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Abstract. Data augmentation is a widely considered technique to
improve the performance of Convolutional Neural Networks during train-
ing. This step consists in synthetically generate new labeled data by per-
turbing the samples of the training set, which is expected to provide more
robustness to the learning process. The problem is that the augmentation
procedure has to be adjusted manually because the perturbations con-
sidered must make sense for the task at issue. In this paper we propose
the use of Variational Auto-Encoders (VAEs) to generate new synthetic
samples, instead of resorting to heuristic strategies. VAEs are power-
ful generative models that learn a parametric latent space of the input
domain from which new samples can be generated. In our experiments
over the well-known MNIST dataset, the data augmentation by VAEs
improves the base results, yet to a lesser extent of that obtained by a well-
adjusted conventional data augmentation. However, the combination of
both conventional and VAE-guided data augmentations outperforms all
the results, thereby demonstrating the goodness of our proposal.
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1 Introduction

Supervised learning is the most considered approach for addressing automatic
classification tasks. It is based on learning from a series of correct input-output
pairs, from which a model is built with the aim of generalizing to correctly
classify unseen inputs.

Convolutional Neural Networks (CNNs) have been one of the biggest break-
throughs of supervised classification [5], especially in the fields of computer vision
and image processing. These networks allow learning a hierarchy of features suit-
able for the recognition task by means of a series of stacked convolutional layers.
Although these networks were initially proposed decades ago, several factors
have contributed to their eventual success [1].
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Within these factors, data augmentation has become a de facto standard
to improve the learning process [4,6]. It is a step focused on generating a set of
synthetic samples out of those in the training set. The intention of this process is
twofold: (i) since these neural networks need to be trained on a large set of data,
data augmentation might boost the performance by increasing the size of the
original training set, (ii) if the augmentation procedure creates examples that
mimic expected distortions, the CNN might be more robust to variations at test
stage. There are several ways to do data augmentation, especially for images
(rotation, color variation, random occlusions, etc.), although the goodness of
each one is strongly dependent on the task at issue. Many augmentations can
be combined to produce a higher number of new images.

Instead of resorting to hand-crafted procedures, this work proposes a
learning-driven approach for the data augmentation stage by means of Vari-
ational Auto-Encoders (VAE) [3]. VAEs are powerful generative models that
estimate a parametric distribution of the input domain from data. This allows
us to generate synthetic samples that fit such distribution. Data augmentation
needs to be adjusted manually to select a set of specific augmentations that are
suitable to predict variations at the test stage. Nevertheless, a VAE is expected
to learn these variations among input samples by itself, thereby offering a greater
generalization to any type of classification task. Our experiments demonstrate
the goodness of this approach on the MNIST dataset, improving the results
obtained with the original training set and demonstrating its complementarity
with conventional data augmentation techniques.

The rest of the paper is organized as follows: the proposed approach is elab-
orated in Sect. 2, our experimental results are presented in Sect. 3, and the main
conclusions of our work are summarized in Sect. 4.

2 Method

2.1 Variational Auto-Encoders

Auto-Encoders (AE) are neural networks with an encoder-decoder structure
[2,8]. Traditionally, the encoder takes the input and converts it into a smaller,
dense representation, from which the decoder converts the input back. Depend-
ing on the size of the intermediate representation, the encoder has to learn to
preserve as much of the relevant information as possible in the limited space, and
intelligently discard irrelevant parts. The space in which the encoding projects
the input is usually called latent space. Typically, the latent space of a conven-
tional AE does not follow any constraint, and therefore it is difficult to interpret.

Variational Auto-Encoders (VAEs) follow the same topology of that of an
AE, but the latent space they consider is forced to fit a parametric distribution
[7], allowing easy random sampling and interpolation. Typically, this is achieved
by forcing the latent space to behave as a normal distribution. Therefore, the
encoder must yield two representations, instead of one: a vector of means, μ, and
another vector of standard deviations, σ.
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Fig. 1. General outline of the proposed methodology.

Two additional considerations are necessary for training a VAE. On the one
hand, the loss function includes the minimization of a divergence between the
distribution defined by μ and σ and the chosen distribution for the latent space.
On the other hand, the decoder does not operate over the latent space itself,
but its parameters are used to generate a random vector that follows the defined
distribution. Therefore, the decoder must learn to reconstruct the inputs from
sampled values of the distribution estimated by the encoder. This is known as
the “re-parameterization trick”.

As the latent space samples are somehow generated from the distribution
defined by μ and σ, the decoder learns to not just decode single, specific points
of the latent space, but the distribution itself. Once trained, decoding sampled
vectors from the learned distribution should generate new images that fit within
the distribution of the input domain, thus behaving as a generator of samples.

In this work we will train a different VAE per class, and so ensuring that
each VAE generates samples that belong to the class that it has been provided
during its training. Therefore, the generated samples can be reliably labeled for
the classification task.

2.2 Methodology

Figure 1 shows an outline of the methodology proposed in this work. The pro-
cess consists of three stages: first, different VAEs are trained for every class on
the dataset in order to independently model the variations of each class. Once
trained, new samples of each class can be created by sampling the latent space
distribution. In the second stage, a CNN is trained with the samples generated by
the VAEs and/or conventional data augmentation. In the last stage, the trained
CNN is able to make predictions about the test samples.

3 Experiments

This section describes the experiments carried out to measure the goodness of
the proposed approach.1

1 For the sake of reproducible research, the code of the experiments is available at
http://github.com/ugm2/DataAugmentation VAE.

http://github.com/ugm2/DataAugmentation_VAE
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3.1 MNIST Dataset

The experimentation has been carried out using the MNIST dataset of hand-
written digits (10 classes). Originally, this dataset is split into two parts: 60,000
samples of training data and 10,000 samples of test data. The training partition
is used both to train the VAEs and the CNN. In order to measure the impact
of our proposal, we consider reduced training sets. In particular, we consider
training set of sizes 50, 100, 250, 500, and 1,000. Each of these sizes represent
the total images, i.e. for the size of 50 only 5 samples per digit will be used. For
the case of the VAEs, as there is one for every class of the dataset, a tenth of
the amounts are used to train every class-wise VAE. From the training partition,
85% is used to train the VAEs, while the remaining 15% is used as validation to
know when to stop. The evaluation part is performed with 700 images of each
class (7,000 in total).

3.2 Architectures

Table 1 shows the architecture used for the VAEs and the CNN. The hidden layer
of the VAE (marked with (*)) refers to two separated fully connected layers of
the size of the latent space: one representing the mean vector (μ) and the other
the standard deviation vector (σ). The lambda (λ) layer of the VAE (marked
with (**)) is used to sample a vector with the dimensionality of the latent space,
following the actual values of μ and σ. The dimensionality of the latent space
will be studied empirically.

Table 1. VAE and CNN architectures. Notation: Conv(f , w × h) stands for a layer
with f convolutional operators of size w × h; ConvT(f , w × h) stands for a layer with
f transposed convolutional operators of size w × h; MaxPool(w × h) stands for the
Max-Pooling operator with a w × h kernel; Drop(d) refers to Dropout with ratio d;
FC(n) is a Fully-Connected layer with n neurons; LS denotes the dimensionality of the
latent space.

Network Part Configuration

VAE Encoder Conv(1, 2× 2) Conv(64, 2× 2) Conv(64, 3× 3) Conv(64, 3× 3)

Hidden Flatten() FC(128) FC(LS[μ, σ])* λ(sampling([μ, σ])**

Decoder FC(128) ConvT(64, 3× 3) Conv(1, 2× 2)

FC(12544) ConvT(64, 3× 3)

Reshape(14× 14× 64) ConvT(64, 3× 3)

CNN – Conv(64, 3× 3) Conv(128, 3× 3) Flatten()

Conv(128, 3× 3) Conv(128, 3× 3) FC(128)

Ma×Poo(2× 2) Ma×Pool(2× 2) Drop(0.5)

Drop(0.5) Drop(0.5) FC(10)
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3.3 Training

3.3.1 VAE
For the training of the VAEs it has been employed the RMSprop optimizer,
which uses the magnitude of recent gradients to normalize the gradients. The
loss function consists of two terms: the binary cross-entropy and the Kullback-
Leibler (KL) divergence. The first one evaluates “how wrong” the output of the
decoder (y) matches the input of the encoder (ŷ). It is calculated as:

− 1
N

n∑

i=1

yi · log(ŷi) + (1 − yi) · log(1 − ŷi) (1)

The KL divergence measures the difference between N (0, 1) and N (μ, σ). It
is computed as:

n∑

i=1

σ2
i + μ2

i − log(σi) − 1 (2)

The number of epochs used for training the VAEs has been adjusted manually
according to the size of the initial training set.

3.3.2 CNN
For the training of the CNN, the Adam gradient descent optimization algorithm
has been employed with a categorical cross entropy loss function. The training
process was monitored using early stopping, which stops the training process if
the validation loss of the training does not decrease after 10 epochs. Once the
training process is stopped, the model of the epoch with the best validation loss
is chosen.

For the use of conventional data augmentation during the training of the
CNN, the following transformations of the data were applied: rotation range of
20◦, width shift range of 20%, and height shift range of 20%.

3.4 Results

In this section, we both analyze the generative power of the VAEs and the results
of the proposed methodology. The classification performance metric considered
in this work is the F1 score. This metric is defined as the harmonic mean of
the precision and the recall, and it properly summarizes the classification per-
formance.

First, we show in Fig. 2 some examples of the digits that have been generated
by the VAEs trained with 50 images each, and with varying sizes of the latent
space. It seems that the digits generated when considering a latent space of 3
dimensions are the most realistic ones.

Figure 3 shows the effect of applying different types of transformations during
the data augmentation process. The types of transformations applied go gradu-
ally from a possible lack of expert supervision (applying all the transformations
possible) to suitable changes for the MNIST dataset. It has been used different
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Fig. 2. Generated digits using VAEs with different latent space sizes.

levels of data augmentation adjustment to observe that in order to improve over
the CNN without data augmentation (red line), it needs expert knowledge about
which perturbations to do on the dataset at issue, as it could worsen the results
otherwise.
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Fig. 3. Comparison of the improvement obtained by gradually adjusting the trans-
formations applied in the data augmentation process from inexpert hands to suitable
changes for the corresponding dataset.

The final classification experiments are shown in Table 2, including the CNN
without any augmentation method (CNN), using standard data augmentation
(AUG), using the generated digits from VAEs (VAE), and using both standard
data augmentation along with the digits of the VAEs (AUG + VAE).

At first sight, it turns out that the results with the VAE-generated data
remarkably improves the training with the original data; however, the data aug-
mentation process boosts the performance even more, as it has been manually
adjusted to the MNIST dataset. Furthermore, considering both data augmenta-
tion and the generated samples from the VAEs, as well as the original dataset,
the best figures are generally attained, improving the results of just considering
data augmentation in most of the cases.

It is important to emphasize that our approach does work with limited train-
ing data. For instance, starting from 50 images as initial training set, the result
of data augmentation combined with VAE-generated data from a latent space of
3 dimensions, achieves the outstanding result of almost 91% of F1 score, which
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Table 2. Results of the experiments performed: no augmentation method (CNN),
standard data augmentation (AUG), digits generated from VAEs (VAE), and using
both standard data augmentation and digits generated from VAEs (AUG+VAE)

Latent Space Training Size CNN VAE AUG AUG+VAE

2 50 76.30 84.89 86.10 89.05

100 84.38 90.90 94.85 94.50

250 93.03 94.84 97.12 98.00

500 94.28 95.65 98.11 98.22

1000 96.54 97.24 98.36 98.87

3 50 76.30 85.40 86.10 90.86

100 84.38 91.98 94.85 95.15

250 93.03 95.93 97.12 97.97

500 94.28 96.38 98.11 98.26

1000 96.54 97.74 98.36 98.87

4 50 76.30 83.77 86.10 89.67

100 84.38 91.75 94.85 94.73

250 93.03 95.16 97.12 97.86

500 94.28 96.28 98.11 98.30

1000 96.54 97.38 98.36 98.90

8 50 76.30 84.46 86.10 89.32

100 84.38 91.28 94.85 94.56

250 93.03 95.24 97.12 97.86

500 94.28 95.95 98.11 98.41

1000 96.54 97.50 98.36 98.79

Table 3. Results obtained for the statistical significance tests comparing our approach
with the other methods evaluated. Symbols ✓ and ✗ state that results achieved by
elements in the rows significantly improve or decrease, respectively, to the results by
the elements in the columns. Significance has been set to p < 0.01.

CNN VAE AUG

VAE ✓ – ✗

AUG ✓ ✓ –

AUG + VAE ✓ ✓ ✓

increases the result of the original dataset by 14.56% and the result of the con-
ventional data augmentation by 4.76%.

The dimensionality of the latent space set to 3 seems to give the best results
overall, being settled down as the sweet spot for this dataset in concrete. This
confirms what was already observed, visually, in Table 2.
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In order to draw more robust conclusions from the results obtained, statis-
tical significance tests are performed between the different configurations, tak-
ing into account the results for the different sizes of the training set. Specifi-
cally, Wilcoxon signed-rank tests are considered, which compare the different
approaches by pairs. Table 3 reports the outcomes of these tests. It can be
observed that the statistical significance is directly related to the average results
obtained, and therefore the conclusions drawn from Table 2 have a proper sta-
tistical significance.

4 Conclusions

A learning-driven approach for data augmentation has been proposed. It con-
siders Variational Auto-Encoders (VAEs), which can be used to generate new
samples after being trained to model the input domain of a specific class of the
classification task.

Our experiments with the MNIST dataset has reported very promising
results. It has been shown that including the samples generated by the VAEs in
the training set leads to a better performance compared to that of just using the
initial training set. Although using conventional data augmentation improves
the actual accuracy even more, it should be noted that our approach does not
need to be manually adjusted. In addition, the combination of traditional data
augmentation with the samples generated by the VAEs provides the best overall
results.

This work has been restricted to the MNIST dataset, and so the first avenue
to explore is to study this approach in other, more challenging tasks. We are espe-
cially interested in checking the performance of our approach in those datasets
for which traditional data augmentation is not advisable.
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