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Abstract. In this work, we present a multimodal approach to perform
object recognition from photographs taken using smartphones. The pro-
posed method extracts neural codes from the input image using a Con-
volutional Neural Network (CNN), and combines them with a series of
metadata gathered from the smartphone sensors when the picture was
taken. These metadata complement the visual contents and they can
provide additional information in order to determine the target class.
We add feature selection and metadata pre-processing, by encoding tex-
tual features, such as the kind of place where a picture was taken, using
Doc2Vec in order to maintain the semantics. The deep representations
extracted from images and metadata are combined with early fusion
to classify samples using different machine learning methods (k-Nearest
Neighbors, Random Forests and Support Vector Machines). Results show
that metadata preprocessing is beneficial, SVM outperforms kNN when
using neural codes on the visual information, and the combination of
neural codes and metadata only improves the results slightly when the
images are classified into very general categories.

Keywords: Multimodality · Object recognition · Metadata ·
Learning representations

1 Introduction

Object recognition is a field of computer vision that aims to identify objects or
entities in images or videos. This is a highly active topic which can be particularly
useful for mobile devices [7] as regards retrieving information about objects
on the fly. Using supervised learning techniques such as Convolutional Neural
Networks (CNN), we can build models to recognize the objects present in an
image.

In order to achieve a better prediction, some recognition methods use addi-
tional information to help identify the predominant objects in images. In some
cases, metadata such as the GPS location [15] are included. This leads to
multimodal methods which use different information sources. Some previous
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approaches successfully combined visual descriptors with textual information [3],
and also with features such as the camera metadata [2] in order to facilitate
object identification. Multimodality in deep learning has also been studied for
the creation of complex networks which can detect the most relevant character-
istics of the different data sources. An example is the Multimodal Convolutional
Neural Network [10] for matching images and sentences, or the Image-Text Mul-
timodal Representation Learning by Adversarial Backpropagation [13].

In this work, we use the MirBot [15] dataset which contains images taken from
smartphones along with their associated metadata. MirBot1 is a collaborative
object recognition system which allows users to take a photograph and select
a rectangular region of interest (ROI) in which a target object is located. The
image, the ROI coordinates and a series of associated metadata are sent to a
server, which performs a similarity search and returns the class (a WordNet [4]
synset such as chair, dog, laptop, etc.) of the most likely image in the training
set. The app users can validate the system response in order to improve the
classification results for future queries, and this feedback allows the database to
grow continuously with new labeled images.

The metadata of the Mirbot dataset are extracted from the smartphone
sensors (angle with regard to the horizontal, gyroscope, flash, GPS, etc.), reverse
geocoding information (type of place, country, closest points of interest, etc.) and
EXIF camera data (aperture, brightness, ISO, etc.). The gathered metadata can
be used to reduce the search space. For instance, if a user takes a photograph
of an elephant, it is more likely that it will be in a zoo rather than on a beach,
that the angle respect to the horizontal will be close to 90◦, and that the flash
will be off [15].

In the present work, we extend the multimodal method from [15], and use a
supervised learning classifier to perform early-fusion on the learned deep repre-
sentations of both images and metadata.

The remainder of this paper is organized as follows. Section 2 describes the
dataset and Sect. 3 the methodology used for multimodal classification. The
evaluation results are detailed in Sect. 4. Finally, Sect. 5 addresses our conclusions
and future work.

2 Dataset

As the MirBot data is dynamic and user-driven, statistics change over time.
In the following, experiments refer to the dataset from October 23, 2016 for
a direct comparison with the results given in [15]. On this date, 3, 431 users
had added 25, 292 images distributed in 1, 808 classes. Some objects appear
more frequently than others and the classes are, therefore, highly unbalanced.
Most images are categorized as objects (18, 685), followed by animals (4, 928),
food/drinks (1, 113), and plants (546).

1 http://www.mirbot.com.

http://www.mirbot.com
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2.1 Metadata

Device Metadata. 29 metadata are obtained from the smartphone sensors
for each image as described in [14]. These metadata correspond to the device
information (model, version, etc.), geolocation data (latitude, longitude, altitude,
locality, sublocality, PC, country, etc.), activation of the camera flash, and the
sensor values (accelerometer, gyroscope, network status, etc.).

Gisgraphy Features. In addition, given a latitude and a longitude, reverse
geocoding is performed in the server with Gisgraphy2, which uses the GeoNames
geographical database. This allows to obtain valuable data such as the feature
class and code [1] that provide information about the kind of place (for example,
University, Park, Restaurant, Zoo, etc). The list of the 17 Gisgraphy features
can be seen in [14].

EXIF Metadata. The camera parameters of the pictures are also stored. The
exchangeable image file format (EXIF) information sent to the server includes
23 parameters such as the focal length, aperture value, brightness, ISO speed,
white balance, etc.

Fig. 1. Overall architecture of the proposed method.

3 Methodology

The proposed architecture for classification is summarized in Fig. 1. On the one
hand, we send the input image to a CNN to generate the neural codes that
represent the visual information. On the other hand, we use a series of metadata,
which can either be numerical values (such as pitch, sharpness, etc.) or textual
(such as country, gis feature code, gis feature class, etc.). Then, we concatenate
the neural codes to the metadata features to be used as input for classification.

3.1 Neural Codes Extraction

Color images are resized to 224 × 224 pixels and given to a ResNet50 [6] CNN
pre-trained with ImageNet and fine-tuned with the MirBot dataset. The visual
features correspond to the neural codes (vectors of dimension 1,256) extracted
from the last hidden layer of the CNN and normalized using �2. The details to
get these visual descriptors are given in [15].
2 http://www.gisgraphy.com/.

http://www.gisgraphy.com/
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3.2 Metadata Preprocessing

MirBot metadata include numerical values, categorical data and text strings
which have to be presented as sequential values to a classifier. In this work, like
in [15], the features osversion and model are first removed, along with all the
information related to an specific user such as its identifier.

Those metadata containing numerical values (such as pitch, sharpness, focal
length, etc.) are normalized into the interval [0, 1]. In [15], textual metadata
(such as country, gis feature code, gis feature class, etc.) were codified in a
one-hot manner as they have not any specific ordering. This way, the distance
between two categorical features can only be 1 if they are different or 0 if they
match.

In this work, we pre-process the textual features. For example, there are some
strings (such as the address) in many different languages. All these strings were
translated into English. To automate this process we used the Google Translator
API.

In addition, the problem of using a one-hot vector for representing textual
data is that semantics are lost. In order to address this issue, differently from [15],
in this work we propose to encode the categorical values using Doc2Vec [9],
which is an extension of Word2Vec [12]. As its name suggests, Doc2Vec extracts
a vector that represents the paragraphs and sentences, considering the context
of the words in the paragraph. Doc2Vec is used instead Word2Vec because the
textual strings are composed by sentences.

We used a Doc2Vec model [8] implemented in Gensim, a Python library
for vector space modeling. This library includes two pre-trained models: English
Wikipedia DBOW and Associated Press New DBOW. Initially, we tested the two
models on our metadata with the default parameters, and the best accuracy was
obtained using the Wikipedia model, consistently with the results given in [8].

Some of the metadata returned by the mobile device are codes instead of
words (such as UK for United Kingdom in the country data or SCH for School in
the feature code). In these cases, we determined that it was more effective to use
the full name represented by the codes. In order to encode the feature codes (type
of place where the picture was taken), we created a sentence by concatenating
the name with its corresponding description given in [1]. For example, the code
“SCH” is converted into “School, building where instruction in one or more
branches of knowledge takes place” to be used as input for the Doc2Vec model.

With this pre-trained model, we transformed the following text features:
name, locality, sublocality, admin-area, thoroughfare, gis-name, gis-adm1-name,
gis-adm2-name, gis-adm3-name, country, gis-feature-code and gis-feature-class
into vector embeddings. Figure 2 shows an example of the Doc2Vec process-
ing with our dataset using t-Distributed Stochastic Neighbor Embedding (t-
SNE [11]). It can be seen that similar concepts are grouped together. For exam-
ple, country values of South America, Africa or Europe are close.
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(a) Country

(b) Feature Code

Fig. 2. Document embeddings projection into a reduced space for country and feature
codes using t-SNE [11].

3.3 Classification

Once the visual and metadata features are extracted, different classifiers can be
used for this task. In particular, we evaluate k-Nearest Neighbors (kNN), Support
Vector Machines (SVM) and Random Forests (RF). In the case of multimodal
experiments, metadata features are appended to the neural codes to serve as
input for the classifiers.

Different parameters for the classifiers were evaluated: kNN with k ∈ [1, 100];
SVM with C ∈ [1, 1000]; and RF with the number of trees within the range
[5, 1000].
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4 Experiments

In this section, we evaluate the accuracy improvements offered by the new
approaches presented in this paper with respect to the previous version of Mir-
bot [15]. We compare the results using metadata with one-hot encoding and with
the preprocessed Doc2Vec model, the results with the visual features, and the
combination of visual and metadata features.

Experiments were performed using a 5-fold cross validation. Only the images
belonging to the classes with more than one prototype were used for evaluation
(24, 794 images from 1, 180 classes). The accuracy is provided using the top-
1 evaluation metric, where a true positive is considered when the class of the
closest prototype matches the query class. The classification was done at three
levels: Root level (with the 5 main categories: animals, food and drink, man-
made objects, natural objects, and plants), the second level of the WordNet
hierarchy (with 92 classes), and the leaf level (with the 1,180 classes).

Evaluation Using Metadata. Attribute selection was first performed in order
to rank and select the best subset of metadata features. For this, we applied
several selection methods [5]: Best First, Genetic search, Greedy Stepwise, Linear
Forward Selection, Random Search, Scatter Search V1, Subset Size Forward
Selection, and InfoGain. After testing all these selection techniques, we applied
a voting scheme to select the best attributes, which are shown in Table 1. The
rest of the attributes were ignored for the following stages.

Table 1. Selected metadata using different attribute selection methods with a voting
scheme. All features are numerical values except by those pre-processed using Doc2Vec,
which are marked with (*).

Sensors Location EXIF

pitch reliable location sharpness

selected area country (*) focal length

wifi ocean brightness value

flash gis feature code (*) color space

gis feature class (*) subject area

As expected, one of the most representative metadata is the feature code [1],
which stores the kind of place: Zoo, Mall, University, Beach, etc.

Table 2 shows the best results for each classifier. The best results with kNN
were obtained with a very low neighbor value (k = 1). When using RF, the
highest accuracy was obtained with 150–300 trees, and SVM did not improved
the accuracy with values of C larger than 10. The results obtained for the first
levels of the hierarchy are surprisingly good considering that the classification
is performed without any visual information and there are 1, 180 classes. An
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explanation for this is that the dataset is highly unbalanced. We checked the
confusion matrices in order to assess that the yielded classes are varied and
there is no overfitting.

Table 2. Comparison of the best results for each classifier using the metadata without
preprocessing and with preprocessing.

Method Without preprocessing With preprocessing

Root 2nd level Class Root 2nd level Class

kNN 73.67 51.73 7.31 75.52 52.08 27.37

RF 67.80 35.31 9.94 76.96 52.77 20.01

SVM 73.70 52.01 6.29 76.09 54.88 15.51

Evaluation Using Visual Features. Results using Neural Codes (NC) are
shown in Table 3. The kNN classifier was already evaluated in [15], but in the
present work we include RF and SVM accuracy. As can be seen, RF outperforms
the results from kNN given in [15] at the class level, although SVM obtains the
best results at the root level.

Table 3. Comparison of the best results for each classifier using only the NC and the
multimodal data (the combination of NC and metadata).

Method Neural codes Multimodal data

Root 2nd level Class Root 2nd level Class

kNN 93.72 83.60 77.70 94.36 82.19 58.28

RF 90.24 84.24 78.68 90.60 80.11 51.94

SVM 94.81 84.02 76.93 94.98 82.02 52.33

Evaluation Combining Metadata and Visual Features. Although the
main source of information is given by the image features, metadata could com-
plement this information. In [15], metadata were only used when the confidence
was low, that is when the difference of the distances between the first and second
class returned by the visual classifier was small. Here, we perform early fusion
for comparison, and the results show that multimodal data is more adequate
than using only the visual features at the root level (particularly using SVM),
although in the other levels results clearly decrease.
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5 Conclusions and Future Work

In this work, we use visual features and metadata for object recognition. Fea-
ture selection was performed to get the most suitable metadata features, and
we show that encoding textual features using Doc2Vec outperforms a one-hot
representation, as similar locations are also close in the vector space. In addition,
we combine metadata with visual features in a early-fusion approach, although
results only outperformed visual features at the root level.

Results obtained preprocessing metadata with Doc2Vec show a considerable
accuracy improvement compared to the one-hot encoding used in [15]. We also
show that SVM outperforms the results obtained in [15] with kNN.

It should be noted that the combination of metadata with the neural codes
slightly increases the results at the root level but significantly decreases with finer
levels. This may be because the metadata contains very general information that
only helps identifying the highest hierarchy level.

As future work, we plan to evaluate multimodal neural networks for learning
more complex relationships between data in order to improve classification at
the class level.
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