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Abstract. When modeling phenomena that cannot be studied by deterministic
analytical approaches, one of the main tasks is to generate random variates. The
widely-used techniques, such as the inverse transformation, convolution, and
rejection-acceptance methods, involve a significant amount of statistical work
and do not provide satisfactory results when the data do not conform to the
known probability density functions. This study aims to propose an alternative
nonparametric method for generating random variables that combines kernel
density estimation (KDE), and radial basis function based neural networks
(RBFBNNs). We evaluate the method’s performance using Poisson, triangular,
and exponential probability density distributions and assessed its utility for
unknown distributions. The results show that the model’s effectiveness depends
substantially on selecting an appropriate bandwidth value for KDE and a certain
minimum number of data points to train the algorithm. the proposed method
enabled us to achieve an R2 value between 0.91 and 0.99 for analyzed
distributions.

Keywords: General regression neural network � Probabilistic neural network �
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1 Introduction

Computational models are a widely-used alternative method for solving problems that
cannot be studied by deterministic analytical approaches [1]. This has led to the
development of a fairly small number of density functions to describe how values are
distributed over the sample spaces of a large number of real phenomena. However,
preparing and statistically analyzing the data to take advantage of these distributions
requires significant effort, and does not produce good results when the system analyzed
depends on random variables that do not follow known probability density functions,
leading us to look for unconventional alternatives that can reproduce the stochasticity
of real systems [2].
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Estimating random variable distributions has played an important role in several
recent studies, studying monthly rainfall and water flow to determine drought indicators
[3], predicting crime based on Twitter messages [4], and studying trends in the marine
duck populations along the Atlantic coast of the United States [5].

For more than 40 years, nonparametric probability density estimation techniques,
such as the Kolmogorov–Smirnov and chi-squared tests, have been the most widely-
used density estimation methods, because they do not depend on the explicit form of
the distribution or its parameter values, as parametric techniques do [6, 7]. However,
these tests only suggest how to adjust the data when working with known distributions,
and they are also sensitive to common errors in interpreting the p-value [8].

Since its introduction in 1956, KDE has become one of the most widely-used
nonparametric density estimation methods [9, 10]. Over time, various authors have
extensively modified the original technique in order to reduce its sensitivity to the choice
of the kernel function and bandwidth [11]. Most recent methods suggest using maxi-
mum likelihood algorithms, with maximum entropy [12] and histogram trend filters
[13]. These nonparametric techniques have proved useful for analyzing phenomena that
do not conform to known distributions, such as wind speeds [14], crime prediction using
social network data [4], and smart sensor-based electricity readings [15].

Once a given random variable’s distribution has been established, the subsequent
problem consists of generating numerical values that follow the same distribution. The
most common conventional random variable generation techniques are the inverse
transformation, the acceptance-rejection, and convolution methods. However, these all
have issues in terms of the calculation speed, computational resources required, and
effort needed to prepare and statistically analyze the data [1]. Some researchers have
presented universal methods of generating random variables by means of generalized
acceptance-rejection algorithms [16], multilayer neural networks [17], transforming
random variables to generate continuous distribution families [18], and specialized
algorithms for producing particular distributions such as geometric [19] distributions.

This paper presents a new nonparametric approach that combines KDE with
RBFBNNs to generate random variable values regardless of their probability distri-
butions and whether they are discrete or continuous variables, thus reducing the
dependence on goodness of fit tests, for both data that follows a known distribution and
those that are distributed atypically.

2 Kernel Density Estimation

KDE is a common nonparametric technique for estimating the probability density
functions of random variables. Given a set of n independent observations X1;X2; . . .;
Xn, represented by the same probability density function f, this model estimates the
probability density function (PDF) fn associated with these observations as follows:

fn xð Þ ¼ n�1h�1
Xn

j¼1

K h�1 x� Xj
� �� �

: ð1Þ
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Here, K is the kernel function, which weights the result by the proximity of x to the
sampled points, and h is the bandwidth, which defines the size of the kernel function’s
weighting window.

KDE’s accuracy depends on the kernel function K and bandwidth h used. The
value of K does not significantly affect the model’s statistical efficiency, but it does
impact the calculation speed for large data sets [10]. In contrast, the bandwidth h is a
sensitive parameter that governs the model’s overall behavior, so it is essential to select
an optimal value for it when estimating the PDF [10, 11].

3 Generalized Regression Neural Networks and Probabilistic
Neural Networks (RBFBNNs)

GRNNs and PNNs are RBFBNNs introduced by Donald Specht between 1990 and
1991. In case of PNNs, Specht demonstrated that the Bayes–Parzen classifier can be
split into many simple processes and hence implemented as a multilayer neural network
[20], also showed that the GRNNs can be implemented for any regression problem in
which an assumption of linearity is no justified [21]. In general, the structure for
GRNNs and PNNs can be summarized as shown in Fig. 1:

In both cases the input layer distributes the input to the neurons of the next, or
pattern, layer, when it receives a pattern x, pattern layer neuron xij calculates its output,
that is later distributed in the units of sum that determine the output according to some
weights or defined relation, finally the result obtained is used to estimate the classifi-
cation generated in PNNs case, or the continuous value in GRNNs case [20, 21].

One important characteristic of this type of networks is that no iterative training is
required; instead, the parameters are saved and used to make predictions. This makes it
a computationally lightweight algorithm, which is significant when handling large
amounts of data [22].

Fig. 1. Neural Networks structure for (a) GRNN (b) PNN. (Source: adapted from [20, 21])
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4 Combining KDE and RBFBNNs

Figure 2 gives an overview of the proposed method. It starts by estimating the shape of
the sample data’s PDF using KDE. Here we used the Epanechnikov weighting function
and established an appropriate bandwidth for each data set using a local search pro-
cedure, starting from the reference bandwidth value proposed by Silver [10]. Once
PDF’s shape is estimated, we compute the CDF’s shape using a numerical approxi-
mation of PDF’s area under curve by trapezoidal Riemann Sum. While in the ana-
lytically case the highest probability of CDF must be equal to one, in the estimation
case, the highest value of the estimated CDF is better when is closer to one.

The computed points from CDF estimation are used to train a GRNN in case of
continuous variable or a PNN in case of discrete variable. This produces a model that
enables random values to be generated according to the same distribution as the sample
data via an inverse transform procedure by replacing the CDF with the RBFBNN.

5 Evaluation

For this study, a computer with an Intel Core i7 2.60 GHz processor and 8 GB of RAM
was used. All the calculations were carried out using Python 3.2.6.

The GRNNs and PNNs implemented using the NeuPy library, were trained on 70%
of the input data set, with the remaining 30% reserved for the subsequent validation
step. For this evaluation, we used the learning curve algorithm from the scikit-learn
library. This method evaluates the neural network’s accuracy by varying the training
data set and performing repeated cross-validation, preserving the 70/30 split for each
training data subset and using R2 metric.

To evaluate the total error of our model (Eq. (2)), we used three probability dis-
tributions with known CDFs, so that their inverse transforms could be computed
analytically for a given set of uniform random values, enabling us to calculate different
errors between the analytic values obtained from the inverse transformations and the
values generated by the RBFBNN. The mixture of normal distributions data set was
used as an illustration of applicability of proposed model to generate random variates
from unknown distributions.

Collecting and 
preprocessing data Estimation of 

PDF’s shape
Estimation of 
CDF’s shape

Training and evaluating the model
Total error = KDE error + RBFBNN estimation error

Training of RBFBNN Cross validation and total 
error computation

KDE – Riemann sum estimation

Generating new random data 
with the same PDF

Exporting and using data
Event discrete 
simulation
Montecarlo simulation

Stochastic 
optimization
Risk analysis

Running the builded modelModeling uncertainly in real processes

Fig. 2. Overview of the proposed method. (Source: the authors)
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Total error ¼ KDE errorþRiemann sum errorþRBFBNN error ð2Þ

5.1 Data Sets Used

To evaluate the proposed model, we used four different data sets, of 600 samples each,
generated using SciPy Python’s library. The first three data sets used the Poisson,
triangular, and exponential distributions, while the fourth was a mixture of three dif-
ferent normal distributions, contributing 200 samples each. Table 1 lists the parameters
used for each distribution, given according to SciPy’s nomenclature.

6 Results and Discussion

6.1 PDFs and CDFs Estimations

Figure 3 shows histograms of the 600 samples from each probability distribution,
together with the estimated PDFs and corresponding CDFs.

Table 1. Details of the data sets used.

Distribution Type Parameters Total Samples

Poisson Discrete mu = 10, loc = 0 600
Triangular Continuous c = 1, loc = 0, scale = 1 600
Exponential Continuous scale = 20 600
Mixture of normal Continuous loc 1 = 15, scale 1 = 2

loc 2 = 25, scale 2 = 2
loc 3 = 35, scale 3 = 3

600

Fig. 3. KDE of the PDFs and CDFs for the (a) Poisson, (b) triangular, (c) exponential, and
(d) mixed normal distribution data sets.
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The bandwidth computed with the local search procedure shown in Table 2, allows
good fit for PDF and CDF especially for Poisson and mixture of normal distributions,
where the smoothed curves are closers to the histogram representations. In the case of
triangular and exponential distributions, the KDE exhibits non-smoothed shapes in
comparison with the histograms for both distributions, which is an evidence of his-
togram’s width class sensitivity in PDF’s shape estimation.

Otherwise, the learning curves shown in Fig. 4 for each data set, reflect the impact
of the training data variation on the RBFBNN’s R2, allowing us to establish that, for the
triangular and Poisson distributions, a training set of size approximately 150 was
sufficient for good fitting, while, for the exponential distribution, the R2 increases
considerably above 300 samples, meaning that distributions with extreme values with
low probability of occurrence, require a larger number of sample data for good CDF
estimation.

Table 2. Overall errors for the proposed method on each of known distributions.

Distribution Kernel bandwidth R2 MAE MSE Explained variance

Poisson 1.1903 0.9824 0.1741 0.1763 0.9827
Triangular 0.0451 0.9980 0.0084 0.0001 0.9984
Exponential 2.9018 0.9118 3.6563 64.0301 0.9241

Fig. 4. Learning curves and estimated PDFs for the (a) Poisson, (b) triangular, (c) exponential,
and (d) mixture normal distribution data sets.
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Figure 4 also shows the histograms and estimated PDFs for 10,000 new random
values generated by each of the RBFBNN models, suggesting graphically that the
original and generated data follow identical distributions.

6.2 Precision of the Method

We determined the method’s overall precision by considering the MSE, mean absolute
error (MAE), R2, and explained variance, calculated by comparing the analytic results
with the KDE-based CDFs for each of the known probability distributions and the
values generated by the RBFBNNs, as discussed in Sect. 5.

The results shown in Table 2 indicate that that the accuracy was generally good for
the Poisson and triangular distributions, but the correlation and explained variance are
notably reduced for the exponential distribution. This is probably due to the fact that
exponential distribution includes extreme values that are unlikely to appear in the
training data and therefore do not feature in the estimated PDFs and CDFs, weakening
the GRNN’s and PNN’s ability to generate accurate results.

In case of mixture of normal distributions data set, where analytical CDF is
unknown, we only analyzed KDE adjust between original data set and the histogram
for 10,000 new random values generated using the proposed method, finding good
fitting as shown in Fig. 4.

7 Conclusions

In this paper, we have proposed a nonparametric model for generating random variable
values that has considerable advantages in terms of reducing the amount of preparatory
and statistical analysis work required to represent the stochasticity of real phenomena in
computer simulations. The integration of KDE and RBFBNNs enable us to replicate
known and unknown random variate distributions without needed of goodness of test
fit procedures, improving the model’s applicability when the data do not conform to the
known probability density functions as shown before in the case of mixture of normal
distributions.

One of the main weaknesses of our model is the strict need to establish a suitable
KDE bandwidth, to prevent errors propagating to neural networks training process and
hence guarantee the CDF curves are well-adjusted, since this involves a local search
procedure to stablish an adequate bandwidth value with an associated computational
cost. This weakness is especially evident in distributions where unlikely values will
generally not appear in the sample data, and thus will not be reflected in the KDE and the
RBFBNN’s prediction, meaning a greater amount of data will be needed for training.
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