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Abstract. Data integrity is a key requirement for correct machine learn-
ing applications, such as Bayesian network structure learning algorithms.
This research studies how an adversary could corrupt the PC structure
learning algorithm by inserting fake data. We propose a novel measure
of strength of links for Bayesian networks. We show how this measure
can be used to attack the PC algorithm. We identify two subclasses of
data poisoning attacks: (1) model invalidation attacks that arbitrarily
break the structure of the Bayesian network model (2) targeted change
attacks that achieve a specific structure. We show that model invali-
dation attacks require only a few “poisoned” data insertions. Targeted
attacks are more difficult and require knowledge of the link strengths
and a larger number of corrupt data items than the invalidation attack.
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1 Introduction and Motivation

Machine learning algorithms, including Bayesian Network algorithms, are not
secure against adversarial attacks. A machine learning algorithm is a secure
learning algorithm if it functions well in adversarial environments [5]. Recently,
several researchers addressed the problem of attacking machine learning algo-
rithms [5,8,29,34]. Data poisoning attacks, which aim to corrupt the machine
learning classifier by contaminating the data in the training phase, are considered
one of the most important emerging security threats against machine learning
systems [24].

Data poisoning attacks against Support Vector Machines (SVMs) [8,10,16,
23,26,35,36] and Neural Networks (NNs) [37] has been studied extensively. How-
ever, we found no research on evaluating the vulnerabilities of Bayesian network
learning algorithms against adversarial attacks.

In this work, we investigate data poisoning attacks against Bayesian network
algorithms. We study two potential attacks against the Bayesian network struc-
ture learning algorithms: model invalidation attacks and targeted change attacks.
For model invalidation attacks, an adversary poisons the training dataset such
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that the Bayesian model will be invalid. For targeted change attacks, an adver-
sary poisons the training dataset to achieve a particular goal, such as masking
or adding a link in a Bayesian network model.

The main contributions of this paper are the following:

1. We propose two subclasses of data poisoning attacks against the PC structure
learning algorithm and establish the difficulty of carrying out the attacks.

2. We define a novel measure of strength of links between variables in Bayesian
networks. This measure can be used to find vulnerable structure of the
Bayesian model.

3. We evaluate what are the easiest links to break based on the defined link
strength measure in Bayesian networks. We also evaluate the most believable
ways to add links to achieve a specific goal.

4. We present and justify a plausible process for targeted attacks on Bayesian
networks.

5. We have implemented our approach and demonstrated these attacks.

Our experiments show that the PC algorithms is vulnerable to data poisoning
attacks. Moreover, even a small number of adversarial data may be sufficient to
corrupt the model. Our ongoing work addresses the development of preventive
technologies.

The rest of the paper is structured as follows. In Sect. 2, we present an
overview of background information. In Sect. 3, we identify model invalidation
attacks against the PC algorithm. In Sect. 4, we identify targeted change attacks
against the PC learning algorithm. In Sect. 5, we present our link strength mea-
sure. In Sect. 6 we present our empirical results. In Sect. 7, we provide conclusions
and directions for future work.

2 Background Information

2.1 Bayesian Networks

Bayesian Networks (BNs) are probabilistic graphical models in which vertices
represent a set of random variables and arcs represent probabilistic dependencies
between vertices. Formally (according to [25]), we say BN = (G,P ) is a Bayesian
network, where G = (V,E) is a direct acyclic graph (with V = {x1, x2, ..., xn}
being the set of random variables or nodes, and E being the set of edges or arcs)
and P is a joint probability distribution of the random variables, if it satisfies
the following Markov condition: every node is conditionally independent of its
non-descendants given its parents.

The following factorization of the joint probability distribution of V = {x1,
x2, ..., xn} into a product of local probability distributions is equivalent to the
following Markov property: P (V ) =

∏n
i=1 P (xi | parent(xi)).
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The Notion of D-Separation
In a Bayesian network, there are three basic connections among variables as
follows [27]: (1) Serial connections (also called pipelined influences): in a serial
connection (shown in Fig. 1a, ignore the dashed link), changes in the certainty
of A will affect the certainty B, which in turn will affect the uncertainty of
C. Therefore information may flow from node A through B to C, unless there
is evidence about B (B is known or instantiated). (2) Diverging connections:
in a diverging connection (shown in Fig. 1b, ignore the dashed links), changes
in the certainty of A will affect the certainty B, which in turn will affect the
uncertainty of C. Therefore information may flow from node A through B to C,
unless there is evidence about B. (3) Converging connections (a.k.a. v-structure):
in a converging connection (shown in Fig. 1c, ignore the dashed links), changes
in the certainty of A cannot affect the certainty C through B, and vice versa.
Therefore information cannot flow between A and C through B, unless there is
evidence about B. The three types of connections in a casual network formulate
the definition of d-separation (see [27] for the definition of d-separation).

Structure Learning in Bayesian Networks
There are three main approaches to learning the structure of BNs: constraint-
based, score-based, or hybrid algorithms. In this work, we focus on constraint-based
algorithms, which count on conditional independence tests to determine the DAG
of the learned Bayesian network. The PC algorithm [32,33] is a constraint-based
algorithm for learning the structure of a Bayesian network from data. The PC
algorithm follows the theoretical framework of the IC algorithm to determine the
structure of causal models [31]. According to [33], the process performed by the PC
algorithm to learn the structure of Bayesian networks can be summarized as fol-
lows: (i) For every pair of variables, perform statistical tests for conditional inde-
pendence. (ii) Determine the skeleton (undirected graph) of the learned structure
by adding a link between every pair of statistically dependent variables. (iii) Iden-
tify colliders (v-structures) of the learned structure (A → B ← C). (iv) Identify
derived directions. (v) Randomly, complete orienting the remaining undirected
edges without creating a new collider or a cycle. For the implementation of this
paper, we used the Hugin PC algorithm (by HuginTM Decision Engine [20,28]),
“which is a variant of the original PC algorithm due to [33]” [14].

Prior to Posterior Updating
The statement of Bayes’ theorem is: For two events A and B,
P (A | B) = P (B|A)P (A)

P (B) , where (i) P (A | B) is the conditional probability of
event A given event B (called the posterior probability), (ii) P (B | A) is the
conditional probability of event B given event A (called the likelihood), (iii)
P (A) is the marginal probability of event A (called the prior probability), and
(iv) P (B) is the marginal probability of event B (P (B) > 0) [25].

Bayesian statistics treats parameters as random variables whereas data
is treated as fixed. For example, let θ be a parameter, and D be a
dataset, then Bayes’ theorem can be expressed mathematically as follows:
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P (θ | D) = P (D|θ)P (θ)
P (D) . Since P (D) is constant [19], we can write Bayes’ theorem

in one of the most useful form in Bayesian update and inference as follows:

P (θ | D) ∝ P (D | θ) × P (θ)
Posterior ∝ Likelihood × Prior

(1)

It is convenient mathematically for the prior and the likelihood to be conjugate.
A prior distribution is a conjugate prior for the likelihood function if the posterior
distribution belongs to the same distribution as the prior [30]. For example, the
beta distribution is a conjugate prior for the binomial distribution (as a likelihood
function).

P (θ | D) ∝ Binomial(n, θ) × Beta(α, β)
P (θ | D) ∝ Beta(y + α, n − y + β)

(2)

Equation 2 is the formula that we are going to use in this paper for prior to
posterior update. Starting with a prior distribution Beta(α, β), we add the count
of successes,y, and the count of failures, n − y, from the dataset D (where n is
total number of entries in D) to α and β, respectively. Thus, Beta(y+α, n−y+β)
is the posterior distribution.

Link Strengths in Bayesian Networks
Boerlage introduced the concepts of both connection strength and link strength
in a binary Bayesian network model [9]. Connection strength for any two variables
A and B in a Bayesian network model B1 is defined as measuring the strength
between these two variables by testing all possible paths between them in B1,
whereas link strength is defined as measuring the strength these two random
variables taking into account only the direct edge A − B [9]. Methods for link
strengths measurements are not studied sufficiently [11]. We believe that link
strength is critical to understand structural vulnerabilities of Bayesian network
models. In this paper, we define a novel and computationally not expensive link
strength measure.

2.2 Adversarial Machine Learning

Attacks against machine learning systems have been organized by [5,6,13]
according to three features: Influence, Security Violation, and Specificity. Influ-
ence of the attacks on machine learning models can be either causative
or exploratory. Causative attacks aim to corrupt the training data whereas
exploratory attacks aim to corrupt the classifier at test time. Security violation
of machine learning models can be a violation of integrity, availability, or pri-
vacy. Specificity of the attacks can be either targeted or indiscriminate. Targeted
attacks aim to corrupt machine learning models to misclassify a particular class
of false positives whereas indiscriminate attacks have the goal of misclassifying
all false positives.

Evasion attacks [7,12,15,17,34] and Data poisoning attacks [1,8,10,16,22,
23,26,35–37] are two of the most common attacks on machine learning systems
[13]. Evasion attacks are exploratory attacks at the testing phase. In an evasion
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attack, an adversary attempts to pollute the data for testing the machine learn-
ing classifier; thus causing the classifier to misclassify adversarial examples as
legitimate ones. Data poisoning attacks are causative attacks, in which adver-
saries attempt to corrupt the machine learning classifier itself by contaminating
the data on training phase.

In this paper, we study the resilience of Bayesian network algorithms, namely
the PC algorithm, against data poisoning attacks. To the authors’ best knowl-
edge, no study has been performed on evaluating the vulnerabilities of PC algo-
rithm against poisoning attacks. We present the two subclasses of data poisoning
attacks against the PC algorithm: (1) Model invalidation attacks and (2) Tar-
geted change attacks.

3 Model Invalidation Attacks

A model invalidation attack against the PC algorithm is a malicious active attack
in which adversarial opponents try to corrupt the original model in any way. We
demonstrate adversarial attacks to decrease the validation status of the model
using the least number of changes. In such an event, adversaries create some
formal disturbance in the model. For example, they will try to add imprecise or
incorrect data to change the model validation status so that the model is ren-
dered invalid. We distinguish between two ways to invalidate Bayesian network
models: (1) Attacks based on the notion of d-separation and (2) Attacks based
on marginal independence tests.

Due to space limitation, we only present selected algorithms in this work. A
complete set of algorithms and further details can be accessed in [3,4]. Here is
an item list with all the algorithms and short description:

Algorithm Description

Algorithm 1 Creating a New Converging Connection

Algorithm 2 Breaking an Existing Converging Connection

Algorithm 3 Edge Deleting

Algorithm 4 Removing a Weak Edge

Algorithm 5 Edge adding

Algorithm 6 Adding the Most Believable yet Incorrect Edge

Algorithm 7 Targeted Change Attacks

3.1 Model Invalidation Attacks Based on the Notion of
D-Separation

Based on the definition of d-separation, adversaries may attempt to introduce a
new link in any triple (A − B − C) in the BN model. This newly inserted link
(A − C) will introduce a v-structure in the Bayesian model, thus change the
independence relations.
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Theorem 1. Let B1 and B2 be two Markov equivalent BNs, and let <A,B,C>
be a path in B1. If a new link is added to B1 creating B′

1, then B′
1 and B2 are

not Markov equivalent.

B

A C

(a) Adding the dashed link
to the serial connection.

B

A C

(b) Adding one of the dashed links
to the diverging connection.

B

A C

(c) Adding one of the dashed
links and shielding collider B.

Fig. 1. Three cases for the proof of Theorem 1.

Proof Sketch. Adding a new edge to the path <A,B,C> in Bayesian network
model B1 affects the Markov equivalence class of B1 (two Bayesian networks
are Markov equivalent if and only if they have the same skeleton and the same
v-structures (unshielded colliders) [2]). Any sound learning algorithm will try
to avoid the occurrence of a cycle; thus, in the triple (A − B − C), either an
existing collider is shielded, and a new link is introduced (as shown in Fig. 1c)
or a new link is added (as shown in Figs. 1a and b). In either case, the Markov
equivalence class of B1 will be violated.

Within model invalidation attacks based on the notion of d-separation, we
can further identify two subclasses:

Creating a New Converging Connection (V-Structure)
Adversarial attackers can corrupt Bayesian network models by introducing a new
converging connection. Adversaries will attempt to poison the learning dataset
with the goal of introducing a new v-structure by adding a new link to any serial
or diverging connection in Bayesian network models. Adding such an edge will
not only introduce a new collider but also change the equivalence class of the
learned Bayesian network model.

Theorem 2. Let B1 be a Bayesian network model, and let <A,B,C> be a path
in B1 with either a serial connection or diverging connection, then introducing a
new edge on the path <A,B,C> must create a new converging connection in B1.

Proof Sketch. Trivially follows. [See Figs. 1a and b].

We have developed an algorithm (called Algorithm 1: Creating a New Con-
verging Connection Procedure) to tests the resilience of the PC learning algo-
rithm against this type of attacks. Our empirical results are given in Sect. 6.

Breaking an Existing Converging Connection (V-Structure)
Adversaries can exploit Bayesian network models by breaking an existing con-
verging connection. The PC algorithm starts by identifying unshielded collid-
ers (v-structure with unmarried parents) when learning the Bayesian network
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structure from data [33]; therefore, attacking v-structures will make a significant
corruption to the learned BN structures since the learned model will have a dif-
ferent equivalence class than the expected one. Such an adversarial attack can
be done by marrying the parents of an unshielded collider. Note that, if vertex
B is an unshielded collider on the path <A, B, C>, then A and C are inde-
pendent unconditionally, but are dependent conditionally on B in most cases
(faithfulness assumption [33]).

Theorem 3. Let B1 be a Bayesian network model, and let B be an unshielded
collider on the path <A,B,C>, then introducing a new edge on the path
<A,B,C> must break the existing converging unshielded connection at vertex B.

Proof Sketch. Trivially follows. [See Fig. 1c].

We have developed an algorithm (called Algorithm 2: Breaking an Existing
Converging Connection Procedure) to check the robustness of the PC algorithm
against the feasibility of shielding an existing converging connection. Our empir-
ical results are presented in Sect. 6.

3.2 Model Invalidation Attacks Based on Marginal Independence
Tests

When learning the structure of a Bayesian network model from data, the PC
algorithm starts by analyzing the conditional independence statements between
variables. It performs χ2 statistical test on the given dataset to establish the
set of statistical independence statements for the learned causal model [27].
Using this information of how the PC algorithm works, adversarial attackers
may contaminate the input dataset with the goal of removing weak edges or
adding the most believable yet incorrect links. Based on the direct impact of
marginal independence tests on the PC algorithm, model invalidation attacks
can be divided into two main types: (1) removing weak edges and (2) adding the
most believable yet incorrect edge.

Removing a Weak Edge
We show that it is feasible to use link strengths measure to identify and rank
the edges on a causal model from the weakest to the strongest. Thus, adversarial
opponents may attempt to poison the learning dataset with the goal of removing
weak edges.

We have developed an algorithm (called Algorithm 4: Removing a Weak Edge
Procedure) to check the resilience of the PC algorithm against attacks that target
weak edges. Our algorithm calculates the strength of each link in a Bayesian
model and then ranks the edges from the weakest to the strongest edge. It then
checks the robustness of the PC algorithm against the feasibility of deleting the
weakest edge. Our empirical results are presented in Sect. 6.
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Adding the Most Believable yet Incorrect Edge
We show that it is feasible to use link strengths measure to identify and rank
the edges on a causal model from the most to the least believable edge. Thus,
adversaries can cleverly use data poisoning attacks craft the input dataset to
the Bayesian network model so that adding those incorrect yet plausible edges
is viable.

We have developed an algorithm (called Algorithm 6: Adding the Most Believ-
able yet Incorrect Edge Procedure) to check the robustness of the PC algo-
rithm against this attack. The algorithm starts by learning the structure of
the Bayesian network model and then uses the defined link strengths measure
to rank a given set of edges that could be added to the learned model from the
most to the least believable edge. Our algorithm then checks robustness of the
PC algorithm against the feasibility of adding the most believable edge. Our
empirical results are presented in Sect. 6.

4 Targeted Change Attacks

A targeted change attack against the PC algorithm is an active malicious attack
in which malicious agents try to move from the state of “what I have” to the
state of “what I want” by poisoning the learning dataset. Adversaries attempt to
plan attacks against Bayesian network models using the least number of changes.
That is, they will attempt to move from the existing model to the desired model
using the least and inconspicuous number of changes. As such, adversaries assess
the difficulty of entering or modifying data that promises to intentionally change
the current model into the desired model. By doing so, the adversary is able to
make the changed model behave exactly as they want.

A targeted change attack is more harmful and sophisticated than model
invalidation attack. For this, adversaries attempt to poison the input dataset
aiming for a specific result of the BN model; therefore, it misclassifies a certain
class of false positives and false negatives. Before we present Algorithm 7, we
have developed two algorithms needed for our experiments, Algorithm 3: Edge
Deleting Procedure, which provides algorithmic details of the robustness of the
PC algorithm against the feasibility of deleting an existing edge in a Bayesian
network model as follows, and Algorithm 5: Adding an Edge Procedure, which
checks the robustness of the PC algorithm against the feasibility of introducing
a link between two vertices that do not lie in a triple in a BN model.
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Algorithm 7. Targeted Change Attacks Procedure
Input : Dataset DB1 � Original dataset with n cases
Output: Contaminated dataset DB2 or a failure message

1 Procedure Targeted Change Attacks(DB1)

2 Use the PC algorithm for learning the structure of Bayesian network model B1

from dataset DB1 (setting the significance of the Hugin PC to the default level,
which is 0.05 [20])

3 Use L S to rank the edges of B1 from the weakest to the strongest edge

4 Choose a set of edge Q that could be added to B1

5 Use L S to rank the set Q from the most to the least believable edge

6 Plan a targeted attack (the set of edges to be added or deleted from B1)
7 repeat

8 if there is a need to introduce a new link in B1 then
9 Use Algorithm 1 to introduce a new v-structure, Algorithm 2 to break an

existing collider, or Algorithm 5 to add a link between two vertices that
do not lie in a triple

10 end

11 if there is a need to delete an existing link then

12 Use Algorithm 3
13 end
14 if there is a need to remove the weakest edge then

15 Use Algorithm 4

16 end
17 if there is a need to add the most believable edge then

18 Use Algorithm 6
19 end

20 until the targeted attack is achieved

21 end

Algorithm 7 starts by learning the structure of the Bayesian network model
B1 from dataset DB1. It then uses the defined link strengths measure to rank
the edges of B1 from the weakest to the strongest edge. A malicious user can
enter the set of edges Q that the user wants to add to the model B1. The defined
link strength measure is used to rank the set of edge Q from the most to the
least believable edge.

The malicious user then plans a targeted change attack. The adversary, in
this case, chooses the set of edges that could be added to or deleted from the
causal model B1. For example, an attacker may think it is feasible to achieve his
goal by adding a new plausible link and deleting an existing one.

If the attacker wants to add a new link A−C and this new link introduces a
new v-structure in a triple A − B − C, then Algorithm 1 is called. On the hand,
if the link A − C shield a collider B in a triple A − B − C, then Algorithm 2 is
called. Otherwise, Algorithm 5 is called to add a link between two vertices that
do not lie in a triple in a Bayesian network model (see [3] for more algorithmic
details about other algorithms).

If the attacker wants to delete an existing edge. There are two algorithms that
can check the feasibility of achieving this goal. Algorithm 3 checks the feasibility
of deleting any edge in a Bayesian network model, and Algorithm 4 checks the
feasibility of deleting the weakest edge in a Bayesian network model.
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In all different scenarios, Algorithm 7 returns a contaminated dataset DB2

if achieving the targeted attack is feasible; otherwise, a failure message will be
printed if the number of added cases will be more than β × n, where β is data
poisoning rate at which we are allowed to add new “poisoned” cases to DB1 (we
default set β ≤ 0.05)

5 Measuring Link Strengths from Data in Discrete
Bayesian Networks

In this section, we introduce a novel link strength measure between two ran-
dom variables in a discrete Bayesian network model. It is essential to not only
study the existence of a link in a causal model but also define a reliable link
strengths measure that is useful in Bayesian reasoning [9,11]. The new defined
link strengths measure assigns a number to every link in a Bayesian network
model. This number represents the lowest confidence of all possible combinations
of assignments of posterior distributions. The defined link strengths measure will
guide our edge removal and insertion process. Our novel approach is as follows:

Given a discrete dataset DB1 and a Bayesian network structure B1 learned
by the PC algorithm using DB1, for every link variable1 → variable2 in B1,
build a contingency table for the two discrete variables variable1 and variable2
with i and j states, respectively (as shown in Table 1). Table 1 is structured as fol-
lows: [the cell’s observed counts obtained from DB1], (the cell’s expected counts,
calculated as follows: Observed Row Total×Observed Column Total

Observed Grand Total(denoted as n) ), and <the cell’s

chi-square test statistic, calculated as follows: (n−e)2

e > [21]. To measure the
strength of links of a causal model: (1) we compute the posterior distribu-
tions for each link variable1 → variable2 as follows: P (variable2 | variable1) =
Beta(y +α, n−y +β) where variable2 | variable1 is all possible combinations of
assignments to variable2 and variable1, and then (2) we use our link strength
measure (denoted as L S(V ariable1 → V ariable2)), which is defined as follows:

L S(V ariable1 → V ariable2) = miny∈Y (pdf( y+α
α+n+β

)) (3)

where Y = {n11, n12, · · · , n1j , n21, n22, · · · , n2j , · · · , ni1, ni2, · · · , nij}, pdf is the
probability density function, and y+α

α+n+β is the mean of the posterior distribution.

Interpretation: For any two random variables in a causal model (variable1
with i states and variable2 with j states), there are i × j combinations of
assignments of posterior distributions. For every posterior distribution, we have
a prior distribution that is a conjugate prior for the likelihood function. For
instance, a posterior distribution in the form Beta(y + α, n − y + β) has a Beta-
distributed prior, Beta(α, β), which is a conjugate prior for the likelihood func-
tion, Binomial(n, θ). Considering all i × j posterior distributions for the two
random variable1 and variable2, we can measure the uncertainty of that link
by measuring how peaked the posterior distributions (Beta distributions in our
experiments) are; thus, we can identify the link strength based on the uncer-
tainty level. The more peaked the posterior distribution is, the more certainty
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Table 1. Contingency table for two discrete variables variable1 and variable2 with i
and j states, respectively.

V ariable2

V ariable1 State1 · · · Statej Observed row total

State1 [n11], (e11), <ts11> · · · [n1j ], (e1j), <ts1j>
∑j

t=1 n1t

.

.

.

.

.

. · · ·
.
.
.

.

.

.

Statei [ni1], (ei1), <tsi1> · · · [nij ], (eij), <tsij>
∑j

t=1 nit

Observed column total
∑i

t=1 nt1 · · · ∑i
t=1 ntj n (Observed grand total)

we have about the posterior distribution probability. In other words, the peak of
a beta distribution, Beta(α′, β′), is reached at its mean, α′

α′+β′ . Thus, the peak
of the posterior distribution is reached at y−α

n−y+β . In the defined link strength
measure, we define the link strength for any link between two random variables
in a causal model as the value of the smallest peak. This point is the point at
which the model has seen the fewest number of cases; thus, it is the most critical
point through which this link can be manipulated.

We use this measure to identify weak edges (i.e., low values of L S). These
edges are the easiest to remove from a given causal model. We also use the L S
value to identify location for new edges to be added. We claim that the highest
L S value, the most believable the new edge is.

6 Empirical Results

In this section, we demonstrate the robustness of the PC learning algorithm
against the proposed data poisoning attacks. The feasibility of such attacks is
investigated through empirical results on the Chest Clinic Network [18].

We implemented the Chest Clinic Network using HuginTM Research 8.1.
Then we simulated dataset of 10, 000 cases for our experiments by using
HuginTMcase generator [20,28]. We call this dataset as DB1. Using the PC algo-
rithm on dataset DB1 with 0.05 significance setting [20], the resulting structure
is given in Fig. 3. While the two networks belong to different Markov equivalence
classes, we will use the network of Fig. 3 as the starting point of our experiments.

We performed the following three experiments: (1) Model invalidation attacks
based on the notion of d-separation. (2) Model invalidation attacks based on
marginal independence tests. (3) A targeted attack against the Chest Clinic
Network dataset.
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A S

T L B

E

X D

Fig. 2. The original Chest
Clinic Network.

A S

T L B

E

X D

Fig. 3. B1, the result of feeding DB1

to the PC algorithm with significance
level at 0.05

6.1 Model Invalidation Attacks Based on the Notion
of D-Separation

In our first experiment, we evaluated the effectiveness of model invalidation
attacks based on the notion of d-separation (Sect. 3.1) to poison the Chest Clinic
Network dataset DB1. Our aim is to introduce a new v-structure. That is, (1)
add the links D − S, B − L and S − E to the serial connections D → B → S,
B → S → L and S → L → E, respectively, and (2) add the link A − E to
the diverging connection A ← T → E. We also study the robustness of the PC
learning algorithm against the attacks aiming to break an existing v-structure,
i.e., to shield the collider T → E ← L.

We present our results in Figs. 4, 5, 6, 7, and 8. We succeeded to invalidate
(change the Markov equivalence class) the model learned by the PC algorithm.
We had to introduce 74 corrupt cases (data items) to introduce the link D − S.
To introduce links B − L, S − E, and A − E required 13, 40, and 3 corrupt
cases, respectively. To shield the collider E, we only needed 8 poisoning data
items. In addition, when we increased the number of corrupted data items, the
PC learning algorithm was acting unstably. Our results after adding 17 poising
cases to introduce the malicious link T − L is in Fig. 9.

We also observed that the choice of corrupt data items affects the efficiency
of the attack. That is, when introducing a malicious link between two random
variables, a cell with a higher test statistics value <tsij> in the contingency table
of these two random variables requires fewer corrupt data items than a cell with
a lower test statistics value. For example, when poisoning dataset DB1 to add
the link D −S, we needed more corrupt data items as the value of test statistics
got lower. The results are as follows: the cell with D = yes and S = yes required
74 cases, the cell with D = yes and S = no required 272 cases, the cell with
D = no and S = yes required 1120 cases, and the cell with D = no and S = no
required 1701 cases. Overall, we showed that the PC algorithm is vulnerable to
model invalidation attacks based on the notion of d-separation.
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A S

T L B

E

X D

Fig. 4. Introducing
a new converging
connection in the
triple D − B − S.

A S

T L B

E

X D

Fig. 5. Introducing a new
converging connection in
the triple B − S − L.

A S

T L B

E

X D

Fig. 6. Introducing a new
converging connection in
the triple S − L − E.

A S

T L B

E

X D

Fig. 7. Introducing
a new converging
connection in the
triple A − T − E.

A S

T L B

E

X D

Fig. 8. Breaking an exist-
ing converging connection
in the triple T − E − L.

A S

T L B

E

X D

Fig. 9. The result of using
17 cases to break the v-
structure T → E ← L.

Table 2. Posterior distributions for the Chest Clinic
Network.

Link Posterior distributions (beta distributions)

P(T | A) Beta(10,99) Beta(106,9789) Beta(99,10) Beta(9789,106)

P(L | S) Beta(481,4510) Beta(47,4966) Beta(4510,481)

Beta(4966,47)

P(B | S) Beta(3019,1972) Beta(1514,3899) Beta(1972,3019)

Beta(3899,1514)

P(E | T) Beta(115,1) Beta(523,9365) Beta(1,115) Beta(9365,523)

P(E | L) Beta(527,1) Beta(111,9365) Beta(1,527) Beta(9365,111)

P(D | B) Beta(3638,895) Beta(725,4746) Beta(895,3638)

Beta(4746,725)

P(D | E) Beta(520,118) Beta(3843,5523) Beta(118,520)

Beta(5523,3843)

P(X | E) Beta(624,14) Beta(454,8912) Beta(14,624)

Beta(8912,454)

A S

T L B

E

X D

14.75256 50.30727 56.88552

129.2983103.7509

70.69412
25.73502

49.30178

Fig. 10. Results of L S on the
Chest Clinic Network.
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6.2 Model Invalidation Attacks Based on Marginal Independence
Tests

Link strength measure is needed for the second experiment. For the Chest Clinic
Network. Given the Chest Clinic network model as shown in Fig. 2 and the
dataset DB1, we followed the two steps presented in Sect. 5. Table 2 contains
the posterior distributions calculated in step 1. Figure 10 shows the final link
strength evaluation (L S) (calculated in step 2 ).

We will use these strength measures in this section and in Sect. 6.3 to illus-
trate the ease of removing existing links and adding links to a causal model.

In the second experiment, we evaluated the effectiveness of model invalidation
attacks based on marginal independence tests (Sect. 3.2) to poison the Chest
Clinic Network dataset DB1. In this experiment, we check the resilience of the
PC algorithm against the feasibility of deleting the weakest edge in the Bayesian
model B1. To determine the weakest edge in B1, we do the following: (1) use
the defined link strength measure L S to rank the edges of B1 from the weakest
to the strongest edge, and (2) check the feasibility of poisoning dataset DB1

to remove the weakest edge. We also study the robustness of the PC algorithm
against attacks aiming to add the most believable yet incorrect edge to B1. To
determine the most believable edge to be added to B1, we do the following:
(1) determine the set of edges Q that could be added to the model B1 (in this
experiment, we let Q = {A−S, T −S,D −S,L−B,L−T}), (2) use the defined
link strength measure to rank the set of edges Q from the most to the least
believable edge, and (3) check the feasibility of poisoning dataset DB1 to add
the most believable edge.

We present our results of deleting the weakest edge from B1 in Table 3 and
Fig. 11. We succeeded to invalidate the model learned by the PC algorithm. We
had to modify only 3 cases to break the weakest link A − T . Our results of
adding the most believable edge to B1 are presented in Tables 4, 5, and Fig. 12.
We succeeded to fool the PC algorithm and invalidate the learned model. We
had to introduce only 13 corrupt data items to add the most believable link
B − L.

We observed that when removing an edge from a causal model, the choice
of corrupt data items has an impact on the efficiency of the attack. That is,
transferring data items from the cell with the highest test statistics value to the
cell with the lowest test statistics value in a contingency table of two random
variables will accelerate the process of removing the link between them. Overall,
we showed that the PC algorithm is vulnerable to model invalidation attacks
based on marginal independence tests.



Cyber Attacks Against the PC Learning Algorithm 173

Table 3. The result of
using L S to rank B1 edges
from the weakest to the
strongest.

Link Link strength L S Rank

A → T 14.75256 1

S → L 50.30727 3

S → B 56.88552 4

T → E 103.7509 5

L → E 129.2983 6

B → D 49.30178 2

A S

T L B

E

X D

Fig. 11. The result of
removing the weakest link
in B1, A → T

A S

T L B

E

X D

Fig. 12. The result of
adding the most believ-
able link to B1, B → L.

Table 4. Posterior distributions for the set of
edges Q.

Link Posterior distributions (beta distributions)

P(S | A) Beta(57, 52) Beta(4934, 4961) Beta(57, 52)
Beta(4934, 4961)

P(T | S) Beta(49, 4942) Beta(67, 4946) Beta(49, 4942)
Beta(67, 4946)

P(D | S) Beta(2728, 2263) Beta(1635, 3378)
Beta(2728, 2263) Beta(1635, 3378)

P(L | B) Beta(312, 4221) Beta(216, 5255) Beta(312,
4221) Beta(216, 5255)

P(L | T) Beta(5, 111) Beta(523, 9365) Beta(5, 111)
Beta(523, 9365)

Table 5. L S results.

Link {Link strength L S} Rank

A → S 8.313748 5

S → T 28.66903 3

S → D 54.90557 2

B → L 91.51039 1

T → L 21.92398 4

6.3 A Targeted Attack Against the Chest Clinic Network Dataset

A further goal of this research is to study the influence of targeted change attacks
on our dataset DB1. We validate the effectiveness of targeted change attacks
described in Algorithm 7 (Sect. 4) to poison the Chest Clinic network dataset
DB1 with the goal of achieving a particular change to the model. Algorithm 7
checks the robustness of the PC algorithm against the feasibility of implementing
a targeted change attack.

Given the link strength measure L S for ranking the edges of the model B1

from the weakest to the strongest edge (Table 3) and given L S for ranking the
set of edges Q that could be added to the model B1 from the most to the least
believable edge (Table 5), we aim to change model B1 such that it concludes
that smoking (S) causes dyspnoea (D) but not lung cancer(L). Our
attack had the following two steps: step (1) use Algorithm 7 to delete the link
S → L, and then step (2) use Algorithm 7 again to add the link S → D (Fig. 13).

We present our results in Figs. 14, and 15. We observed that Algorithm 7
succeeded to delete the link S → L by modifying only 114 data items in our
dataset DB1, resulting in a dataset DB2 (Fig. 14). Then we fed DB2 to Algorithm
7 succeeded to add the link D → S. We needed only 74 cases to introduce the
link D → S in dataset DB2 (Fig. 15). Overall, we showed that the PC algorithm
is vulnerable to targeted change attacks.
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A S

T L B

E

X D

X
1) delete this link

2) add this link

Fig. 13. A targeted
attack against the
model B1

A S

T L B

E

X D

Fig. 14. The model B1

after achieving step 1
(deleting S → L)

A S

T L B

E

X D

Fig. 15. The model B1

after achieving the two
steps of the targeted
attack

7 Conclusion and Future Work

As machine learning techniques become more pervasive, it is important to be
aware of the danger of malicious attackers based on introducing corrupted data
items. We explored the vulnerabilities of a commonly used structural learning
algorithm for BNs to adversarial attacks. To carry out experiments, we define a
novel measure of link strength. Our results indicate that a malicious attacker can
both invalidate the model and modify it according to a desired aim with relatively
few data items. The experiments presented in this paper involve a commonly
used synthetic Bayesian network. Our ongoing work develops prevention and
detection methods against such adversarial attacks. We also aim to acquire a
real world dataset for future experiments.
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