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Abstract. Betweenness is one of the most popular centrality measures
in the analysis of social networks. Its computation has a high compu-
tational cost making it implausible for relatively large networks. The
dynamic nature of many social networks opens up the possibility of devel-
oping faster algorithms for the dynamic version of the problem. In this
work we propose a new incremental algorithm to compute the between-
ness centrality of all nodes in directed graphs extracted from social net-
works. The algorithm uses linear space, making it suitable for large scale
applications. Our experimental evaluation on a variety of real-world net-
works have shown our algorithm is faster than recalculation from scratch
and competitive with recent approaches.

Keywords: Social network analysis · Betweenness centrality ·
Dynamic algorithms · Dynamic graphs

1 Introduction

Centrality is one of the most important concepts in the analysis of social net-
works. Among centrality measures, one of the most popular is betweenness cen-
trality [1,6]. The betweenness of a node is a measure of the control this node
has on the communication paths in the network. Therefore, it can be used to
rank nodes according to their relative importance in a graph. Betweenness has
been used effectively in a variety of applications, such as: design and control of
communications networks [15], traffic monitoring [13], identifying key actors in
terrorist networks [11], finding essential proteins [8], and many others.

Computing the betweenness of all nodes in a network has a high computa-
tional cost, so efficiency is the target of much related research. Nowadays, most
graphs are inherently dynamic. When a graph suffers small changes, recomput-
ing betweenness from scratch would be very inefficient. Therefore, dynamic algo-
rithms capable of computing betweenness faster by using previous computations
have been proposed [10,12]. None of these is better than Brandes [3] (brandes)
in the worst case, and there is evidence that this is likely very hard to overcome
[16]. Despite that, good speedups in typical instances have been achieved [2,7].

c© Springer Nature Switzerland AG 2019
R. Vera-Rodriguez et al. (Eds.): CIARP 2018, LNCS 11401, pp. 262–270, 2019.
https://doi.org/10.1007/978-3-030-13469-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-13469-3_31&domain=pdf
http://orcid.org/0000-0003-1804-3319
https://doi.org/10.1007/978-3-030-13469-3_31


Space Efficient Incremental Betweenness Algorithm for Directed Graphs 263

In this work, we focus on the exact computation of betweenness centrality in
incremental graphs. While not allowing edges to be deleted, incremental graphs
cover some important applications, as has been pointed by several authors before
[2,9,12]. Two recently proposed algorithms deal with the same problem, obtain-
ing better performance than previous work, so we compare with them:

1. icentral [7] works on undirected connected graphs, and allows edges to be
deleted and inserted. It only stores the betweenness of all nodes of the graph,
so memory requirement is linear. First, it decomposes the graph into bicon-
nected components, and then updates betweenness of nodes in the component
affected by the update. In the article it’s proven that for undirected graphs,
the betweenness can change only for nodes in the affected component. Its
time complexity is highly dependent on the size of the affected biconnected
component.

2. ibet [2] works on directed graphs, and allows edges to be inserted. It stores
all distances between pairs of nodes, so memory requirement is quadratic.
First, it identifies efficiently all pairs of nodes which distance or number of
shortest paths are affected by the update. Then it applies an optimized pro-
cedure to calculate changes in betweenness for nodes affected by the update.
Experiments showed it outperforms previous approaches requiring quadratic
memory.

In this paper we present a space efficient algorithm to compute the between-
ness centrality of all nodes in a directed incremental network. Its space com-
plexity is linear in the size of the input graph and its time complexity is similar
to that of icentral. In the worst case, it’s equivalent to recalculating between-
ness in the biconnected component where the added edge resides, plus some
linear overhead. Up to the authors knowledge it’s the first algorithm calculating
betweenness centrality in incremental directed graphs, showing better perfor-
mance than recalculation, and at the same time, having less than quadratic
space complexity. On the other hand, it works with disconnected graphs, detail
usually left out by previous approaches, but important in real world applications.

In the next section we define betweenness, biconnected component and incre-
mental algorithms. In Sect. 3 we present the proposed algorithm, prove its cor-
rectness, and determine space and time complexity. In Sect. 4 we show the exper-
imental validation of our algorithm. At the end, the conclusions and references.

2 Preliminaries

For simplicity, we will refer to directed, simple and unweighted graphs. In the
following we will refer to a graph G = (V,E) with n nodes and m edges.

2.1 Betweenness

Betweenness centrality of a node is formally defined by the following formula:

CB(v) =
∑

s �=v,t�=v
s,t∈V

σst(v)
σst

(1)
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where σst(v) is the number of shortest paths from s to t passing through v and
σst is the number of shortest paths from s to t. A naive algorithm using this
formula has O(n3) complexity.

In [3] Brandes showed a more efficient way to calculate betweenness values:

CB(v) =
∑

s �=v,s∈V

δs·(v) (2)

where δs·(v) =
∑

s �=v,t�=v,t∈V
σst(v)

σst
. Using this formula betweenness values can

be computed in time O(n · m), by running a BFS (Breath First Search [4]) on
each node and computing the required values (distances, σ, δ). For a complete
explanation see [3].

2.2 Biconnected Components

Biconnected components were first proposed as a good heuristic for speeding up
betweenness computations in [14], and more recently in the context of dynamic
graphs in [7]. We will make use of the following definitions:

Definition 1. Let G be an undirected graph. A biconnected component is a con-
nected induced subgraph A of G, such that the removal of any node doesn’t dis-
connect A, and is maximal.

Definition 2. Any node belonging to more than one biconnected component is
called articulation point.

2.3 Incremental Graphs

We call a dynamic graph incremental if edges can be inserted, but not deleted.
As previously mentioned in this work we focus on incremental graphs. Computing
betweenness in such context is usually done in two steps. In the first step some pre-
processing is done and initial betweenness is computed. Next, after each edge inser-
tion, betweenness is updated. The two steps could have different time complexities,
so both define the time complexity of an incremental algorithm. All algorithms
mentioned here have the same complexity in the first step (the same as brandes),
so in comparisons we will only take into account the update step.

3 Algorithm

The proposed algorithm is a generalization of icentral to deal with directed
graphs.

Definition 3. Let G be a graph, and let G∗ be the graph G after inserting a
new edge (u, v). We define affected component as the biconnected component of
the undirected version of G∗ to which the newly inserted edge (u, v) belongs.
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The main obstacle in generalizing icentral is that, in directed graphs, when
an edge is inserted, betweenness values of nodes outside the affected component
can change as well. In the next theorem we prove a formula allowing to compute
those changes efficiently.

Theorem 1. Let x be a node outside the affected component A, and let s be the
articulation point inside the component such that its removal disconnects x from
A. Then after the update, the betweenness of x changes by

δs(x) · (reach∗(s) − reach(s)) + δr
s(x) · (reach∗r(s) − reachr(s)) (3)

where reach(s) equals the number of nodes z such that there exists a shortest
path from z to x passing through A, superscript r means the function is applied
to the reversed graph, and superscript ∗ indicates the function is applied to the
updated graph.

Proof. For the sake of clearness, lets rename variables in the definition of
betweenness 1:

CB(x) =
∑

a�=x,b �=x
a,b∈V

σab(x)
σab

(4)

In the sum on the right the only terms that can change after an update are such
that a and b are in different biconnected components, and such that all shortest
paths from a to b pass through A. Therefore, all these paths must pass through
s. Then, two cases may occur, according to the relative orders of s and x in the
paths from a to b that go through x:

1. a, s, x, b =⇒ σab(x)
σab

= σasσsxσxb

σasσsb
= σsxσxb

σsb
= σsb(x)

σsb

2. a, x, s, b =⇒ σab(x)
σab

= σaxσxsσsb

σasσsb
= σaxσxs

σas
= σas(x)

σas

Therefore, the terms that can change equal:

∑

a,b in case 1

σsb(x)
σsb

+
∑

a,b in case 2

σas(x)
σas

= reach(s) · δs(x) + reachr(s) · δr
s(x) (5)

and the theorem easily follows.

Following Theorem 1, pseudocode for the function updating betweenness
outside A is shown in Algorithm 3. Then, it remains to update betweenness inside
the component; this can be done as in icentral, and is shown in Algorithm 2.
The Brandes-like function in lines 8 and 9 computes delta values in the affected
component, as in icentral, using reachr

o values to add the contribution of nodes
outside the affected component. r and ∗ have the same meaning as in Theorem
1. The pseudocode of the proposed algorithm is shown in Algorithm 1.
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Algorithm 1. Update Betweenness
procedure update-betweenness(G, (u, v), CB)

A ← Affected-Biconnected-Component(G, (u, v))
A∗ ← A with edge (u, v) inserted
update-betweenness-inside(G, A, (u, v), A∗, CB)
update-betweenness-outside(G, A, A∗, CB)
return CB

Algorithm 2. Update Betweenness Inside Affected Component
1: procedure update-betweenness-inside(G, A, (u, v), A∗, CB)
2: Sr ← Affected-Sources(A, (u, v))
3: for all s ∈ articulation-points(A) do
4: reacho(s) ← number of nodes directly reaching s outside A
5: reachr

o(s) ← number of nodes directly reachable from s outside A

6: for all s ∈ Sr do
7: δs ← Brandes-like(A, s)
8: δ∗

s ← Brandes-like(A∗, s)
9: for all x ∈ A do

10: CB(x) ← CB(x) + δ∗
s (x) − δs(x)

11: if s is articulation point then
12: for all x ∈ A do
13: CB(x) ← CB(x) + (δ∗

s (x) − δs(x))·reacho(s)

3.1 Complexity

The overall space complexity is linear (in the size of the graph) as the algorithm
only uses a constant number of arrays with linear size (CB , the different variants
of reach, A, A∗, and the different variants of δ). Only CB and the graph itself
persist across updates.

Time complexity of the proposed algorithm (Algorithm 1) equals the com-
plexity of finding biconnected components (linear), plus the complexity of Algo-
rithm 2, plus the one of Algorithm 3. Let nA and mA be the number of nodes
and edges respectively in the affected component. Algorithm 2 has exactly the
same complexity as icentral, which is O(n + m + |Sr| ∗ (nA + mA)), where Sr
is the set of affected sources (as defined in [7]).

In Algorithm 3, for a given s all variants of reach (lines 3 and 7) can be
computed using BFS in time O(nA + mA), as there is no need to do any com-
putation outside A at this point. As any node outside A will have at most
one corresponding articulation point s, in lines 4, 5, 6, 8, 9, and 10 each
node and edge of the graph appears at most once, and so the total com-
plexity of these is O(n + m). Summing up, the complexity of Algorithm 3 is
O(n + m + |articulation-points(A)| ∗ (nA + mA)).

Overall, using that there are at most nA articulation points in A, and also
at most nA affected sources, complexity of the proposed algorithm is proven to
be O(n + m + nA ∗ (nA + mA)), matching that of icentral.
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Algorithm 3. Update Betweenness Outside Affected Component
1: procedure update-betweenness-outside(G, A, A∗, CB)
2: for all s ∈ articulation-points(A) do
3: Compute reach(s), reach∗(s) using BFS (defined in Theorem 1)
4: δs ← δ values of nodes reachable from s outside A
5: for all x ∈ nodes directly reachable from s outside A do
6: CB(x) ← CB(x) + δs(x) · (reach∗(s)−reach(s))

7: Compute reachr(s), reach∗r(s) using BFS (defined in Theorem 1)
8: δrs ← δ values of nodes that reach s outside A
9: for all x ∈ nodes directly reaching s outside A do

10: CB(x) ← CB(x) + δrs(x) · (reach∗r(s)−reachr(s))

3.2 Notes

It’s possible to modify slightly the proposed algorithm to work with graphs
with arbitrary positive weights, by using Dijkstra algorithm [5] instead of BFS.
In graphs with multiples edges, parallel edges can be substituted with the edge
with smallest weight, and then obtain a simple graph with the same betweenness.

On the other hand, it’s straightforward to parallelize the most time consum-
ing part of the algorithm, the computation of the betweenness changes inside the
affected component. As the δ values respect to affected sources are computed
independently, this computations could be done by different nodes in a parallel
environment. In this environment, good speedups are expected, similar to those
in [7].

4 Experiments

We experimentally evaluate the proposed algorithm by measuring time and mem-
ory, and comparing it with icentral, ibet and brandes. All algorithms were
implemented in pure python, and graphs were stored and manipulated using
the python library NetworkX1. Algorithms were run on a GNU/Linux 64 bit
machine, processor Intel(R) Core(TM) i3-4160 CPU @ 3.60 GHz, with 5 GBytes
of main memory.

The datasets used for experimentation were taken from online sources, some
of them being already referenced in [2] or [7]; p2p-Gnutella08, Wiki-Vote, and
CollegeMsg, were taken from SNAP graphs collection. The description of the
data is shown in Table 1.

For each graph, we randomly selected 100 edges that were not already con-
tained in the graph, and measured the average time and maximum memory
used by each algorithm to update the betweenness of all nodes when each edge
is inserted. In the case of algorithms that work with directed graphs, when test-
ing on an undirected one, each edge was transformed into two edges, one for
each possible direction. Results are shown in Table 2. Note it’s not possible to
test icentral on directed graphs.
1 http://networkx.github.io/.

http://snap.stanford.edu/data/index.html
http://networkx.github.io/


268 R. Gil-Pons

Table 1. Statistics of graph datasets (lbc refers to largest biconnected component)

Graph dataset # nodes # edges Diameter lbc Edge type

CollegeMsg 1893 20292 8 1498 Directed

Cagr 4158 13428 16 2651 Undirected

Epa 4253 8897 10 2163 Undirected

Eva 4475 4654 17 234 Undirected

p2p-Gnutella08 6299 20776 9 4535 Directed

Wiki-Vote 7066 103663 7 4786 Directed

Table 2. Results, time given in seconds and memory in MBytes.

Graph dataset brandes ibet icentral Ours

Time Mem Time Mem Time Mem Time Mem

CollegeMsg 2.7 131 0.7 380 - - 2.2 154

Cagr 31.0 148 4.9 1643 15.3 145 12.3 175

Epa 26.4 146 4.2 1851 9.0 143 8.2 167

Eva 17.1 142 6.8 1989 0.8 135 1.2 159

p2p-Gnutella08 18.1 148 3.0 3249 - - 13.3 179

Wiki-Vote 27.6 198 2.9 3781 - - 10.4 331

As expected, both our algorithm and icentral perform very similar, both
in time and memory, and are consistently faster than brandes. This speedup
is highly dependent on the size of the affected component. Best performance
respect to brandes was obtained in dataset Eva, where the number of nodes in
the largest biconnected component is relatively small. On average, our algorithm
is between 2 and 3 times faster than brandes.

On the other hand, ibet is the fastest of all on most datasets, but it’s mem-
ory usage is very high, making it very expensive for graphs of tens of thousands
of nodes. Also note, that for datasets like Eva, ibet is outperformed by algo-
rithms icentral and our proposal, stressing the relevance of algorithms using
the biconnected components decomposition.

5 Conclusions

In this work an algorithm for computing betweenness in incremental directed
graphs has been proposed. Its memory usage is linear allowing it to scale to
large graphs. It’s time complexity is similar to that of algorithm proposed in [7],
despite of handling the more general case of directed graphs. Experiments have
proven it can be a practical replacement of brandes for directed and undirected
graphs, mostly when quadratic memory usage is not feasible due to large input.
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As future work we plan to conduct experiments with a distributed and paral-
lel implementation of the proposed algorithm. Also, we will extend the proposed
algorithm to work with edge deletions. Moreover, it seems possible to apply
some of the optimizations proposed in [2] to update betweenness values inside
the affected biconnected component.

References

1. Anthonisse, J.M.: The Rush in a Directed Graph. Stichting Mathematisch Cen-
trum, Mathematische Besliskunde (1971)

2. Bergamini, E., Meyerhenke, H., Ortmann, M., Slobbe, A.: Faster betweenness cen-
trality updates in evolving networks. In: LIPIcs-Leibniz International Proceedings
in Informatics, vol. 75, pp. 1–16 (2017). https://doi.org/10.4230/LIPIcs.SEA.2017.
23

3. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Soc. 25(2),
163–177 (2001). https://doi.org/10.1080/0022250X.2001.9990249

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press, Cambridge (2009)

5. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1(1), 269–271 (1959). https://doi.org/10.1007/BF01386390

6. Freeman, L.C.: A set of measures of centrality based on betweenness (1977).
https://doi.org/10.2307/3033543

7. Jamour, F., Skiadopoulos, S., Kalnis, P.: Parallel algorithm for incremental
betweenness centrality on large graphs. IEEE Trans. Parallel Distrib. Syst. (2017).
https://doi.org/10.1109/TPDS.2017.2763951

8. Joy, M.P., Brock, A., Ingber, D.E., Huang, S.: High-betweenness proteins in the
yeast protein interaction network. J. Biomed. Biotechnol. 2005(2), 96–103 (2005).
https://doi.org/10.1155/JBB.2005.96

9. Kas, M., Wachs, M., Carley, K.M., Carley, L.R.: Incremental algorithm for updat-
ing betweenness centrality in dynamically growing networks. In: Proceedings of
the 2013 IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining - ASONAM 2013, pp. 33–40 (2013). https://doi.org/10.1145/
2492517.2492533

10. Kourtellis, N., Morales, G.D.F., Bonchi, F.: Scalable online betweenness central-
ity in evolving graphs. IEEE Trans. Know. Data Eng. 27(9), 2494–2506 (2015).
https://doi.org/10.1109/TKDE.2015.2419666

11. Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)
12. Nasre, M., Pontecorvi, M., Ramachandran, V.: Betweenness centrality – incre-
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