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Abstract. This article presents the experimental investigation of the
fusion concept of two relative position and orientation (pose) estimates
of the rotating target using single Photonic Mixer Device (PMD) sen-
sor for the frame-to-frame tracking. For each frame PMD depth sensor
provides co-registered depth and amplitude images of the scene. We pro-
pose to use two different pose estimation techniques for each of the data
channel with a further fusion of its measured state vectors. The fusion
architecture of the state measurements is based on a low complexity
weighted average algorithm. The weights for the fusion operator are cal-
culated experimentally with the real data from PMD sensor mounted on
DLR’s European Proximity Operations Simulator. The fused state vec-
tor obtained with experimental results outperforms the accuracy of the
two incoming pose measurements. This allows us to ensure robust pose
estimation of a rotating target for the whole tracking.

Keywords: PMD sensor · Data fusion · Pose estimation ·
Optical navigation

1 Introduction

Computer vision refers to the discipline where the combination of the theory
and technology of the artificial systems aims to extract, analyze and understand
necessary information from digital image or video. Computer vision is used in
different application fields, e.g. in medical computer vision or medical image
processing, in industry, for military purposes, for the autonomous land based and
aerial vehicles [1]. Currently the scope of our work is directed to computer vision
in space applications, namely, visual pose estimation of the target spacecraft
during the rendezvous phase for On-Orbit Servicing (OOS) missions. Main duties
of OOS mission include, e.g. refuel, repairs/upgrades of some parts of satellite
and also deorbiting of no more usable spacecraft. The problem can be addressed
as follow: the chaser spacecraft should autonomously navigate to the target by
estimating relative position and orientation of the target spacecraft using visual
sensor and extracting information from an image or sequence of images.
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Different types of visual sensors have been considered and tested for the pose
estimation during the rendezvous phase. These are LiDAR [2], monocular and
stereo cameras [3] and also time-of-flight sensors based on Photonic Mixer Device
(PMD) [4,5] technology. Since the PMD camera has never been used in space so
far, we continue investigating it as one possible candidate for visual navigation
in space. In this paper we provide an experimental research on the fusion of the
state vectors estimated using PMD sensor and suitable algorithms.

Having a look into a recent state-of-the-art techniques for the sensor data
fusion in other different areas of computer vision, one can mention the work
of Schramm et al. [6], where the authors present an approach to fuse the data
from stereo, depth and thermal cameras for robust self-localization. The result-
ing position is obtained through the Extenden Kalman Filter (EKF). The Kim
et al. [7] show how to fuse the radar and visual images for the advanced driver
assistance system via extrinsic calibration process. Deilamsalehy et al. [8] pro-
pose to fuse data from LiDAR, camera and Inertial Measurement Unit (IMU)
using EKF for pose estimation. Instead of using mentioned EKF or any other
filter for the data fusion, we create a distributed system with a weighted aver-
age algorithm, where one state vector is calculated with a depth image, whereas
the other one independently with an amplitude image. The weighted average
approach for the state vector fusion is simple to implement, and moreover, its
suitable for any application, since it doesn’t require to know a system dynamics.

All experiments presented in this paper were tested in the European Prox-
imity Operations Simulator (EPOS 2.0) [9] at the German Aerospace Center
(DLR), which allows real-time simulation of close range proximity operations
under realistic space illumination conditions.

2 Visual Navigation with PMD Sensor

2.1 Problem Statement

The problem addressed in this paper is to accurately estimate position and ori-
entation of the target spacecraft with measurements from a time-of-light PMD
sensor. In this work we provide experiments with DLR-Argos 3D-P320 Cam-
era prototype (Fig. 1, left up) released by Bluetechnix company with technical
characteristic presented in the Table 1.

The depth measurement principle of the PMD technologies is based on the cal-
culation of the phase shift between the emitted NIR signal by the LED’s of camera
and reflected signal from the target. Co-registered amplitude information of the
reflected signal is calculated simultaneously. An example of depth and amplitude
images acquired by the DLR-Argos 3D-P320 Camera in DLR’s EPOS is presented
in Fig. 1 (left and right down images). The images illustrate target mockup (see
Fig. 1, right up) used for the further test simulation for this paper. In the next
section we provide experimentally justified fusion technique of two pose estimates
from different sources in order to get one accurate pose for every frame.
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Fig. 1. Left up: DLR-Argos 3D-P320 Camera. Right up: The mockup in EPOS labo-
ratory. Left down: Depth image. Right down: Amplitude image.

Table 1. Technical data of the PMD sensor inside the DLR-Argos 3D-P320 camera.

Field of view 28.91 × 23.45 deg

Resolution of the chip 352 × 287 pixels

Integration time 24 ms

Frames per second 45

Modulated frequencies 5.004 MHz, 7.5 MHz, 10.007 MHz, 15 MHz,
20.013 MHz, 25.016 MHz, 30 MHz

Mass/Power consumption 2 kg/<25.5 W

2.2 Pose Estimation Techniques

Two completely different tracking methods are suggested for model-based pose
estimation techniques of the target spacecraft. Model-based techniques refer to
the knowledge of the 3D model of the target object throughout the entire track-
ing period. The modified version of state-of-the-art Iterative Closest Point (ICP)
[10] algorithm with “reverse-calibration” method [11] for the nearest-neighbor
search is proposed for the estimation of the state vector with depth images.
Pose estimation technique for the amplitude images based on finding feature
correspondences between 3D known model and detected features in the 2D
gray scaled image. Throughout variety of the solvers here we propose to take a
Gauss-Newton solver [12] based on a least square minimization problem in order
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to estimate position of the target related to the camera frame. Please, refer to
the work of Klionovska et al. [5] for the detailed description of the pose esti-
mation technique for the depth images and for the feature identification from
amplitude images.

2.3 Fusion of Measurements

Due to the redundant information from the PMD sensor (depth and amplitude
channels) it is a good chance to increase the reliability of the system and enhance
the accuracy of the calculated state vector during the approach by fusion of two
estimated measurements. Moreover, with the redundant state information the
tracking of the target can still be provided even when one of the pose estimation
techniques gives incorrect information. One of the simplest ways for the combi-
nation of measurements is to take a weighted average [13] of the pose vectors
which is obtained after two different pose estimation techniques. The simple
arithmetic mean of all measurements does not perform enough, since one mea-
surement can be more reliable than other [14]. Taking in account this fact, it is
better to assign more importance and greater weight to an observation yi from
one output channel that is more reliable, whereas a less accurate observation
from the other output channel will receive minor weights. The weighted average
for the fused estimate of n different measurements yi with non-negative weights
ωi looks as

yfused =
∑n

i=1 ωiyi∑n
i=1 ωi

. (1)

We can simplify an Eq. 1 when the weights are normalized and sum up to 1:

yfused =
n∑

i=1

ω
′
iyi,

n∑

i=1

ω
′
i = 1. (2)

From the mathematical point of view the weights ωi for every single member
of the pose vector can be assigned as estimated variance of the measurement
error σ2

i occurred during pose estimation with one of the suggested methods

ωi =
1
σ2
i

. (3)

In the work of Elmenreich [15] the author shows that the variance of the
fusion result yfused is minimized and always smaller than the input variances

σ2
fused =

n∑

i=1

ω2
i σ

2
i =

n∑

i=1

1
σ2
i

. (4)
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3 Experimental Scenarios and Performance Analysis

In order to find correct weights for fusion of both estimates, firstly we propose
to run both algorithms separately. The offline test presents a straight frontal
approach scenario, which starts at approximately distance 8 m between chaser
and the target. The termination point is situated at the distance a bit less than
5 m. These both distances are chosen due to the characteristics of the DLR-Argos
3D-P320 sensor. Namely, the starting point of the simulation is chosen with
relation to the resolution of the current PMD sensor. Since the resolution of the
PMD sensor is small in compare with existent CCD sensors, the features of the
imaged object become not to be clearly observable and it leads to the big errors in
pose estimation. Moreover, the current illumination unit of the camera is suitable
for the close range simulations (<10 m) and not for the long one. The final point
is limited because of the field of view of the current camera. When the distance
is less than 5 m the whole target is no more observable and pose estimation is not
possible. In this test the target (Fig. 1, right up) is rotating around its principal
axis of inertia at a rate of 2 deg/s. Overall the data set consists of 170 images.
According to the number of image, the distance range is configured as following:
from image 1 to 67 corresponds to the approach from 8 to 7 m; from image 68
to 118 is a range from 7 to 6 m (e.g. Fig. 2, images at the first row); and starting
from image 119 to 170 the distance decreases from 6 to 4.9 m (e.g. Fig. 2, images
at the second row). The ground truth for every logged image is provided by
EPOS. The experimental scenarios, which we consider in this paper, are follows.
Test scenario 1 presents frame-to-frame pose estimation technique using depth
image and ICP with reverse calibration technique. Test scenario 2 concludes the
result of the pose estimation algorithm with aforementioned image processing
of amplitude images. Test scenario 3 shows the results of the fusion technique
with calculated weights. What is special here is that in the Test scenario 3 the
fusion technique is applied for the translational part, whereas the rotation is
completely taken from the pose vector estimated with the amplitude image.
This is so, because the algorithm with the amplitude images is less sensitive for
the estimation of the orientation and usually provides better results. The camera
coordinate frame is used in order to evaluate the results, where Z-axis is taken
along the optical axis of the camera.

3.1 Test Cases 1 and 2: Pose Estimation Using Depth and
Amplitude Images Separately

We run separately the algorithms for the depth images and amplitude images
using provided dataset. In Fig. 3 we present the plots of the errors for rotation
and translation components of the estimated pose for every frame in the Test
case 1 (left up and down images) for the Test case 2 (right up and down images).
The mean errors for the both cases are presented in the Table 2. From the results
depicted in Fig. 3 and collected in Table 2 after offline simulation of the proposed
estimation techniques explained in the Sect. 2.2, one can observe that estimation
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of the rotational components with the 2D technique using amplitude image dom-
inates over the 3D pose estimation pipeline. It is due to the fact that the errors
in the angles calculated with 3D pose estimation algorithm have a tendency to
accumulate. This is caused by the nature of the algorithm - since the previous
estimate for a new frame strong diverges from the real one, the follow calculated
orientation (sometimes also position vector) within a next new frame has also
big measurement errors. However, position of the target during the tracking was
defined more accurate using the depth images, especially the distance component
(position along Z axis).
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Fig. 2. Depth and amplitude images within distance 7 to 6 m (first row) and within
distance 6 to 5 m (second row).
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Fig. 3. Translation and rotation errors for the Test cases 1 (left up and down) and 2
(right up and down).

In order to apply the fusion technique described in the Sect. 2.3, there is a
prerequisite to define weights. According to the Eq. 3, it is necessary to define
the variances. Table 2 presents the result of the standard deviations for three
rotation angles and for Z, Y, X components of the position vector.
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Table 2. Standard deviations and mean errors.

σ Test case 1 Test case 2 μ Test case 1 Test case 2 Test case 3

σroll, deg 1.75 0.47 μroll, deg 2.41 1.04 0.96

σpitch, deg 1.74 0.27 μpitch, deg 3.19 0.57 0.62

σyaw, deg 2.18 0.43 μyaw, deg 3.91 0.98 1.10

σz, m 0.0306 0.0415 μz, m 0.0654 0.1004 0.0392

σy, m 0.0129 0.0129 μy, m 0.0366 0.0472 0.0405

σx, m 0.0024 0.0058 μx, m 0.0034 0.0065 0.0038

Table 3. Weights for the translation components.

Weight Depth estimate Amplitude estimate

ωz 0.65 0.35

ωy 0.54 0.46

ωx 0.85 0.15

3.2 Test Cases 3: Fusion of Pose Vectors with Weights

Taking into account revealed tendency after test cases 1 and 2, we propose to
make simulations of the pose estimation during the approach for the same dataset
and by using the weighted average technique for the translation components.
We apply weights for the Z, Y and X coordinates presented in the Table 3. In
Fig. 4 we plot the results of the angular and position measurement errors after
conducted Test case 3.
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Fig. 4. Translation and rotation errors for the Test cases 3.

In fact, as we expected, the fused technique with its measurements errors
presented in Fig. 4 overcomes the drawbacks of both pose estimation techniques.
The mean errors for Test case 3 are shown in the last column of Table 2. It means
that the attitude of the target has almost the same mean errors as in the Test
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case 2, whereas the mean errors for the position are more similar with the Test
case 1. The peaks for the pitch and yaw angles presented in Fig. 4 don’t corrupt
or abrupt the tracking process, allowing reliably continue pose estimation of the
target.

4 Discussion

With this paper we proved experimentally that the fusion technique guarantee
accurate calculation of the position and orientation of the target using PMD
sensor. Here for every frame the weighted average method fuses two estimates,
which were calculated with depth and amplitude images independently. By differ-
ent test simulations we have shown the main advantage of the fusion - decrease of
the measured errors for the attitude and for the position of the target. Moreover,
having a fused estimate we ensure stable frame-to-frame tracking during the app-
roach. The proposed concept of the data fusion for pose estimation and tracking
based on PMD sensor technologies can be used not only for space applications.
For example, independent redundant information from one PMD visual sensor
can be used in the field of (semi)autonomous driving and also driver assistance
systems. This approach together with PMD sensor helps to reduce the number
of visual sensors, but at the same time ensures increase of the accuracy and
reliability of the visual system.
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