 0 = 31 to the output probability maps to reduce the noise effect. Finally,
we set the number of stages S = 2 since more stages report a poor improvement.
Training using AFLW takes 24 h using a NVidia GeForce GTX 1080Ti GPU
(11 GB) with a batch size of 32 images.

At run-time our method requires on average 40 ms to process a detected face,
a rate of 25 FPS. This processing speed could be halved reducing the number of
CNN stages, at the expense of a slight reduction in accuracy (see CRN (S =1)
at Tables1, 2, 3 and 4).

We compare our model with the top algorithms in the literature. We show
in Tables 1, 2, 3 and 4 the results reported in their papers. We have also trained
DAN [5], RCN [3], and GPRT [6] with the same settings, including same training,
validation and bounding boxes. In Fig. 2 we plot the CED curves. In the legend
we provide the AUCys and F' Rg values for each algorithm.

15 x 5 images are reduced to 2 x 2 pixels applying a kernel size of 3 x 3.
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From the results in Tables1 and 2 we can conclude that in the 300W data
set our approach provides results with an accuracy comparable to the best in
the literature. However, we notice that Yang et al. [11] takes several seconds
to process one image, whereas ours runs in real-time. In COFW we report the
best result in the literature (see Table3). Similarly, in the largest and most
challenging data set, AFLW, we claim to report the best result, since TSR [7]
ignores the two landmarks attached to the ears, which are the ones with largest
error (see Table4).

If we consider the CED metrics in Fig. 2, we can see that our approach, CRN,
is the one with highest AUC values and smallest FR. In all experiments our CED

— CRN (47.35) (2.33)
= DAN (46.96) (2.67)
— RCN (43.71) (2.50)
= CGPRT (41.32) (12.83)
—— Fan (38.31) (16.33)
= Deng (35.79) (12.17)
— ERT (32.35) (19.33)

— CRN (42.12) (8.27)
= CGPRT (39.08) (14.08)
= DAN (39.00) (8.27)
= RCN (38.56) (11.61)
= ERT (31.20) (22.21)
= RCPR (28.91) (21.48)
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= CRN (33.13) (7.89)
= RCN (28.89) (13.61)
= ERT (21.42) (29.19)

Fig. 2. Cumulative error distributions sorted by AUC for each data set.

Table 1. Error of face alignment methods on the 300W public test set.

z £} g 7

T
NME (%)

(c) COFW

m— CRN (45.73) (2.84)
= RCN (44.70) (4.04)
= ERT (27.96) (17.85)

ER— 3035 a0
NME (%)

(d) AFLW

Method Common Challenging Full

Pupils Corners Pupils Corners NME | Pupils NME | Corners

NME | NME NME

NME | AUCg | FRg

RCN [3] 4.70 - 9.00 - 5.54 - - -
RCN+DKM [3] | 4.67 - 8.44 - 5.41 - - -
DAN [5] 4.42 3.19 7.57 5.24 5.03 3.59 55.33 1.16
TSR [7] 4.36 - 7.56 - 4.99 - - -
RAR [10] 4.12 - 8.35 - 4.94 - - -
SHN [11] 4.12 - 7.00 4.90 - - - -
CRN (5=1) 4.26 3.07 8.69 6.01 5.09 3.62 55.62 2.75
CRN (5=2) 4.12 2.97 7.90 5.47 4.83 3.44 57.44 1.88
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Table 2. Error of face alignment methods on the 300W private test set.
Method Indoor corners Outdoor corners Full corners
NME | AUCs | FRs | NME | AUCs | FRs | NME | AUCs | FRg
DAN [5] - - - - - - 4.30 47.00 | 2.67
SHN [11] 4.10 - - 4.00 - - 4.05 - -
CRN (S=1) |4.42 45.91 |1.66 |4.45 45.25 | 2.66 |4.43 45.59 | 2.16
CRN (S=2) |4.28 47.36 |2.66 | 4.25 47.32 1 2.00 |4.26 47.35 | 2.33
Table 3. COFW results. Table 4. AFLW results.
Method Pupils Method Height
NME | AUCs | FRg NMFE
RAR [10] 6.03 |- - Bulat et al. [2] | 2.85
Wu et al. [9] 5.93 - - CCL [13] 2.72
SHN [11] 5.6 - - TSR [7] 2.17
CRN (S=1)|5.75 30.91 |11.04 CRN (S=1)|2.29
CRN (S=2) 549 33.13 | 7.88 CRN (§=2) 221

curve is consistently above the rest except for the cGPRT [6] algorithm in the
300W public data set. In this case, cGPRT reports better results in “easy” faces,
with NME below 3.5, and we are much better in the difficult cases, with higher
NMEs, and in the final FRg and global AUCsg.

We have also compared CRN with the original RCN baseline model and its
denoising key-point model approach (RCN+DKM) [3]. Our modifications to the
basic net together with the cascade have boosted the result to the top of the
state-of-the-art.

Finally, in Fig. 3, we report qualitative results for all data sets. Here we have
also included the recent Menpo competition [12] images whose test annotations

have not been released.
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(e) Menpo

Fig. 3. Representative results using CRN in 300W, COFW, AFLW and Menpo testing
subsets. The first three faces and the following three ones show respectively successful
and failure cases. Blue and green colors represent ground truth and shape predictions.
(Color figure online)

4 Conclusions

In this paper we have introduced CRN, a facial landmarks detection algorithm
that exploits the benefits of a cascade of CNN regressors to make the set of
estimated landmark positions lie closer to the valid shape of a human face.

We have proved experimentally that our improvements to the basic Recom-
binator model together with the cascade approach and the data augmentation
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boost the performance to achieve state-of-the-art results in the 300W data set
and the best reported results in COFW and AFLW.

The analysis of the CED curves show that our approach is consistently above
all its competitors except for the easy/frontal images in the 300W public set,
for which ¢cGPRT [6] has better results. This proves that CNN approaches are
more robust in challenging situations, but a standard cascade of regressors with
handcrafted local features such as cGPRT may achieve better results when it is
properly initialized. To facilitate the reproduction of our results we will release
our implementation after publication.
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Economy and Competitiveness under project TIN2016-75982-C2-2-R.

References

1. Amador, E., Valle, R., Buenaposada, J.M., Baumela, L.: Benchmarking head pose
estimation in-the-wild. In: Proceedings of Iberoamerican Congress on Pattern
Recognition (CIARP) (2017)

2. Bulat, A., Tzimiropoulos, G.: Binarized convolutional landmark localizers for
human pose estimation and face alignment with limited resources. In: Proceed-
ings of International Conference on Computer Vision (ICCV) (2017)

3. Honari, S., Yosinski, J., Vincent, P., Pal, C.J.: Recombinator networks: learning
coarse-to-fine feature aggregation. In: Proceedings of IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR) (2016)

4. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regres-
sion trees. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2014)

5. Kowalski, M., Naruniec, J., Trzcinski, T.: Deep alignment network: a convolutional
neural network for robust face alignment. In: Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW) (2017)

6. Lee, D., Park, H., Yoo, C.D.: Face alignment using cascade Gaussian process regres-
sion trees. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015)

7. Lv, J., Shao, X., Xing, J., Cheng, C., Zhou, X.: A deep regression architecture
with two-stage re-initialization for high performance facial landmark detection. In:
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2017)

8. Sun, Y., Wang, X., Tang, X.: Hybrid deep learning for face verification. IEEE
Trans. Pattern Anal. Mach. Intell. (TPAMI) 38, 1997-2009 (2016)

9. Wu, Y., Ji, Q.: Robust facial landmark detection under significant head poses and
occlusion. In: Proceedings of International Conference on Computer Vision (ICCV)
(2015)

10. Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., Kassim, A.: Robust facial landmark
detection via recurrent attentive-refinement networks. In: Leibe, B., Matas, J.,
Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 57-72. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_4

11. Yang, J., Liu, Q., Zhang, K.: Stacked hourglass network for robust facial landmark
localisation. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition Workshops (CVPRW) (2017)


https://doi.org/10.1007/978-3-319-46448-0_4

12.

13.

Facial Landmarks Detection Using a Cascade of Recombinator Networks 583

Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., Shen, J.: The menpo facial land-
mark localisation challenge: a step towards the solution. In: Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
(2017)

Zhu, S., Li, C., Change, C., Tang, X.: Unconstrained face alignment via cascaded
compositional learning. In: Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (2016)



	Facial Landmarks Detection Using a Cascade of Recombinator Networks
	1 Introduction
	2 Cascade of Recombinator Networks
	3 Experiments
	4 Conclusions
	References




