Chapter 14 )
Chitin/Chitosan: Versatile Ecological, s
Industrial, and Biomedical Applications

Hans Merzendorfer and Ephraim Cohen

Abstract Chitin is a linear polysaccharide of N-acetylglucosamine, which is highly
abundant in nature and mainly produced by marine crustaceans. Chitosan is obtained
by hydrolytic deacetylation. Both polysaccharides are renewable resources, simply
and cost-effectively extracted from waste material of fish industry, mainly crab and
shrimp shells. Research over the past five decades has revealed that chitosan, in
particular, possesses unique and useful characteristics such as chemical versatility,
polyelectrolyte properties, gel- and film-forming ability, high adsorption capacity,
antimicrobial and antioxidative properties, low toxicity, and biocompatibility and
biodegradability features. A plethora of chemical chitosan derivatives have been
synthesized yielding improved materials with suggested or effective applications in
water treatment, biosensor engineering, agriculture, food processing and storage,
textile additives, cosmetics fabrication, and in veterinary and human medicine. The
number of studies in this research field has exploded particularly during the last two
decades. Here, we review recent advances in utilizing chitosan and chitosan deriv-
atives in different technical, agricultural, and biomedical fields.

14.1 Introduction

Chitosan, a polymer of B(1-4)-linked glucosamine (2-amino-2-deoxy-O-glucose)
units, is a biopolymer with unique characteristics due to the presence of free
amino groups on its backbone. It is obtained by partial deacetylation of chitin,
which is found in the cell walls of unicellular and filamenous fungi and in
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extracellular matrices and skeletal deposits of many protozoan and metazoan organ-
isms including algae, choanoflagellates, sponges, corals, cephalopods, and arthro-
pods. Commercially, chitin is extracted from the waste shells of marine crustaceans
such as shrimp and crab. A significant proportion is used to produce chitosan, which,
in contrast to chitin, is soluble in water at a slightly acidic pH and is easy to modify
chemically to increase solubility at neutral pH and to add new functionalities.
Chitosan and its derivatives have many desirable properties such as antioxidative
and antimicrobial effects, mucoadhesiveness, biodegradability, and biocompatibility
and can be manufactured in various formulations including hydrogels, films, mem-
branes, porous sponges, nanoparticles, and nanofibers. Moreover, chitosan is con-
sidered a harmless compound, as it has received the generally recognized as safe
(GRAS) status by the US Food and Drug Administration (FDA), and it has been
approved as a food additive in several Asian countries (No et al. 2007). In the
European Union, chitosan is registered as a basic substance, and the use of chitosan
hydrochloride is considered by the European Food Safety Authority (EFSA) as
having neither harmful effects on human or animal health nor any negative effects
on the environment (European Commission 2014). Therefore, chitosan-based mate-
rials have been adopted worldwide in numerous applications in water treatment;
food, cosmetic, and textile industry; biosensor engineering; plant protection; phar-
maceutical industry; and regenerative medicine. They are used as flocculants, ion
exchangers, chelating agents, coating materials, drug carriers, and scaffolds for
tissue engineering. During the past years, many companies have started to develop
chitosan-based products, and some have already successfully launched them for
commercial purposes. This review is intended to summarize recent developments in
the use of chitosan-based materials for potential and effective applications in differ-
ent technical, environmental, agricultural, and biomedical fields.

14.2 Chitosan-Based Flocculants and Hydrogels Used
in Water Treatment

Pollutants in water, industrial wastewater, and reclaimed wastewater for crop irriga-
tion have presented severe environmental and medical problems all over the world.
Such contaminants include various heavy metal ions (copper, cobalt, manganese,
chromium, mercury, lead, arsenic, cadmium, and nickel), dyes (mainly azo dyes like
malachite green, methyl violet, or methylene blue), oil spills, and a variety of
pharmaceuticals and endocrine-disrupting compounds. Among the various methods
used as remedial measures to treat polluted water and wastewater, the potential of
chitosan-based composites as efficient adsorbent, flocculating and chelating agents
has been widely investigated.

The presence of free hydroxyls and amino groups in many structural forms of
chitosan-derived composites facilitates adsorption of pollutants such as dyes, metals,
and organic compounds. Chitosan derivatives like carboxymethyl chitosan and graft
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polymerization are a prevalent strategy to add a variety of functional groups to the
composite. Magnetic particles are embedded usually as nanoparticles in the complex
core to facilitate regeneration and reuse of adsorbent composites by applying
external magnetic field.

14.2.1 Removal of Heavy Metal Ions

A large number of chitosan-based composites were investigated for removal of metal
ions from aqueous solutions. They include chitosan-polymer macromolecular com-
plexes (as cellulose, cellulosic matrix like cotton fibers, alginate, polyvinyl alcohol,
polyvinyl chloride), chitosan ceramics, as well as clay and silicate composites
(bentonite, montmorillonite, perlite, and zeolite) (Wan Ngah et al. 2011). Due to
the vast number of scientific publications on chitosan-based adsorption that have
been published, only a representative sample is depicted for Cr(VI) and Cu(Il).
Cognate composites were devised as adsorbents of other metal ions (Cd, As, Fe, Pb,
Co, Pb, Hg, Ni, Zn, U) that can be found in the detailed reviews of Reddy and Lee
(2013), Liu and Bai (2014), Wang and Chen (2014), Kyzas and Bikiaris (2015),
Salehi et al. (2016), and Wang and Wang (2016).

Chromium (VI) The mutagenic and carcinogenic Cr(VI) is considered as a
dangerous pollutant for humans and marine ecosystems. Composites of chitin and
chitosan nano-hydroxyapatite hybrids removed Cr(VI) from aqueous solution by
electrostatic interactions and reduction to Cr(IIl) via electron-donating groups pre-
sent in the scaffold (Kousalya et al. 2010). A nanocomposite cross-linked hybrid of
chitosan-alginate was able to remove Cr(VI) from water waste (Gokila et al. 2017).
A more complex scaffold resin, where chitosan was mixed with magnetic particles
(Fe;0,4), modified by ethylenediamine and stabilized by glutaraldehyde as cross-
linker, was established as an effective adsorbent of Cr(VI) (Hu et al. 2011). Reduc-
ing toxic Cr(VI) to nontoxic Cr(Ill) was accomplished by zero-valent iron [Fe(0)]
embedded in chitosan beads (Geng et al. 2009). The oxidized iron Fe(IIT) formed a
precipitately complex with Cr(III), thus enabling the regeneration of the adsorbing
complex. Another method used ceramic aluminum coated with chitosan to remove
Cr(VI) by electrostatic attraction of the hydrogen chromate ions to the positively
charged amino groups of chitosan (Boddu et al. 2003).

Copper(II) Like chromium, Cu®* ions found particularly in industrial wastewater
are hazardous to human health and the ecosystems. Ingenious absorbance methods
using a variety of organic and inorganic compounds have been devised to adsorb and
remove the toxic ions. Among them are promising measures based on chitosan
composite supra-macromolecular structures. Chitosan-based composites with vari-
ous organic and inorganic compounds were examined as Cu(Il) adsorbents. A
recyclable complex composed of L-arginine-chitosan-Fe;O, for removal of Cu
(II) ions (Wu et al. 2016) and magnetic cellulose-chitosan composite microspheres
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was capable to adsorb heavy metals like Cu(Il) but also Cd(II) and Pb(I) from
aqueous solutions (Peng et al. 2014). Chitosan-algal biomass composite microbeads
(Sargin et al. 2016b), a binary chitosan/silk fibroin composite (Ramya and Sudha
2013), and cotton fibers functionalized by triethylenetetramine (TETA) and
carboxymethyl chitosan form composites and hybrids for adsorption of Cu
(II) from water (Niu et al. 2017). Microcapsules composed of phytopathogenic
(Ustilago sp.) fungal spores immobilized in cross-linked chitosan matrix (Sargin
et al. 2016a) and a binary complex of chitosan and emu egg shells (Anantha and
Kota 2016) were shown to remove copper ions from aqueous solutions.

Chitosan complexed with clays, ceramic minerals, and carbon-based materials
was used to enhance absorbance of heavy metals from aqueous solutions. A
nanocomposite that consisted of chitosan-montmorillonite (Pereira et al. 2013)
and silica gel/chitin and chitosan with nano-hydroxyapatite was used as adsorbents
for Cu(Il) (Rajiv Gandhi et al. 2011). Nanocomposites containing chitosan-poly
(vinyl alcohol)-attapulgite were also used for removal of Cu(Il) from aqueous
solutions (Wang and Wang 2016). Furthermore, a recyclable magnetic
microsphere composed of cross-linked chitosan-rectorite (a clay mineral) and
Fe;0,4 was studied for adsorption of Cu(Il) and Cd(I) (Xie et al. 2015), and
chitosan-zeolite composite hydrogel beads were examined for Cu(II) sorption
(Djelad et al. 2016).

A particular interesting recyclable composite with chelating capacity consists of
core magnetic (Fe;0,4)-silica particles combined with cross-linked chitosan. Its
porous and highly specific surface area contributed by activated carbon carrier
showed an excellent adsorption capability for Cu?* ions (Li et al. 2017). A
recyclable nanocomposite with a core xanthated Fe;O, chitosan grafted on
graphene oxide introduced sulfur groups to the composite using carbon disulfide
(Liu et al. 2016a).

Other sorbent composites that were prepared and studied are a recyclable com-
posites containing chitosan grafted on a core of Fe;O4-hexadecyl trimethoxysilane
(Liu et al. 2016b), a flocculant composed of poly(acrylic acid) grafted on chitosan
(Saleh et al. 2017) or beads containing chitosan-poly(vinyl alcohol) and ZnO
(Xu et al. 2017a). A sophisticated composite was prepared by using magnetic
nanoparticles on the surface of polystyrene as core, coated with chitosan cross-
linked by glutaraldehyde followed by grafting polyethylenimine on the complex
surface (Xiao et al. 2017). This submicron composite is recyclable and exhibits good
adsorption capacity for Cu(Il) ions.

Highly selective adsorption of copper ions from aqueous solutions was achieved
by the ion-imprinting polymer method (Kong et al. 2017). Microspheres of magnetic
cores of Fe;0O4 with a shell of cross-linked chitosan and graphene oxide were used to
imprint Cu®* ions. Zarghami et al. (2014) prepared Cu(II) ion-imprinted membranes
composed of cross-linked chitosan/poly(vinyl alcohol) for adsorption of the metal
from aqueous solutions. A similar ion-imprinted technique was reported for selective
adsorption of Pb(Il) from a recycling wastewater unit (Hande et al. 2016).
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14.2.2 Removal of Man-Made Environmental Pollutants
14.2.2.1 Industrial Dyes

Textile, leather, paper, and food industries discharge a plethora of environmental
pollutants such as synthetic dyes. A variety of chitosan-based composites was
examined as promising adsorbents of hard to remove industrial dyes. Chitosan per
se contains functional groups for interaction with pollutants including dyes. Adding
more functional groups by modifying chitosan (cross-linking of chitosan layers,
direct chemical modification, or graft polymerization — see Chapter 3) improves
adsorption capability. Molecular imprinting technique was devised as selective
adsorbent of pollutants. Composites’ core of iron oxide magnetic nanoparticles
like maghemite (y-Fe,O3) and magnetite (Fe;O4) offers a way to recover the
adsorbent scaffolds for reuse. Again, since the published articles are enormous in
number, only essential parameters and basic blocks of adsorbing chitosan-based
composites are included.

Methyl orange as a model anionic azo dye was adsorbed by films of cross-linked
chitosan/nanonized maghemite from aqueous solution (Jiang et al. 2012). Improved
adsorption of the same anionic dye was achieved by preparing a magnetic chitosan
grafted with multi-walled carbon nanotubes (Zhu et al. 2010), and magnetic chitosan
grafted with graphite oxide nanocomposite was able to adsorb the toxic azo dye,
Reactive Black 5 (Travlou et al. 2013). Chitosan modified by ethylenediamine (Zhou
et al. 2011) or polyaniline (Abbasian et al. 2017) grafting was able to adsorb other
anionic azo dyes like Orange 7, Acid Orange 10 acid and red 4 and direct red
23, respectively. A magnetic complex of chitosan and zirconium oxide was a potent
adsorbent of food anionic azo dyes like amaranth and tetrazine (Jiang et al. 2013a).
Moreover, a complex composite adsorbent was prepared by grafting chitosan with
poly[poly(ethylene glycol) methyl ether methacrylate] (Tsai et al. 2017). The
functionalized groups added to chitosan contributed to improved removal of the
azo dye Reactive Orange 16 from water.

Recyclable composite microspheres composed of cross-linked chitosan grafted
with glutamic acid and having a core of Fe;0,4 nanoparticles coated with silica adsorb
cationic dyes like methylene blue, crystal violet, and light yellow 7GL (Yan et al.
2013). Similarly, an amphiphilic N-benzyl-O-carboxymethyl chitosan composite with
a core of iron oxide nanoparticles was prepared for adsorption of methylene blue,
crystal violet, and malachite green (Debrassi et al. 2012). The cyclic oligosaccharide
B-cyclodextrin (B-CD) was added to chitosan-based composites as it provides a
hydrophobic inner cavity and a hydrophilic exterior. Magnetic chitosan-$-CD with
grafted graphene oxide to enlarge surface area exhibited an improved adsorption of
methylene blue as a model dye from water (Fan et al. 2013). Molecular imprinting
technique is of interest to selectively remove dyes from aqueous solutions. The
molecule or ion used as templates will be subsequently removed, and a recognition
site is generated. Alizarin red served as template molecule, and imprinted magnetic
chitosan nanoparticles showed improved adsorption of the dye (Fan et al. 2012).
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14.2.2.2 Removal of Micropollutants (Pharmaceuticals, Endocrine
Disruptors)

Pharmaceutical, endocrine-disrupting compounds and personal care products have
become a new class of hazardous environmental pollutants (Grassi et al. 2013) and
have emerged as an extensive global concern. They are discharged as municipal and
hospital effluents, from manufacturing industries, and found in water, reclaimed
wastewater, and even in crops irrigated by reclaimed water (Paltiel et al. 2016).
Pharmaceuticals, endocrine disruptors, and personal care products and their chem-
ical transformation derivatives are characterized as stable, persistent compounds that
are biologically active at very low concentrations.

The challenging goal has been to completely remove the above micropollutants
from wastewater following conventional cleaning methods. Laboratory research
including adsorption by chitosan-based composites has been high on the agenda
(Amouzgar and Salamatinia 2015). Zhang et al. (2014) used a rather simple cross-
linked magnetic chitosan-Fe;O4 composite to examine the sorption of three phar-
maceutical compounds from contaminated water. The absorbance analysis showed
effective sorption of diclofenac (a nonsteroidal anti-inflammatory drug) and clofibric
acid (an antilipemic agent) but not of carbamazepine (an antiepileptic medication).
Pharmaceuticals in water can be present as cationic, anionic, and neutral forms at
different pH values. Thus, Zhang et al. (2016) in a more recent study devised an
innovative, more complex three-dimensional chitosan-based scaffold. A magnetic
core of chitosan-Fe;O, was grafted with polymeric arms of either the polycation
[poly(2-methyl acryoxyethyl trimethyl ammonium chloride], the polyanion poly
(acrylic acid), or the neutral polymer poly(methylmethacrylate). The polycationic
extension was cost-effective in removal of diclofenac from water due to charge
attraction (Zhang et al. 2016). Further, magnetic composite pellets with grafted clay
(bentonite) and activated carbon were prepared to examine possible cost-effective
removal of cationic and anionic pharmaceuticals (Arya and Philip 2016). The
composite was effective as a sorbent for the beta-blocker (atenolol), the antibiotic
(ciprofloxacin), and the lipid regulator (gemfibrozil).

A variety of chitosan composites have been tested for the removal of other drugs.
Cross-linked chitosan grafted with sulfonate or N-(2-carboxymethyl) groups was
used as a sorbent to remove the dopamine agonist pramipexole dihydrochloride from
polluted water (Kyzas et al. 2013). Chitosan-poly(acrylic acid)-graphite oxide
nanocomposite showed adsorption of dorsolamide, a carbonic anhydrase inhibitor
for eye treatment (Kyzas et al. 2014). Adsorption of nonsteroidal anti-inflammatory
drugs ibuprofen and ketoprofen was studied using porous composite beads prepared
of Chitosan-MIL 101 (Cr) (Zhuo et al. 2017). Using the antiepilectic carbamazepine
as template, the magnetic molecular imprinted technique, based on chitosan-Fe;O,4
nanoparticles, was applied for selective sorption of the drug (Zhang et al. 2013c).

Chlorophenols are endocrine-disrupting chemicals, used inter alia in manufactur-
ing pharmaceuticals that are found in wastewaters (Sin et al. 2012). Excellent
adsorbing capability was demonstrated using a cross-linked chitosan-salicylic
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acid-p-CD composite. Composites of chitosan-y-CD were capable of adsorbing the
endocrine disruptors, polychlorophenols, and bisphenol A (Duri and Tran 2013).
Composite films prepared by blending microporous carbon fibers with cross-linked
chitosan/polyvinyl alcohol were examined as sorbents of bisphenol A from water
(Bilgin Simsek et al. 2017).

Finally, Soares et al. (2017b) proposed an interesting and unusual concept of
using low-cost magnetic chitosan-based scaffold for absorbing and removing oil
spills following initial skimming from water. In addition, the composite, which had a
core of magnetic nanoparticles with a shell of chitosan-silica hybrid, effectively
adsorbs nonpolar organic solvents.

14.3 Biosensors

Biosensors are essentially analytical devices that convert biological reactions or
interactions into measurable signals. Basically, the biosensors’ constructs consist
of a biological sensing element associated and intimately interfaced with a trans-
ducer that converts a signal in one form of energy to a signal of another form. Such
signals should be proportional to the amount of analyte within a certain concentra-
tion range. Electrochemical biosensor devices, for example, possess advantages as
being simple and relatively cheap while offering rapid detection and high sensitivity
and further being amenable to miniaturization. Biosensors have been developed not
only as analytical tools for medical purposes of clinical detection but also for
applications in food industry and environmental monitoring.

Chitosan, and to a much lesser extent chitin, has several advantageous qualities in
the design of biosensors. The polysaccharides are biocompatible, have functional
groups pliable to chemical modification, and can be easily deposited on the surface
of the transducer as adhesive thin films for the immobilization of recognition
elements (enzymes, antibodies, DNA, whole cells, and cell organelles). Addition
of carbon tubes, graphite, and graphene oxide to the composite increases electron
transfer to the transducer and enhanced mechanical strength as well as water
permeability and retention. Since there is a vast array of biosensors based on
chitosan in their constructs, the following provide only representative devices.

Glucose detection and monitoring is of paramount importance in the medical
field. A variety of biosensors, constructed with chitosan and using immobilized
glucose oxidase for the detection of glucose levels, were reported. A glucose
electrochemical sensor was prepared with glucose oxidase immobilized on the
composite of chitosan-carbon nanotubes (Liu et al. 2005). An amperometric glucose
biosensor composed of multilayered chitosan biofilms-gold nanoparticles-glucose
oxidase on platinum (Pt) electrode was devised (Wu et al. 2007). The biocompatible
gold nanoparticles helped in directing the transfer of electrons to the transducer.
Yang et al. (2009) devised a different glucose biosensor composed of Pt electrode-
glucose oxidase-Fe;Oy4-chitosan-nafion. Zhang et al. (2015c) prepared an
electrochemical biosensor for glucose with chitosan-graphite composite and the
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addition of magnetic Fe;O,4 nanoparticles on Pt-coated indium tin oxide (ITO) glass
electrode. Shrestha et al. (2016) devised a glucose biosensor with a glassy carbon
electrode on which a nanocomposite film of glucose oxidase immobilized on
chitosan and on which a graft of polypyrrole-nafion and multi-walled carbon
nanotubes was deposited.

Electrochemical biosensors using other oxidases and various constructs were
fabricated to monitor food and medically important compounds. For instance, a
lactate biosensor was generated using lactate oxidase and a nanocomposite structure
of chitosan-polyvinylimidazole-Os-carbon nanotubes (Cui et al. 2007). Glutamate
and xanthine oxidases as recognition elements immobilized on chitosan/graphene
oxide-polymerized riboflavin were constructed as glutamate and hypoxanthine bio-
sensors (Celiesiute et al. 2017). In addition, a xanthine biosensor based on immobi-
lization of xanthine oxidase on chitosan-polypyrrole-gold nanoparticles was
fabricated by Dervisevic et al. (2017). Tkac et al. (2007) developed a selective
galactose biosensor with a rather simple configuration of chitosan-single-walled
carbon nanotubes and immobilized galactose oxidase. A sensitive amperometric
nanocomposite biosensor for cholesterol detection was constructed using a matrix
of Pt nanoparticles deposited on multi-walled chitosan-carbon nanotubes complexes
with immobilized cholesterol oxidase (Tsai et al. 2008). A similar construct was
proposed by Medyantseva et al. (2014) for the detection of antidepressant mono-
amine drugs using immobilized monoamine oxidase. Dai et al. (2010) developed an
electro-chemiluminiscent biosensor to detect choline by immobilizing choline oxi-
dase on a chitosan/titanate nanotubes composite film. Finally, a biosensor for
measuring ethanol was prepared using alcohol oxidase immobilized on chitosan-
eggshell film (Wen et al. 2007). The biosensor monitored the decrease in oxygen
level vs ethanol concentration.

A number of electrochemical biosensors were similarly constructed to immobi-
lize various dehydrogenase enzymes (Zhang et al. 2004). The nanocomposite
scaffold film, attached predominantly to glassy carbon electrodes, consists of
chitosan, multi-walled carbon nanotubes, and NAD" as cofactor. The signal current
is based essentially on electrooxidation of the formed NADH. Among the large list
of enzymes suffice it to mention NAD-dependent alcohol (Lee and Tsai 2009; Zhang
and Gorski 2011), lactate (Tsai et al. 2007) and glutamate (Hughes et al. 2015)
dehydrogenases, and FAD-dependent glucose dehydrogenase (Monosik et al. 2012).

In contrast to the above enzyme-based biosensors, a nonenzymatic electrochemical
device for monitoring glucose was formulated (Al-Mokaram et al. 2017). The con-
struct, which was based on a nanocomposite film composed of polypyrrole-chitosan-
titanium dioxide nanoparticles on ITO glass electrodes, involved redox reactions and
exhibited improved glucose oxidation and high electron transfer kinetics.

Other biosensors detecting and measuring diverse compounds were formulated,
for example, nitrite biosensor based on Cu-containing nitrite reductase immobilized
on viologen-chitosan that catalyzes the reduction of nitrite (Quan and Shin 2010).
Horseradish peroxidase immobilized on alumina nanoparticles-chitosan composite
was devised to detect phenolic compounds (Liu et al. 2011). Wang et al. (2003)
developed a biosensor to detect and measure glucose, galactose, and glutamate in
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human blood by using their corresponding oxidases immobilized on chitosan-Prus-
sian blue composite film. The biosensor used Prussian blue as a good catalyst to form
hydrogen peroxide by electroreduction. Biosensors to detect catechol as well as
other phenolic compounds were based on immobilized tyrosinase on a film of
chitosan-nickel nanoparticles (Yang et al. 2012a). A biosensor for detection of
chlorophenol that includes immobilized laccase on ZnO-chitosan nanocomposite
was prepared by Mendes et al. (2017). Nanocomposite of functionalized graphene
oxide (enriched with carboxylic moieties)-polypyrrole-chitosan film was constructed
to detect hydrogen peroxide using screen-printed carbon electrodes (Akhtar et al.
2017). Such a device was able to electro-catalyze the reduction of hydrogen perox-
ide. Teepoo et al. (2017) constructed an electrochemical biosensor to detect and
monitor hydrogen peroxide by using horseradish peroxidase immobilized on a
chitin-gelatin nanofiber composite. Another biosensor for hydrogen peroxide that
used immobilized catalase on chitosan-B-cyclodextrin (with ferrocene in its cavity)
was fabricated by Dong et al. (2017). It was based on chitosan-functionalized
graphene oxide (enriched with carboxylic moieties)-polypyrrole nanocomposite
able to electrocatalytically reduce hydrogen peroxide.

Detection and quantification of trace amounts of carcinogenic and toxic metallic
ions are of great challenge and importance. A cross-linked chitosan-carbon nanotube
sensor was developed for the determination of Cd(II) and Hg(Il) (Janegitz et al.
2011). Sugunan et al. (2005) prepared a biosensor made of chitosan-gold
nanoparticles to detect Cu(Il) and Zn(II), and Ahmed and Fekry (2013) used a
construct of chitosan-a-Fe;O,4 nanoparticles sensor to detect Ni(II), As(Il), and Pb
(IT). Biosensors were developed to detect and determine organophosphorus
(OP) pesticides as well. For instance, Stoytcheva et al. (2018) prepared a device
based on OP hydrolase immobilization on a chitosan-carbon-nanoparticles-hydroxy-
apatite nanocomposite. A nanocomposite immunosensor to monitor the OP com-
pound, chlorpyriphos, is based on immobilized anti-chloropyriphos monoclonal
antibody on multi-walled carbon nanotubes-chitosan-thionine (as electronic media-
tor) (Sun et al. 2012b). An intricate electrochemical immunosensor for the detection
and monitoring of the fungal hepatocarcinogen, aflatoxin B1, as model antigen was
developed by Masoomi et al. (2013). The construct scaffold involved chitosan-gold
nanoparticles, immobilized polyclonal anti-aflatoxin B1, and a magnetite core that
can enable regeneration of the immunosensor.

Biosensors based on chitosan/multi-walled carbon nanotubes hybrid films were
developed largely by Babaei and colleagues to determine and quantitate drugs and
neurotransmitters: acetaminophen and mefenamic acid (Babaei et al. 2010), dopa-
mine and morphine (Babaei et al. 2011a), paracetamol (Babaei et al. 2011b),
L-DOPA (Babaei and Babazadeh 2011), and 5-hydroxytryptamine and dopamine
(Xu et al. 2015).

The polycationic nature of chitosan films in immunobiosensors is also exploited to
immobilize polyanionic polymers such as nucleic acid sequences and proteins. Singh
et al. (2013) devised an electrochemical DNA biosensor to detect typhoid which was
constructed by surface immobilizing Salmonella typhi single-stranded (ss) DNA on
graphene oxide/chitosan/ITO nanocomposite as a bioelectrode. The biosensor was
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capable of distinguishing between complementary, noncomplementary, and one base
mismatch sequences. A similar electrochemical DNA biosensor was developed for the
detection of Escherichia coli 0157:H7 (Xu et al. 2017b). It was prepared with
immobilized E. coli ss-DNA using a graphene oxide/chitosan hybrid nanocomposite.
An electrochemical immunobiosensor to detect botulism neurotoxin A was reported by
Afkhami et al. (2017). The sensor consisted of a gold nanoparticles/chitosan/graphene
nanocomposite with immobilized antibodies to quantify the bound neurotoxin. To detect
o-fetoprotein in human serum, an immunosensor was fabricated in which the
a-fetoprotein antigen was immobilized on a film of a gold nanoparticles/carbon
nanotubes/chitosan nanocomplex to quantify protein levels using a competitive immu-
noassay format (Lin et al. 2009). Giannetto et al. (2017) fabricated a competitive
electrochemical immunosensor to detect HIV1-related capsid protein p24 in human
serum. The p24 antigen was immobilized on gold-free single-walled carbon nanotube-
chitosan complex for the interaction with a mouse monoclonal anti-p24, which was used
for competitive immunodetection. Liu et al. (2009) developed an immunosensor to
detect carcinoembryonic antigen, which is based on corresponding antibodies
immobilized on chitosan-gold nanoparticles. Finally, Qiu et al. (2009) reported an
immunosensor to detect hepatitis B surface antigen, which was constructed on the
basis of a gold nanoparticles/chitosan/ferrocene biofilm with immobilized hepatitis B
antibodies.

14.4 Beneficial Properties of Chitosan for Possible Use
in Agriculture, Food, and Textile Industry

The wide-ranging antimicrobial, antiviral, and antioxidant activities, induction of
defense systems in plants, and stimulation of plant growth by chitosan, chitosan
oligomers, chemically modified chitosan and their composites have indicated their
potential use in agricultural practices (El Hadrami et al. 2010; Malerba and Cerana
2016). Pre- and postharvest treatment of coating seeds, fruits, and vegetables by
edible chitosan-based films effectively improve germination and plant vigor and
prolonged shelf life and storage quality of food products (No et al. 2007). Preserva-
tion by chitosan-based coating also expanded to include meat, eggs, dairy products,
and seafood (Friedman and Juneja 2010). Other promising practices such as delivery
and slow and sustained release of chitosan-based encapsulated agrochemicals (fer-
tilizers, micronutrients, pest control agents, and genetic materials) have been widely
investigated (Malerba and Cerana 2016).

14.4.1 Antimicrobial and Antioxidant Activities

There are several comprehensive reviews that summarize the potential use of
chitosan, its derivatives, and chitooligosaccharides in agriculture as related to their
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broad-spectrum antimicrobial and antioxidant activities (Aider 2010; Cota-Arriola
etal. 2013; Li et al. 2013a; Xing et al. 2015; Liagat and Eltem 2018). Such beneficial
activities were demonstrated in a variety of agricultural products like preservation of
vegetables, fruits, cereals, dairy products, eggs, meat, and seafood (No et al. 2007,
Friedman and Juneja 2010). Chitosan per se has antimicrobial activity that depends
on higher degree of deacetylation, low molecular weight (its oligosaccharides),
increased protonation at low pH, and the type of microorganisms (Katiyar et al.
2014). The antimicrobial efficiency is enhanced by adding essential oils (extracted
from lemon, lemon grass, cinnamon, or rosemary) (Duan and Zhang 2013; Xing
et al. 2016; Yuan et al. 2016) or by adding metal ions like silver or copper (An et al.
2011; Brunel et al. 2013; Kumar-Krishnan et al. 2015; Choudhary et al. 2017a;
Sharma 2017) particularly to chitosan-based nanoparticles (Friedman and Juneja
2010; Cota-Arriola et al. 2013). The mode of action is mainly attributed to electro-
chemical interactions between the positively charged chitosan and the negative
surface charge of bacterial cells leading to membranes disruption (Xing et al.
2015). In addition, penetration and binding of nanochitosan with microbial DNA
that impact mRNA and protein synthesis were proposed (Rabea et al. 2003, Malerba
and Cerana 2016).

Scavenging of free radical and reactive oxygen species by chitosan and its
derivatives is responsible for its antioxidative effects (Guo et al. 2005; Ngo and
Kim 2014). Scavenging of superoxide and hydroxyl radicals by chitosan and its
derivatives was demonstrated by several studies (Xie et al. 2001; Guo et al. 2005;
Yen et al. 2008; Wan et al. 2013). Furthermore, chitosan acts as a biogenic elicitor of
various enzymes that detoxify reactive oxygen species (Malerba and Cerana 2016)
and induces the formation of antioxidant and fungicidal phytoalexins (Yamada et al.
1993; Hadwiger 2013; Xing et al. 2015).

14.4.2 Eliciting Defense Responses in Plants

Chitosan and its derivatives were shown to activate plant immunity enzymes (cat-
alase, peroxidase, superoxide dismutase, phenyl oxidase, phenylalanine ammonia
lyase) that are capable of detoxifying reactive oxygen species (Hadwiger 2013; Xing
et al. 2015; Malerba and Cerana 2016). Such activation engages different signal
transduction pathways that involve a variety of second messengers. Other defense
responses include pathogenesis-related proteins, phytoalexins, proteinase inhibitors,
lignin synthesis, or callose formation (El Hadrami et al. 2010; Hadwiger 2013).
Induction of programmed cell death and hypersensitivity-associated responses by
chitosan and chitooligosaccharides was documented (Zuppini et al. 2004; Vasilév
et al. 2009; Zhang et al. 2012), as well as activation of plant defense genes via the
octadecanoid pathway leading to jasmonate synthesis (Doares et al. 1995; Rakwal
et al. 2002). Chitosan induces hydrolase enzymes such as chitinase and p-1,3
glucanase able to destroy chitin/glucan-containing fungal cell walls (Ma et al.
2013b; Xing et al. 2015).
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14.4.3 Plant Protection and Food Preservation

Controlled and sustained release of chitosan-encapsulated agrochemical such as
fertilizers, micronutrient, pesticides, and genetic materials was demonstrated by a
plethora of investigations (Kashyap et al. 2015). Food products coating by films of
edible chitosan derivatives (plus a variety of additives) prolong their shelf life with
concomitant improvements in storage quality (Xing et al. 2016; Yuan et al. 2016).

14.4.3.1 Pesticides

A number of examples linked to chitosan-coated pesticides given below indicate the
potential of the eco-friendly techniques in plant protection against phytopathogens,
insects, and weeds: controlled release of insecticides like the botanicals azadirachtin
being encapsulated in the complex carboxymethyl chitosan-ricinoleic acid (Feng and
Peng 2012) and rotenone wrapped in oleoyl carboxymethyl chitosan (Kamari and
Aljafree 2017); nanoparticulate chitosan-fB-cyclodextrin, which encapsulated carva-
crol and exhibited high acaricidal and repellency activities (Campos et al. 2018); and
controlled release of avermectin conjugated to N,0-carboxymethyl chitosan (Li et al.
2016) or avermectin coated by silica cross-linked chitosan composite (He et al.
2013). Encapsulation of the neonicotinoids imidacloprid (Li et al. 2012a; Lim and
Ahmad 2017) and acetamiprid (Yan et al. 2014), malathion, and spinosad
(El Badawy et al. 2016) by chitosan-alginate capsules exhibited prolonged release
of the insecticides. Slow release of the fungicide carbendazim against the phyto-
pathogens Sclerotinia sclerotiorum using chitosan/B-CD-epichlorohydrin (Wang
et al. 2017a) and hexaconazole encapsulated by chitosan nanoparticles against
Rhizoctonia solani (Chauhan et al. 2017) was demonstrated. Ik et al. (2017)
reported the antifungal and antioxidant activities of kaempferol encapsulated in
lecithin-chitosan nanoparticles against Fusarium oxysporum.

In addition to their slow release property, chitosan composites also protect pesti-
cides from photodegradation. Nanoparticles of chitosan-beeswax protected
deltamethrin from photodegradation (Nguyen et al. 2012), and a similar protective
effect of avermectin was demonstrated for a silica/chitosan copolymer (He et al. 2013).
Likewise, composites of chitosan with a variety of clays (montmorillonite, attapulgite,
bentonite, and kaolinite), safe anionic dyes (Fast Green and Naphthol Yellow S), and
photo-stabilized fungal conidia of the insect biocontrol agent Aschersonia spp. were
reported (Cohen et al. 2003). Chitosan composites were found to be useful carriers of
herbicides facilitating soil sorption as in the case of paraquat associated with chitosan-
alginate nanoparticles (Silva Mdos et al. 2011) or slow release of paraquat encapsu-
lated in tripolyphosphate-generated chitosan nanoparticles (Grillo et al. 2014). More-
over, encapsulation of metolachlor in blended gel beads of cross-linked
carboxymethyl cellulose and carboxymethyl chitosan was effective in slow release
of the herbicide as a model compound (Dong et al. 2012). Finally, slow release of
atrazine encapsulated in carboxymethyl chitosan/bentonite gel was demonstrated
(Li et al. 2012a).
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14.4.3.2 Fertilizers

The modulated release of encapsulated fertilizers is important for enhanced growth
of plants while reducing environmental problems of their excessive use. Experi-
ments were accompanied by swelling rates of composites, fertilizer loads, and
kinetics of release. Examples are chitosan-xanthan tablets (Melaj and Daraio 2013)
or chitosan-starch beads (Perez and Francois 2016) as carriers of potassium nitrate
that serve as model fertilizer; slow release of NPK fertilizers aggregated on chitosan
nanoparticles (Corradini et al. 2010) and application on leaf surfaces enables trans-
location via stomata into the phloem (Abdel-Aziz et al. 2016); efficient controlled
slow release of water soluble NPK fertilizers coated by chitosan with an additional
outer coating by poly (acrylic acid—co-acrylamide) (Wu and Liu 2008). This com-
posite also exhibited improved water absorption and retention. Noppakundilograt
et al. (2015) examined the controlled release of NPK fertilizer granules embedded in
a hydrogel composed of poly(vinyl alcohol) and then chitosan and a third layer of
acrylamide and acrylic acid following cross-linking of chitosan by glutaraldehyde.
Controlled release of urea by a variety of chitosan-based composites was established.
Urea dispersed with humic substances in chitosan (Aradjo et al. 2017), urea encap-
sulated in chitosan-acryamide (Siafu 2017), urea release from adduct of silk fibroin-
gelatin-chitosan hydrogels (Rattanamanee et al. 2015), urea smectite clay chitosan
composite (Puspita et al. 2017), and urea-kaolinite mixed with chitosan
(Roshanravan et al. 2015) were tested for controlled release of the fertilizer.

14.4.3.3 Chitosan-Coated Plant Materials
14.4.3.3.1 Preharvest

Beneficial effects of preharvest chitosan-based seed coating and foliar treatment
were reported by El Hadrami et al. (2010). Chitosan-coated artichoke seeds, for
example, induced better germination, stimulated root system growth, and were
effective against a number of pathogenic fungi (Ziani et al. 2010). Bhaskara
Reddy et al. (1999) demonstrated induced resistance to seed-borne Fusarium
graminearum followed by improved germination and vigor in wheat seeds coated
with chitosan. Soybean seeds coated by chitosan had anti-feeding effects and
protected against several insect pests (Zeng et al. 2012), and coating rice seeds
increased antifungal effect, stimulated seeding growth, improved root system, and
increased crop yield (Zeng and Shi 2009). Tomato seeds coated with chitosan
resulted in resistance to infection by inducing plant defense mechanisms (Benhamou
et al. 1994). Chickpea seeds treated with chitosan-silver nanoparticles promoted
germination and increased biomass, chlorophyll, carotenoids, and protein contents
as well as amylase activity and defense enzyme activities (Anusuya and Banu 2016).
Similar effects were demonstrated in maize seeds coated with Cu/chitosan
nanoparticles (Saharan et al. 2016; Choudhary et al. 2017b).
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14.4.3.3.2 Postharvest

The antimicrobial activity of chitosan was targeted for use to improve preservation
of a large variety of vegetable and fruit crops as well as of eggs, meat, and dairy
products (Devlieghere et al. 2004; Friedman and Juneja 2010; Yuan et al. 2016).
Chitosan with added compounds such as plant materials and animal proteins
(formulations of chitosan with additions of tapioca starch, hydroxypropyl cellu-
lose, pectin, and fish gelatin) was used to develop edible films. Such films in
addition to their antimicrobial and antioxidant activities also keep food products
from loss of moisture and oxygen penetration (Aider 2010; Duan and Zhang 2013).
Postharvest coating of vegetables and fruits with chitosan and additional essential
oils (extracts from lemon, rosemary, lemon grass, bergamont, cinnamon, oregano,
and thymine), which by themselves exert antimicrobial and antioxidant activities,
improved storage quality and prolonged the shelf life of products (Xing et al.
2016). Controlling postharvest decay during storage was reported also for addi-
tives such as olive oil, glacial acetic acid, green tea extract, and lactic acid (Xing
et al. 2016; Yuan et al. 2016).

14.4.3.4 Technical Applications in Food Packaging

Microbial contaminations are a serious problem in food industry, because food-
borne bacteria and fungi are associated with food spoilage and food poisoning
leading to economic losses and human health risks. Using appropriate food
packaging materials with antimicrobial properties may prevent or at least slow
down bacterial and fungal growth. For this reason, a variety of biopolymers has
been tested to identify alternative materials to the classical nondegradable plastic
packaging materials, which have caused serious environmental issues due to their
inappropriate disposal. Optimal alternative materials should be environmentally
safe due to biodegradability and biocompatibility. As chitosan-based material
combine antimicrobial properties with biodegradability and biocompatibility,
they are the focus of research in food packaging. Moreover, chitosan-based
materials have food-preserving antioxidant activity and film-forming ability,
which allows the production of transparent foils and bags. Different methods
have been established during the past decades to fabricate chitosan films including
casting, coating, extrusion, and layer-by-layer synthesis, and the resulting mate-
rials have been evaluated for their antimicrobial and antioxidant activity and for
their optical, mechanical, barrier, and thermal characteristics. Chitosan has also
been combined with other functional materials resulting in composite films with
tremendous preservative properties that can be utilized for the packaging of
different foods such as vegetables, fruit, and meat. For a comprehensive overview
on this topic, the reader is referred to an excellent review article published recently
by Wang et al. (2018).
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Pure chitosan films are frequently based on dispersions of chitosan nanoparticles
(Ali et al. 2014), to which plasticizers, such as glycol (Leceta et al. 2013), and/or
surfactants, such as Tween 80 (Martins et al. 2012), are added to modify the
mechanical properties and to emulsify auxiliary compounds. In addition, chitosan
nanofibers have been fabricated as a packaging material and tested for their antimi-
crobial activity. For instance, Arkoun et al. (2017) examined the antimicrobial
activity of chitosan/polyethylene oxide nanofibers produced by an electrospinning
process. They showed that the chitosan nanofibers were efficient in inhibiting growth
of E. coli, Staphylococcus aureus, Lysteria innocua, and S. typhimurium, however at
pH 5.8, which was below the pKa of chitosan, limiting the applicability to slightly
acidic food. Importantly, the authors demonstrated that the antibacterial effects were
irreversible, suggesting a bactericidal rather than bacteriostatic mechanism.

Combinations of chitosan and other natural polysaccharides have been frequently
used to fabricate functional films with applications in food packaging. These bio-
polymers comprise of cellulose and various cellulose derivatives, alginate, cyclo-
dextrin, glucan, mannan, pectin, starch, and xylan. Chitosan/cellulose films revealed
improved mechanical properties while maintaining excellent antimicrobial proper-
ties (Xiao et al. 2013). Also chitosan/hydroxypropyl methylcellulose (HMPC) films
exhibit significant antimicrobial activity. For instance, Moller et al. (2004) examined
the antimicrobial effects of chitosan/HPMC films against Listeria monocytogenes
and found that bacterial growth was completely inhibited on the film. Similarly,
chitosan/carboxymethyl cellulose films showed superb food preservation properties
when tested on packaged cheese (Youssef et al. 2016). Antimicrobial chitosan-
alginate films have a great potential for food packaging as well, particularly because
they show improved gas exchange and water vapor permeability properties when
prepared by a layer-by-layer electrostatic deposition approach (Poverenov et al.
2014a). Martifion et al. (2014) studied the effectiveness of antimicrobial multilay-
ered coatings consisting of chitosan, pectin, and trans-cinnamaldehyde at different
concentrations to extend the shelf life of fresh-cut cantaloupe and found that certain
compositions were effective in preventing bacterial growth and spoilage. Lorevice
et al. (2016) produced chitosan nanoparticles and combined them with different
methyl pectin matrices to generate nanocomposite films and tested the mechanical,
thermal, and barrier properties. The results showed that the nanocomposite film
improved mechanical characteristics when compared with conventionally produced
pectin films, making these novel materials promising for food packaging production.
Similarly, chitosan/cyclodextrin films with inclusions of essential oil have been
reported to possess desirable mechanical properties for food packaging (Sun et al.
2014). Moreover, this material showed significant antimicrobial activities against a
variety of pathogenic bacteria.

Chitosan films have been also combined with a variety of proteins including
casein (Khwaldia et al. 2014), gelatin (Poverenov et al. 2014b; Noorbakhsh-Soltani
et al. 2018), collagen (Ahmad et al. 2016), kidney bean protein (Ma et al. 2013a),
lactoferrin (Brown et al. 2008), and lysozyme (Yuceer and Caner 2014), as well as
with antibacterial peptides such as nisin (Wang et al. 2015). In addition, chitosan was
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blended with antimicrobial and antioxidant extracts from bee wax (Velickova et al.
2013) and plants, such as citrus (Iturriaga et al. 2014), thyme (Talon et al. 2017), and
maqui berry (Genskowsky et al. 2015), as well as with essential oils including clove
bud oil, cinnamon oil, and star anise oil (Wang et al. 2011).

Other approaches in fabricating chitosan-based films employed grafts, blends, or
casts using synthetic polymers such as poly(vinyl alcohol) (Wang et al. 2015), poly
(lactic acid) (Pal and Katiyar 2016), poly(ethylene) (Reesha et al. 2015), poly(ethylene
oxide) (Kohsari et al. 2016), poly(styrene) (Lopez-Carballo et al. 2013), poly(propyl-
ene) (Cavallo et al. 2014), poly(caprolactone) (Alix et al. 2013), and poly(acrylonitrile-
co-acrylamide) (Kumar et al. 2018) that led to improved mechanical and thermal
properties. However, these synthetic polymers are not readily degraded in nature;
hence concerns regarding the environmental safety have been raised. Guo et al. (2015)
developed new edible antimicrobial films using microemulsions in combination with
high-pressure homogenization processing. The films were made of chitosan, allyl
isothiocyanide, and barley straw arabinoxylan, which were used as film-forming,
antimicrobial, and emulsifying agents, respectively. The material was tested to be
efficient in preventing growth of L. innocua.

To improve antibacterial activity, chitosan-based films were synthesized as com-
posites with metals, minerals, and other inorganic compounds. Youssef et al. (2014)
produced chitosan-silver and chitosan-gold (CS-Au) nanocomposites films, which
showed enhanced antimicrobial activity against Gram-positive (S. aureus) and
Gram-negative bacteria (Pseudomonas aerugenosa), fungi (Aspergillus niger), and
yeast (Candida albicans). In another study published by Al-Naamani et al. (2016),
poly(ethylene) films were coated with zinc oxide/chitosan nanocomposite, which
completely inactivated and prevented the growth of food pathogens. In an approach
based on a solution cast method, Sanuja et al. (2015) fabricated a chitosan-based
nanocomposite film using nano zinc oxide and neem essential oil, which improved
mechanical, physical, barrier, and optical properties. Moreover, Zhang et al. (2017)
prepared chitosan/titanium dioxide composite films, which were found to possess
significant antimicrobial activity against E. coli, S. aureus, C. albicans, and A. niger.
Xu et al. (2017c) employed a different strategy by synthesizing chitosan/graphene
oxide nanocomposites with titanium dioxide and analyzed their antimicrobial and
food-preserving efficacies. They showed that the material effectively prevented
Bacillus subtilis and A. niger biofilm formation presumably by disrupting cellular
membranes. In addition, they demonstrated that the nano-coating could be applied as
a cling film, which delays loss of moisture in fruits and vegetables and inhibits
polyphenol oxidase activity and thus enzymatic browning but increases superoxide
dismutase activity, which protects against reactive oxygen species. Next to these
materials, chitosan-montmorillonite composites, chitosan/nanosilica films, and man-
ifold combinations of chitin, metals, and minerals have been tested. In addition,
numerous chemical chitosan derivatives have been explored for their properties to
screen for new films suitable in food packaging. These derivatives include
carboxymethyl chitosan and quaternized chitosan such as (2-N-Hydroxypropyl-3-
trimethylammonium chloride) chitosan (Hu et al. 2016).
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14.4.4 The Use of Chitosan in the Textile Sector

Due to their versatile and unique physicochemical and biological properties,
chitosan, its multiple derivatives, and their adjunct complexes (addition of functional
groups) have attracted considerable attention for possible use of eco-friendly mate-
rials in the textile industry. They are relatively inexpensive, biocompatible, biode-
gradable, and nontoxic and readily adhere to textile fabrics and usually demonstrate
antibacterial activity. Certain formulations retain moisture as well as impart thermal
stability and UV protection.

Chitosan per se or blends of chitosan-based composites deposited onto textiles
fabrics were mostly tested for durable antibacterial activity (nearly all antibacterial
studies include E. coli and S. aureus that represent correspondingly Gram-negative
and Gram-positive bacteria). Coated Thai silk fabric with chitosan using radio
frequencies plasma treatment exhibited antibacterial effects (Wongsawaeng et al.
2017), and polyester/cotton fabric treated with chitosan can be used as an alternative
to the antibacterial triclosan (Ranganath and Sarkar 2014). Chitosan grafted on
cotton (Ferrero et al. 2015) or on wool (Periolatto and Ferrero 2013) fabrics using
UV irradiation bestowed antibacterial activity after many washing cycles. Chitosan
reduced to nanoparticles and applied onto wool fabric imparted durable antibacterial
and bestowed shrink proofing (Yang et al. 2010). Nanonized chitosan applied onto
cotton exhibited, in addition to antibacterial activity, also thermal stability, UV
protection, as well as improved dye-binding ability (Hebeish et al. 2013). Periolatto
et al. (2012) demonstrated antibacterial effects and laundry durability of cotton and
silk fabrics by UV curing with 2-hydroxy-2-methylpropylpropane-1-one as
photoinitiator of the photochemical reaction.

Chitosan possesses abundant potential, in particular, for use in medical textiles
and sportswear. For example, a blend of chitosan (short fibers) with cotton (long
fibers) yarn by spinning technology is desirable for medical applications (Lam
etal. 2017). Gauze bandages for wound dressing were prepared by electrospinning
of chitosan nanofibers and cotton fabric (Nawalakhe et al. 2015). Plasma treatment
was applied to improve adhesion by increased cross-linking between the two fiber
systems imparting subsequent durability (Nawalakhe et al. 2015). Pure chitosan
microfibers produced by wet spinning process was aimed for possible stable 3-D
scaffold woven or nonwoven textile fabrics to be used in regenerative medicine
such as bone and cartilage engineering (Toskas et al. 2013). Lam et al. (2018)
examined a blend of chitin fibrils with cotton jersey fabric and showed reduced
rigidity that may provide comfort to patients with epidermolysis bullosa skin
disease. Likewise, chitosan-coated textile fabrics improved atopic dermatitis dis-
ease by restraining skin microbiome (Lopes et al. 2015). Sonochemical deposition
was used by Petkova et al. (2014) to coat cotton fabrics with a hybrid of chitosan
and ZnO nanoparticles. This complex showed improved antibacterial activity,
slow release of the metal and washing stability, and postulated as effective
treatment for hospital textiles to prevent transfer of pathogens. Similarly, the
hybrid of chitosan and silver nanoparticles deposited onto cotton fabric
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demonstrated antibacterial effects and laundry durability befitting their possible
use for medical textiles and sportswear (Xu et al. 2016). Ali et al. (2011) proposed
to use chitosan nanoparticles that are able to pick and retain silver ions in medical
textile applications. A polyester fabric coated with this complex hybrid imparted
enhanced antibacterial activity. Nanonized chitosan applied onto cotton exhibited
in addition to antibacterial activity, also thermal stability, UV protection as well as
improved dye-ability (Hebeish et al. 2013).

A large number of publications signified and reported beneficial properties of
chitosan and chitosan-based formulations with possibly great potential to treat textile
fabrics. Such valuable features include protecting a variety of fabrics with emphasis
on medical textiles, production of aromatic and flame-retarding fabrics, as well as
dye removal and treatment of textile wastewater. Table 14.1 summarizes inter alia
nanochitosan, chitosan nanometal complexes, or chitosan derivative composites
with metals and other substances, which were treated onto textile fabrics (notably
cotton), and depicts their conceivable potential for the textile industry.

14.5 Utilization of Chitosan in Cosmetics

Chitin and, in particular, chitosan and its derivatives provide advantageous proper-
ties in the cosmetic area. They are biocompatible and adhere to surface components
of the skin and hair, forming elastic films with moisturizing and water retention
capabilities. They can serve as vehicles for encapsulated cosmetic ingredients and
their controlled delivery and release and formation of gels in mixtures with water and
alcohol and have some antimicrobial, antioxidant, and anti-inflammatory activities,
with the additional important benefit of low cytotoxicity (Lee et al. 2013; Jimtaisong
and Saewan 2014; Aranaz et al. 2018).

Chitosan and its derivatives are included in cosmetic formulations and products
for mainly care and protection of the skin and hair but inter alia in tooth enamel and
tooth lacquer, nail lacquer, lipsticks, cleansing and bath materials, toothpaste,
mouthwash, chewing gum, deodorants, and breath refresheners (Dutta et al. 2004).
Aging of the skin, viewed as wrinkling, dryness, loss of elasticity, dehydration, and
hyperpigmentation, is the result of long-term exposure to sunlight UV, which mainly
forms reactive oxygen species. Protection from photoaging is a major drive in the
cosmetic industry. For example, chitooligosaccharides per se were able to protect
UV-irradiated hairless mouse skin from photoaging damage (Kong et al. 2018). Gel
formulation of chitosan microparticles served as a delivery system for the sustained
release of the hydrophilic sunscreen, phenylbenzimidazole sulphonic acid (Gomaa
et al. 2010). The cosmetic gel formulation of blended chitosan, collagen, and Aloe
vera, with antibacterial and antioxidant effects, proved useful in the regeneration and
rejuvenation of the skin using cultured mouse fibroblast (Rajashree and Rose 2017).
Microspheres composed of carboxymethyl chitosan/collagen peptides-calcium
chloride protected mice skin and thymus lymphocytes from UV-B radiation damage



14 Chitin/Chitosan: Versatile Ecological, Industrial, and Biomedical Applications

559

Table 14.1 Possible applications of chitosan and chitosan-based composites in the textile industry

Textile

fabric Chitosan-based composite Property Reference
Chitosan derivatives

Cotton, silk | CS-2-hydroxy-2- AB, laundry durability Periolatto

methylpropylpropane-1-one®

et al. (2012)

Cotton CS nanoparticles-copper AB, thermal stability, UV Hebeish et al.
protection (2013)
Polyester CS nanoparticles-silver AB, sustained release of Ali et al.
silver (2011)
Cotton CS-silver nanoparticles AB, laundry durability Xu et al.
(2016)
Cotton CS-ZnO AB, slow release of metal, Petkova et al.
washing stability (2014)
Cotton CS-ZnO nanoparticles AB, UV blocking Raza et al.
(2016)
Cotton CS-CuO nanoparticles AB Dhineshbabu
and Rajendran
(2016)
Cotton/ CS-ZnO, RiO,, SiO, AB, UV protection, self- Ibrahim et al.
polyester (nanoparticles) cleaning, washing durability | (2017b)
Cotton CS-silver nanoparticles, AB, thermal stability, flame- | Rehan et al.
montmorillonite retarding activity, UV pro- (2018)
tection, water retention
Cotton CS-poly AB, controlled release of Stular et al.
(N-isopropylacrylamide) —silver | silver (2017)
nanoparticles
Cotton CS-silver-zeolite film Antimicrobial Scacchetti
et al. (2017)
Cotton LBL CS and graphene oxide UV protection, laundering Tian et al.
durability (2016)
Cotton CS-poly(2-acrylamide-2- AB Cheng et al.
methylpropane sulfonic acid (2016)
salt). LBL film
Cotton CS-(N,N,N-three methyloxirane | Antimicrobial wound dress- Yin et al.
methylammonium chloride) ing, moisture retention (2018)
Cotton CS-poly AB, thermosensitivity Wang et al.
(N-isopropylacrylamide) (2016a)
Cotton CS-N-benzyl-N,N diethyl qua- | AB Feng et al.
ternary ammonium salt (2016)
Wool CS-poly(propylene) imine AB, durable washings Sadeghi-
Kiakhani et al.
(2013)
Silk CS-(N-[(2-hydroxy-3- AB, durable wrinkle and Luetal
(Antheraea | trimethylammonium)propyl] shrinkage resistant, laundry (2014)
pernyi) chloride nanoparticles durability
Polyester CS-poly(vinyl alcohol) Thermally stable blend Grande et al.
(polylactic (2018)
acid)

(continued)
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Textile
fabric Chitosan-based composite Property Reference
Cotton CS-coating pyrazole compounds | AB Nada et al.
(2018)
Wool CS-cyanuric acid AB, improved dyeing Zargarkazemi
performance et al. (2015)
Polyester CS covered by nanonized Electrical conductivity, water | Tang et al.
polyaniline repellency, stable laundry (2014)
Plant extracts and aromatic textiles
Cotton CS-neem seed extract AB, antiviral Revathi and
Thambidurai
(2017)
Cotton CS-beeswax are impregnated AB, slow release of fragrant | Cerempei
with essential oils (Eucalyptus, et al. (2015)
tea tree, sage)
Cotton CS microcapsules containing AB Javid et al.
essential oils (Eucalyptus, san- (2014)
dal wood)
Cotton CS-B-CD, inclusion of cinna- AB, slow release of fragrant | Bashari et al.
mon oil (2017)
Cotton CS B-CD, inclusion of lavender | AB, slow release of fragrant | Singh et al.
oil (2017)
Cotton CS-vanillin microcapsules AB, slow release and retained | Yang et al.
fragrant after wash cycles (2014)
Flame retardation
Cotton CS-diammonium hydrogen Durable flame retardation El-Tahlawy
phosphate (2008)
Cotton LBL CS and ammonium Itumescent flame effect Fang et al.
polyphosphate (2015)
Cotton CS phosphate-TiO, AB, flame retardation El-Shafei
nanoparticles-1,2,3,4-butane et al. (2015)
tetracarboxylic acid,
hypophosphite
Cotton/ LBL CS and melamine Flame retardation Leistner et al.
polyester polyphosphate (2015)
Cotton LBL CS and ammonium Flame retardation Jimenez et al.
polyphosphate (2016)
Polyamide | CS-phytic acid, oxidized sodium | Flame retardation Kundu et al.
66 fabric alginate (2017)
Acrylic LBL CS and montmorillonite Flame retardant Carosio and
fabric Alongi (2018)

Textile wastewater and dye removal

Cotton UV-grafted CS Absorbance and removal of | Periolatto and
excess dyes Ferrero (2013)

Textile CS beads impregnated with ZnO | Photodecolorization of Rho- | Farzana and

fabrics damine B & Methylene Blue | Meenakshi
dyes (2015)

(continued)
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Table 14.1 (continued)

Textile
fabric Chitosan-based composite Property Reference
Textile Laccase immobilized on Decolorization of methyl red | Lin et al.
fabrics CS-cerium (VI) dioxide and orange II reactive dyes (2015)
microspheres
Textile CS plus ferrous sulfate Decolorization Kos (2016)
fabrics
Textile CS-coating ZnO nanoparticles- | Removal of azo dye (reactive | Nguyen et al.
fabrics Fe;0,4 nanoparticles blue 198), recyclable (2015)
composite
Textile CS-coating Fe;04 nanoparticles | Removal of azo dye (Acid Kadam and
fabrics Red 2) Lee (2015)
Textile Acrylic acid grafted on Jute Desorption of anthraquinone | Hassan (2015)
fabrics fibers followed by immobiliza- | dye
tion of CS
Textile Manganese peroxidase Degradation and detoxifica- | Bilal et al.
fabrics immobilized on CS beads tion of dyes (2016)
Textile Manganese doped in CS-ZnO Photocatalytic degradation of | Nguyen et al.
fabrics azo dye (2016)
Textile CS-poly(methacrylic acid)-TiO, | Removal and degradation of | Skori¢ et al.
fabrics microparticles anionic azo dyes (2016)

AB antibacterial effects, CS chitosan, LBL layer by layer deposition, 3-CD B-cyclodextrin
“Photochemical reaction by UV generating cross-linked polymers

(Liu et al. 2015b). A cosmetic cream formulation composed of quaternized
carboxymethyl chitosan-montmorillonite nanocomposite bestowed good UV pro-
tection and additional moisturizing and water retention effects (Chen et al. 2017).
There is a possible cosmetic use of neutralized chitosan in citrate buffer film for skin
exfoliation (Libio et al. 2016).

Chitosan and various chitosan derivatives, as active ingredients, were examined
in cosmetic hair care products like shampoos, permanent wave agents, hair condi-
tioner, styling lotions, rinses, hair colorant, hair sprays, and hair tonics (Dutta et al.
2004; Aranaz et al. 2018). They can adhere to the negatively charged hair keratin
forming a transparent elastic film that covers hair fibers endowing smoothness,
softness, and also mechanical strength (Dutta et al. 2004). A blend of chitosan and
two other biopolymers like collagen and hyaluronic acid that forms a thin film over
hair surface provides enhanced mechanical strength and improved conditioning of
the treated hair (Sionkowska et al. 2017). Chitosan as a targeting vehicle to hair
follicles in the skin was demonstrated with entrapped minoxidil, a medication to treat
hair loss (Gelfuso et al. 2011; Matos et al. 2015). Microparticles and nanoparticles of
chitosan-encapsulating minoxidil enabled its controlled release.

A large number of possible applications of cosmetic formulations containing
chitosan and its derivatives have been patented. It is noteworthy that formulations
containing chitosan are already in the busy cosmetic market.
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14.6 Biomedical Applications of Chitosan Derivatives

Because chitosan and many of its derivatives are nontoxic, biocompatible, biode-
gradable, and highly versatile polymers, a large assortment of possible biomedical
applications have been explored, of which some were implemented into therapeutic
strategies by the pharmaceutical industry. To obtain optimal materials for the
delivery of drugs, several factors have to be considered including the stability of
the bioactive agents, absorption properties and mucoadhesiveness, gelling proper-
ties, particle sizes, permeation and transfection-enhancing properties, efflux pump
inhibition, tissue targeting, residual toxicity of the final products, as well as release
kinetic profiles. Chitosan derivatives have been developed into different kinds of
pharmaceutical excipients used for the production of tablets and capsules (Illum
1998; Werle and Bernkop-Schnurch 2008), suppositories (Caramella et al. 2015),
sprays (Osman et al. 2013), ointments (Kang et al. 2016), eye drops (Basaran and
Yazan 2012), and wound dressings (Bano et al. 2017). The drugs are usually
encapsulated by ionotropic gelation, spray drying, emulsion solvent evaporation,
and coacervation (Panos et al. 2008). Chitosan-based excipients have been found
useful in tablet disintegration and drug dissolution (Illum 1998) and in enhancing
penetration and absorption properties (Thanou et al. 2001; van der Merwe et al.
2004; Sahni et al. 2008). Most importantly, certain dosage forms allow the con-
trolled release of drugs (Jennings et al. 2015; Fonseca-Santos and Chorilli 2017).
These include chitosan-based hydrogels (Knapczyk 1993; Kristl et al. 1993; Berger
et al. 2004; Ishihara et al. 2006; Elviri et al. 2017) and micro-/nanoparticles for drug
delivery (Hamman 2010). Here, we will focus on the applications of chitosan-based
matrices in drug delivery for cancer, immune, and gene therapy, and we will
summarize some recent advances in tissue engineering (Fig. 14.1).

Fig. 14.1 Overview on
biomedical applications of
chitosan-based materials in
cancer therapy and tissue
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14.6.1 Chitosan-Based Drug Carrier Systems

Chitosan-based materials can be used in various forms as drug delivery system
(Fig. 14.2). Tablets are probably the most favorable and accurate dosage form,
which are moreover easy to fabricate and handle. A simple method for their
production is homogenization of the drug and chitosan and compressing the
resulting mixture to tablets. However, it has to be considered that due to the alkaline
conditions in the distal intestine, drug absorption is restricted to the more proximal
regions of the gastrointestinal tract when pure chitosan is used which precipitates at
an alkaline pH (Sakkinen et al. 2004; Dhaliwal et al. 2008). Therefore, more
pH-insensitive formulations using higher-charged chitosan derivatives such as
trimethylated chitosans or thiolated chitosan conjugates have improved absorption
properties along the gastrointestinal tract. Although there is still a lack of robust data
in human volunteers, some studies indicate that tablet formulations using higher-
charged chitosan derivatives increase bioavailability due to improved
mucoadhesiveness and better protection of the drug from degrading enzymes (van
der Merwe et al. 2004). Chitosan-based tablets have been also examined for their use
in vaginal drug delivery, mainly as carriers for antiviral and antifungal therapeutics
(El-Kamel et al. 2002; Senyigit et al. 2014; Frank et al. 2017). However, the
antimicrobial properties of chitosan may negatively affect the vaginal microflora,
and hence long-term treatment should be critically evaluated (Raafat and Sahl 2009).

As chitosan-based hydrogels facilitate equal distribution and increase
mucoadhesiveness, permeation, and bioavailability, they are effective formulations
for eye drops to administer therapeutic drugs in ophthalmology (Krishnaswami et al.
2018). Chitosan-based formulations used in eye care include hydrogels,
nanoparticles, and liposomal and colloidal systems (De Campos et al. 2001; De
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Fig. 14.2 Chitosan-based drug delivery systems
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Campos et al. 2003; Diebold et al. 2007; Gupta et al. 2010). For similar reasons, they
are also in use for nasal drug delivery, which is impaired by high turnover and
secretion rates (Illum 2003). Notably, chitosan-coated lipid micro- and nanoparticles
have been developed for nose-to-brain delivery of a variety of therapeutic drugs
(Casettari and Illum 2014; Sarvaiya and Agrawal 2015). Chitosan-based
nanoparticles are also a promising carrier for buccal drug delivery, which has the
advantage of avoiding the hepatic first-pass metabolism and degradation in the
gastrointestinal system (Sandri et al. 2005). Polymeric carriers generally have the
potential advantage of prolonged release times of low-molecular-weight drugs.
Because chitosan is additionally susceptible to hydrolysis by lysozyme in the
blood serum, which facilitates drug release, and exhibits no toxic or hemolytic
effects when applied parenteral (Nordtveit et al. 1994; Richardson et al. 1999),
chitosan-based formulations are also suitable carriers for controlled drug release
when administered by intravenous injection (Thanoo et al. 1992).

14.6.2 Chitosan-Based Drug Delivery Systems
in Chemotherapy

Conventional chemotherapeutics are frequently not very effective in reaching the
tumor cells, as solid tumors are not well supplied with blood, and lack lymphatic
vessels, which results in and decreased convective flow in the interstitial fluid. To
overcome these problems, novel drug delivery systems have been designed. These
carriers are capable of encapsulating high concentrations of the cytotoxic compound
within a macromolecular matrix that specifically targets the cargo to the tumor cells
where the drugs are finally released in a controlled manner. This concept profits from
the EPR (enhanced permeability and retention) effect, the phenomenon that macro-
molecules preferentially accumulate in solid tumors, probably because they have a
defective vasculature and lack effective lymphatic drainage (Matsumura and Maeda
1986). Chitosan-based nanoparticles have many properties that make them suitable
carriers for anticancer drugs. Next to their great chemical flexibility, allowing the
design of selective carriers, chitosan-based materials evidently exhibit also the EPR
effect depending on the tumor microenvironment (Yhee et al. 2017). Moreover, they
are degraded inside the body into fragments which can be cleared by the kidney
(Kean and Thanou 2010), and several studies suggested that chitosan itself has
antitumor effects (Qi and Xu 2006; Yao et al. 2013a), making this polymer a highly
suitable supplementary antitumor drug and drug carrier. Indeed, chitosan-based
nanocomposites can be used to deliver hydrophilic and hydrophobic drugs such as
doxorubicin hydrochloride and paclitaxel, respectively (Kim et al. 2006; Y ousefpour
et al. 2011). Studies analyzing chitosan-based drug delivery systems for cancer
treatment are summarized in Table 14.2.

To target tumor cells by the EPR effect passively, Mitra et al. (2001) fabricated
chitosan-based nanoparticles of about 100 nm carrying a dextran-doxorubicin
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Table 14.2 In vitro and in vivo studies using chitosan-based nanoparticles in various cancer

treatments

Drug/
targeting

Chitosan-based composite

Experimental system, effects

Reference

Chemotherapeutic drug delivery

Doxorubicin CS-dextrane conjugate Mice, AT, prolonged Mitra et al. (2001)
circulation
Doxorubicin/ | CS cross-linked by succinic | SKOV-3 cells, AT, targets Hebeish et al.
trastuzumab anhydrate, Lys thiolation HER2+ receptors, enhanced | (2013)
uptake
Doxorubicin | CS-pluronic F127 micelles | MCF7 cells, AT, high drug | Naruphontjirakul
loading capacity and Viravaidya-
Pasuwat (2011)
Doxorubicin/ | CS-/poly(methyl vinyl MCEFT cells, AT, increased | Varshosaz et al.
luteinizing ether maleic acid, magnetic | cytotoxicity, targeting (2016)
hormone RH | nanoparticles LHRH receptors
Doxorubicin/ | CS-coated magnetic U87 cells in athymic mice, Yang et al. (2017)
folate nanoparticles AT, guide by magnetic field,
decreased tumor growth
Doxorubicin | Aluminosilicate zeolite Mice, AT, pH-dependent Yang etal. (2018)
(ZSM-5) CS core-shell drug release, reduced Tu
nanodisks growth and increased
apoptosis
Doxorubicin CS-cobalt-ferrite-titanium B16F10 cells, AT, fast drug | Radmansouri
oxide nanofibers release at low pH and alter- | et al. (2018)
nating magnetic field
Doxorubicin, | Magnetic CS-poly(lactic HepG2 and S-180 cells, Shen et al.
verapamil/ acid-co-glycolic acid) Tu-bearing mice, AT, accu- | (2013a)
cRGD nanoparticles mulation in tumor tissue
Paclitaxel Glycol-CS-B-cholanic acid | Tu-bearing mice, AT, Kim et al. (2006)
nanoparticles impaired tumor growth after
injection
Paclitaxel CS-glyceryl monooleate MDA-MB-231cells, AT, Trickler et al.
core-shell nanopoparticles | 1000-fold reduction in IC50 | (2008)
Cisplatin Glycol-CS-B-cholanic acid | Tu-bearing mice, AT, Kim et al. (2008)
nanoparticles impaired tumor growth after
injection, EPR
5- CS-polyaspartic acid Mice, sustained drug release | Zheng et al.
Fluorouracil | sodium salt in vitro and in vivo (2007)
5-Fluoroura- | CS-polyethylenglycol-gel- | COLO-205 and HT-29 cells, | Rajan et al.
cil/ atin copolymer AT, increased cytotoxicity (2013)

hyaluronidase by uptake and controlled

drug release
5- N-succinyl-CS-g-poly Simulated gastric and intes- | Bashir et al.
Fluorouracil | (acrylamide-co-acrylic tinal fluids, efficient drug (2017)

acid)

loading pH-dependent drug
release

5-Fluoroura-
cilffolic acid

cystamine conjugated CS-
methoxy poly(ethylene
glycol)

MCEFT cells, AT, improved
hemocompatibility, high
cytotoxicity to cancer cells

Antoniraj et al.
(2018)

(continued)
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Drug/
targeting Chitosan-based composite | Experimental system, effects | Reference
TNF-a/anti- CS-silica hollow MCEF-7 cells, AT, Deng et al.
EGFR-2 nanospheres pH-dependent TNF-o (2011b)

release inside tumor
Oxaliplatin/ CS nanoparticles encapsu- | Mice, HT-29 cells, AT, spe- | Jain et al. (2010)
hyaluronic lated in Eudragit S100 cific drug delivery in the
acid coated pellets colon

Trans-resver-

CS nanoparticles

HepG2 cells, cytotoxicity

Bu et al. (2013)

atrol/Biotin, highest when both, avidin

avidin and biotin, were coupled

Gemcitabine/ | Glycol-CS SW1990 cells, effective Xijao and Yu
anti-EGFR, nanobioconjugate inhibition of cell prolifera- (2017)

anti-chitosan

tion, colony formation,
migration, and invasion

Cancer gene therapy

Survivin- N-trimethyl CS-TPP devel- | A549 cells, bronchoalveolar | Ni et al. (2018)
SIRNA/ oped for pulmonary lavage fluid, effective gene
baclofen delivery silencing of the survivin
gene resulting in apoptosis

Midkine- CS combined with HepG?2 cells, efficient trans- | Zhong et al.
SIRNA 2-chloroethylamine and N, | fection, significant decrease | (2015)

N-dimethyl-2- of cell proliferation

chloroethylamine

hydrochloride
PSIRNA- Polyethyleneimine-g-CS Tu-bearing mice, AT, effi- Kim et al. (2017)
hBCL2/ cient and specific transfec-
dendrimeric tion of tumor cells and
RGD silencing of anti-apoptotic

hBcl2

Cancer immunotherapy

Ovalbumin

CS nanoparticles

Mice, AT, increased cyto-
kine levels and stimulation
of natural killer cells,
deacreased tumor growth,
detection of ovalalbumin
specific cytotoxic T cells

Wen et al. (2011),
Highton et al.
(2016)

IL-12

CS nanoparticles

Mice, AT, activcation of
cytotoxic T cells and natural
killer cells, tumor regression,
nor recurrence

Zaharoff et al.
(2009)

GRP

Mannosylated CS
nanoparticles

Mice, intranasal application,
AT, enhanced tumor regres-
sion paralleled by anti-GRP
antibody production

Yao etal. (2013b)

IP-10 plas-
mid/folate

CS nanoparticles

Mice, AT, inhibition of cell
proliferation, induction of
apoptosis, suppression of
angiogenesis, and inactiva-
tion of regulatory T cells

Lai et al. (2014)

AT anti-tumor effects, CS chitosan, Tu tumor
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conjugate and examined the antitumor effects in vivo in macrophage tumor cells
implanted into BALB/c mice. The authors observed an improved therapeutic effi-
cacy of dextran-doxorubicin loaded chitosan nanoparticles, which is probably due to
the prolonged circulation time and/or drug accumulation at the tumor sites. In
another study published by Yousefpour et al. (2011), doxorubicin was conjugated
to chitosan using succinic anhydride as a cross-linker. In a second step, the resulting
self-assembled chitosan-doxorubicin conjugate nanoparticles were conjugated with
trastuzumab, a monoclonal antibody to the human epidermal growth factor receptor
2+ (Her2+), via lysine thiolation and subsequent linking of the derived thiols to
chitosan. The Trastuzumab conjugated chitosan-doxorubicin nanoparticles selec-
tively targeted Her2+ cancer cells resulting in enhanced uptake when compared to
chitosan-doxorubicin particles and the free drugs. In another study, pluronic F127, a
block copolymer of hydrophobic polyoxypropylene flanked by two chains of hydro-
philic polyoxyethylene, was grafted onto chitosan to generate a copolymer micelle
that can encapsulate doxorubicin (Naruphontjirakul and Viravaidya-Pasuwat 2011).
The resulting chitosan-pluronic micelles carrying doxorubicin showed a high drug
loading capacity and revealed a higher cytotoxic activity to MCF7 breast cancer cell
lines in vitro than the free drug. Another approach to deliver doxorubicin specifically
to cancer cells was reported by Varshosaz et al. (2016). The research team fabricated
dual targeted nanoparticles loaded with doxorubicin and magnetic nanoparticles to
treat breast cancer. For this purpose, the nanoparticles were produced via a layer-by-
layer technique and functionalized with a bioconjugate of chitosan/poly(methyl
vinyl ether maleic acid) and luteinizing hormone-releasing hormone (LHRH) to
target corresponding receptors on the surface of MCF7 breast cancer cells, which
presumably take up the particles by endocytosis. The targeted nanoparticles
increased the cytotoxicity of doxorubicin about twofold in LHRH-positive cancer
cells. In a similar approach, folate-grafted chitosan-coated magnetic nanoparticles
were loaded with doxorubicin to target human glioblastoma U87 cells in athymic
BALB/c nude mice in a subcutaneous tumor model system (Yang et al. 2017).
Guiding the injected nanoparticles to the tumor by a magnetic field significantly
decreased tumor growth by controlled delivery of doxorubicin to the cancer cells and
demonstrated the feasibility of magnetic nanoparticles to direct the localization of
drug release. Mesoporous aluminosilicate zeolite (ZSM-5) chitosan core-shell
nanodisks loaded with doxorubicin were used as pH-responsive drug delivery
systems against osteosarcoma that release the drug after upon endosomal acidifica-
tion (Yang et al. 2018). Recently, Radmansouri et al. (2018) showed that
doxorubicin-loaded electrospun chitosan/cobalt ferrite/titanium oxide nanofibers
could be used for localized melanoma cancer therapy. The fastest release of doxo-
rubicin from prepared magnetic nanofibers was observed at acidic pH when an
alternating magnetic field was applied. As mentioned above, chitosan-based
nanoparticles can also be modified to carry hydrophobic drugs such as paclitaxel.
For this purpose, hydrophobic side chains are grafted onto chitosan. For instance,
Kim et al. (2006) used glycol chitosan nanoparticles that were hydrophobically
modified with p-cholanic acid and incorporated paclitaxel. The resulting
nanoparticles showed sustained drug release, and following injection into the tail
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vein of tumor-bearing mice, tumor growth was impaired. In a subsequent study, the
same research team used this system as carrier for cisplatin, which is also poorly
soluble in water. The hydrophobically modified glycol chitosan nanoparticles loaded
with cisplatin exhibited the EPR effect, as they accumulated in solid tumors, and was
proven to have a high antitumor efficacy in a tumor-bearing mice model (Kim et al.
2008). Paclitaxel was also encapsulated in chitosan-containing glyceryl monooleate
core-shell nanoparticles, which were generated by the emulsification/evaporation
technique (Trickler et al. 2008). Using this drug delivery system, the authors
observed a 1000-fold increase in cytotoxicity, when determining the ICs, values in
a human breast cancer cell line. Another common hydrophobic anticancer drug is
5-fluorouracil, which has been widely used to treat different kinds of solid tumors. In
a study by Zheng et al. (2007), polyelectrolyte nanoparticles based on chitosan and
polyaspartic acid sodium salt were used to encapsulate 5-fluorouracil testing various
conditions for nanoparticle preparation such as temperature, ionic strength, pH and
cross-linker concentration, and different loading methods. The optimized
nanoparticles showed sustained drug release in vitro and in vivo. Rajan et al.
(2013) prepared hyaluronidase-5-fluoruracil-loaded chitosan-polyethylenglycol-gel-
atin copolymers as a targeted drug delivery system and examined particle size,
distribution, morphology, and drug loading capacity. The nanoparticles showed
less cytotoxicity than free 5-fluorouracil when applied to colon cancer cells for a
few hours. Another approach for controlled drug delivery used molecular surface
imprinted graft copolymer of chitosan with methyl methacrylate, which was pre-
pared by free-radical polymerization with S-fluorouracil as template molecule
(Zheng et al. 2016). The pH dependency and the kinetics of drug release suggested
that this chitosan-based carrier is optimal for orally applied colon-specific drug
delivery. A similar strategy to achieve colon specificity was used recently by Bashir
et al. (2017). They synthesized pH-responsive semi-interpenetrating network
hydrogels of N-succinyl-chitosan via Schiff base mechanism using glutaraldehyde
as a cross-linking agent and embedded poly(acrylamide-co-acrylic acid). The hydro-
gel exhibited a porous structure and pH-dependent swelling properties. The hydrogel
was effectively loaded with 5-fluorouracil, and the determined drug release was
pH-dependent as well, with high release rates at pH 7.4 and low rates at pH 1.2.

In many cases, chitosan nanoparticles have been conjugated with tumor-specific
ligands to mediate active targeting of cancer cells, which is expected to increase
therapeutic efficacy, accelerate drug release to selected sites, prevent unwanted drug
release before arrival at the target sites, and diminish adverse side effects of
chemotherapeutic drugs. Active targeting can be accomplished by functionalizing
chitosan-based nanoparticles and hydrogels using tumor-targeting ligands, which
bind to specific receptors that are specifically present on the surface of cancer cells.
Proper ligands of such kind include cytokines, peptides, folic acid, hyaluronic acid,
biotin or avidin, and antibodies (Prabaharan 2015). Here, we will discuss only a one
example for each of these ligands to illustrate active targeting.

Deng et al. (2011b) synthesized monodispersed and pH-sensitive chitosan-silica
hollow nanospheres, loaded them with antitumorigenic tumor necrosis factor o
(TNF-a), and conjugated them with an antibody to epidermal growth factor receptor
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2, which is overexpressed in about 20% of all women suffering from breast cancer
(Owens et al. 2004). Subsequent drug release studies demonstrated that the
nanospheres delivered cytotoxic TNF-o to MCF-7 breast cancer cells and suppressed
tumor with high therapeutic efficacy. Due to the acidic microenvironment inside
solid tumors, TNF-a is gradually released from the nanospheres, binds to the TNF-o
receptor, and activates a signaling cascade which induces programed cell death.

In a study published by Shen et al. (2013a), doxorubicin and verapamil were
combined in chitosan nanoparticles to achieve an integrated treatment for cancer and
doxorubicin-induced cardiomyopathy in the process of cancer therapy. For this
purpose, chitosan shells coated on magnetic nanoparticles were loaded with both
drugs and entrapped into poly(lactic acid-co-glycolic acid) nanoparticles conjugated
with a cyclo(Arg-Gly-Asp-D-Phe-Lys) (cCRGD) peptide targeting o,p3 integrin,
which is highly expressed on activated endothelial cells of newborn vessels during
tumor angiogenesis as well as in some tumor cells (Liu et al. 2008). Near-infrared
laser irradiation was sufficient to trigger drug release within an acidic microenvi-
ronment. Cytotoxicity assays performed in vitro suggested that cRGD-conjugated
nanoparticles exhibited a greater growth inhibitory potential in cancer cell lines than
the free drug or control nanoparticles likely due to cRGD-mediated targeting of
tumor cells. In vivo imaging and biodistribution studies further showed that the
nanoparticles preferentially accumulated in the tumor tissue under magnetic guid-
ance. Finally, in vivo data for tumor regression along with electrocardiogram
recordings and histopathology observations indicated that the cRGD-conjugated
polymer-coated magnetic nanoparticles could have a high therapeutic potential as
a dual-drug delivery system for the treatment of both cancer and doxorubicin-
mediated cardiotoxicity.

Recently, a novel disulfide-linked chitosan-g-methoxy poly(ethylene glycol)
copolymer was successfully synthesized, which was suggested to have excellent
properties for redox-responsive drug delivery (Antoniraj et al. 2018). Redox-
responsive S-fluorouracil-loaded nanoparticles were synthesized by ionic gelation
method, and folic acid was used to functionalize the nanoparticles for receptor-
targeted drug delivery, as cancer cells commonly express high-affinity folate recep-
tors on their surface. The 5-fluorouracil-free nanoparticles showed improved
hemocompatibility, and the 5-fluorouracil-loaded nanoparticles conjugated with
folic acid had a high cytotoxicity to MCF7 breast cancer cells, presumably due to
intracellular internalization because of folic acid conjugation, which is expected to
enhance the cellular uptake of the nanoparticles.

Many types of cancer cells overexpress different isoforms of hyaluronic acid
receptors, which leads to enhanced binding and internalization of hyaluronic acid, as
reported for instance in breast tumor cells (Bourguignon et al. 2000). To exploit this
fact for targeting tumor cells, Jain et al. (2010) prepared hyaluronic acid-conjugated
chitosan nanoparticles loaded with oxaliplatin and encapsulated in Eudragit S100-
coated pellets for effective delivery to colorectal tumors. In immunodeficient C57BL
mice model with HT-29 cancer cells injected into the ascending colon, relatively
high local drug concentrations were found in the colon tumors after oral adminis-
tration of the oxaliplatin nanoparticles, and the concentrations increased with
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prolonged exposure time. Coupling of hyaluronic acid onto the surface of chitosan
nanoparticles was found to make them more specific for delivery of the anticancer
drug to the tumor of the colon.

Several studies revealed that also biotin and avidin possess tumor-targeting
properties. Biotin receptors are overexpressed in many tumor types characterized
by rapid division rates and aggressive growth (Russell-Jones et al. 2004), and avidin
(a highly glycosylated protein) is recognized by lectins expressed on the surface of
tumor cells (Yao et al. 1998). For this reason, Bu et al. (2013) prepared chitosan
nanoparticles conjugated with either biotin or both biotin and avidin as tumor-
targeted carrier system for the delivery of frans-resveratrol. Pharmacokinetic exper-
iments revealed that avidin-biotin-loaded nanoparticles rapidly accumulated in the
liver after injection, while the delivery nanoparticles conjugated only with biotin was
attenuated. Cytotoxicity assays using HepG2 cells further uncovered that compared
to trans-resveratrol solution and unconjugated chitosan nanoparticles, both biotin
and avidin-biotin loaded nanoparticles significantly improved anticancer activity,
but the latter combination exhibited a higher cytotoxicity. Thus, it was proposed that
the synthesized nanoparticles conjugated with avidin and biotin may be a potent
drug delivery system particularly to targeting hepatic carcinoma.

Finally, Xiao and Yu (2017) developed a glycol/chitosan nanobioconjugate
loaded with gemcitabine and conjugated with anti-EGFR and anti-chitosan anti-
bodies to target pancreatic cancer cells and cause aggregation. Administration of the
chitosan conjugates efficiently blocked tumor growth and metastatic spread in
human pancreatic cancer cells.

14.6.3 Chitosan-Based Vectors for Gene Therapy

Gene therapy requires the transmission of nucleic acids (DNA or RNA) into the
target cell to mediate expression of therapeutic genes or to silence gene expression
by RNA interference. However, negatively charged phosphates of nucleic acids
impair permeation through the plasma membrane, which is negatively charged as
well. In addition, unprotected nucleic acids are highly susceptible to degradation by
nucleases. Hence, delivery of nucleic acids into cells relies on non-viral or viral
vectors, which drastically improves transfection and protects from enzymatic deg-
radation (Wivel and Wilson 1998). As viral vectors have the risk of causing adverse
side effects such as immune reactions and malignant transformation, many efforts
have been made to develop non-viral vectors for gene delivery, among them are
ample examples of different chitosan-based nanoparticles.

Actually, unmodified chitosan is not an effective carrier for the transfer of nucleic
acids due to its low solubility in water and instability of DNA/RNA chitosan
complexes at physiological pH. Thus, chitosan requires chemical modification or
grafting to convey appropriate physicochemical properties to the resulting complex.
Chitosan modifications that have been used to design chitosan-based carriers for
gene or siRNA delivery include quaternization by alkylation of tertiary amines,
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reaction with  2-chloroethylamine hydrochloride and  N,N-dimethyl-2-
chloroethylamine hydrochloride, conjugation with polyethylene glycol, poly
(amidoamine) or RGD dendrimer grafting, modification with phosphatidylcholine,
or combinations of these modifications.

Among the quaternized chitosan derivatives, N-trimethyl chitosan and its deriv-
atives have been extensively studied for their suitability in gene delivery, because
they are reasonably soluble in water, have comparably little tendency to form
aggregates, and exhibit a high loading capacity for nucleic acid under physiological
conditions. In a systematic study published by Germershaus et al. (2008), the
physicochemical properties of chitosan, N-trimethyl chitosan, and poly
(ethylenglycol)-N-trimethyl chitosan were analyzed and compared. Using cell lines
derived from mouse embryonic fibroblasts as a transfection system for plasmid
DNA, the authors observed a significant increase in transfection efficiency when
N-trimethyl chitosan nanoparticles were used to deliver plasmid DNA instead of
chitosan nanoparticles. In addition, grafting poly(ethylenglycol) onto N-trimethyl
chitosan further improved transfection efficiency, stabilized the particles, decreased
particle size, and reduced cytotoxicity when compared to unmodified N-trimethyl
chitosan nanoparticles. Zheng et al. (2009) prepared folate-conjugated N-trimethyl
chitosan nanoparticles and compared cellular uptake and transfection of plasmid
DNA (pDNA) in vitro with non-conjugated N-trimethyl chitosan nanoparticles using
folate overexpressing KB and SKOV3 cells and folate receptor-deficient A549 and
NIH/3T3 cells. The folate-N-trimethyl chitosan/pDNA complex showed a decrease
in cytotoxicity in comparison to pDNA complexes made of polyethylenimine.
Moreover, folate conjugation increased transfection efficiency and folate receptor-
mediated endocytosis by KB cells and SKOV3 cells when compared to
non-conjugated N-trimethyl chitosan nanoparticles.

Exploring further possible improvements of N-trimethyl chitosan-based gene
delivery systems, Zheng et al. (2015) synthesized arginine, cysteine, and histidine-
modified trimethyl chitosan nanoparticles to form complexes with pDNA. Using
HEK 239 cells, they evaluated stability, cellular uptake, endosomal escape, release
behavior, nuclear localization, and in vitro and in vivo transfection efficiencies. The
cysteine-modified N-trimethyl chitosan nanoparticles turned out to be the most
promising candidates for gene delivery due to sufficient stability, high cellular
uptake, and glutathione-responsive release-favoring mechanism in combination
with preferable nuclear distribution. Addition of sodium tripolyphosphate to the
cysteine-modified nanoparticles was further effective to compromise certain disad-
vantageous attributes for pDNA delivery. N-trimethyl chitosan nanoparticles were
also employed in drug-siRNA co-delivery using a metastatic breast cancer cell line
(Eivazy et al. 2017). In this study, the authors tested simultaneous delivery of siRNA
to silence the gene encoding the high mobility antigen (HMGA-2) and the anticancer
drug doxorubicin to boost therapeutic anticancer effects. They found that dual
delivery of HMGA-2 siRNA and doxorubicin by trimethyl chitosan nanoparticles
significantly inhibited breast cancer cells growth.

A very recent study developed novel strategies in fighting lung cancer by RNA
interference mediated gene silencing of the gene encoding the anti-apoptotic protein,
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Survivin. For this purpose, Ni et al. (2018) designed nanoparticles consisting of
baclofen functionalized N-trimethyl chitosan as polymeric carriers, TPP as ionic
cross-linker, and siRNA to Survivin. Baclofen was used to target the nanoparticles to
non-small lung cancer cells that overexpress the GABAg receptor, which specifi-
cally binds baclofen (Zhang et al. 2013b). The siRNA-loaded nanoparticles
increased the uptake of Survivin-siRNA through the interaction with GABAg
receptor and efficiently induced apoptosis and gene silencing. The authors further
encapsulated the siRNA-loaded nanoparticles into mannitol microparticles for dis-
persion in the HFA-134a aerosol to allow administration by pressurized metered-
dose inhalers. Pulmonary delivery of siRNA is expected to avoid serum-induced
degradation, reduce systemic side effects, and improve therapeutic efficacy.

Zhong et al. (2015) hypothesized that the addition of amino residues to chitosan
could improve stable complex formation with negatively charged siRNA enhancing
transfection and gene silencing efficiency. For this purpose, they prepared a novel
chitosan derivative (MixXNCH) combining 2-chloroethylamine hydrochloride and N,
N-dimethyl-2-chloroethylamine hydrochloride with chitosan and examined the
physicochemical properties of the resulting nanoparticles. Using a hepatocellular
carcinoma cell line (HepG2), gene transfection efficiency of MixNCH/midkine-
siRNA nanoparticles and inhibition of HepG2 cell proliferation were analyzed.
They found that midkine-siRNA delivered by MixNCH nanoparticles was able to
significantly reduce both mRNA and protein levels of the midkine growth factor,
resulting in a significant decrease of cell proliferation in HepG2 cells.

Guzman-Villanueva et al. (2014) evaluated the capability of different-sized
chitosan derivative-based polyplexes to carry, internalize, and release siRNA in
human adenocarcinomic epithelial cells. For this purpose, they first prepared N-
phthaloyl-chitosan or N-phthaloyl-oligochitosan, reacted them with polyethylene
glycol and hydroxybenzotriazole in DMF, and then cross-linked the polymers
using ECD. Finally, the N-phthalimido groups were removed by the reaction with
hydrazine monohydrate, and the products were purified by dialysis against water and
ethanol. Both the chitosan- and oligochitosan-based polyplexes exhibited biode-
gradability, low cytotoxicity, and resistance to enzymatic degradation up to 24 h.
When loaded with siRNA, the oligochitosan-based polyplexes drastically increased
cellular internalization of the siRNA and gene silencing compared to naked siRNA.
To improve the transfection efficiency of chitosan-based gene delivery systems,
Deng et al. (2011a) fabricated a dendronized chitosan derivative using a copper-
catalyzed azide alkyne cyclization reaction of propargyl focal point poly
(amidoamine) dendron with 6-azido-6-deoxy-chitosan. The resulting dendronized
chitosan nanoparticles exhibited higher water solubility and buffering capacity than
native chitosan and showed lower cytotoxicity and enhanced transfection efficiency
in transformed human embryonic kidney and nasophyryngeal carcinoma cell lines
than commonly used polyethyeneimine.

As already mentioned above, the RGD motif can be used for targeting chitosan-
based nanoparticles to tumor sites via the interaction with integrin a,f3. Utilizing
this fact, Kim et al. (2017) produced a dendrimeric RGD peptide/polyethyleneimine
grafted chitosan copolymer, which was soluble in water. The copolymer was
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nontoxic to mammalian cells and erythrocytes in the absence and presence of
plasmid DNA. Moreover, it was found to transfect cells involving microtubule-
dependent macropinocytosis and clathrin-mediated endocytosis. Finally, injecting
copolymers complexed with psiRNA-hBCL2 to silence the gene for the human anti-
apoptotic Bcl2 protein into BALB/c-nu mice carrying a PC3 prostate tumor xeno-
grafts, markedly inhibited tumor growth. Thus, the copolymer was suggested to be a
good candidate to develop a specific targeted gene delivery system.

To confer membrane-like properties to chitosan-based gene delivery systems,
Li et al. (2015) grafted phosphorylcholine and macrocyclic polyamine onto
chitosan to obtain water-soluble nanoparticles. Chitosan grafted with both com-
pounds were more efficient in binding and protecting plasmid DNA than chitosan
grafted only with phosphorylcholine or macrocyclic polyamine. The authors also
demonstrated that phosphorylcholine and macrocyclic, polyamine-grafted
chitosan had a positive net charge and can, therefore, wrap DNA to yield
nanoparticles of about 100 nm in diameter. Finally, the DNA-loaded nanoparticles
significantly increased cellular uptake and transfection rates in transformed human
embryonic kidney cells when compared to chitosan/DNA complexes. A similar
transfection strategy was published by Picola et al. (2016), who inserted
phosphorylcholine and increasing numbers of diethylaminoethyl (DEAE) groups
into the polymer. The resulting chitosan nanoparticles were water soluble at
physiological pH and less cytotoxic than lipofectamine, a commonly used trans-
fection reagent. They further could form complexes with plasmid DNA, and the
transfection efficiencies of the nanoparticles with high DEAE substitution rates
tested in HeLa cells were in the same range as determined for lipofectamine. When
the nanoparticles were loaded with siRNA, they were able to induce gene silenc-
ing, with efficiencies highly dependent on the N/P ratio.

14.6.4 Chitosan-Based Adjuvants for Vaccine
in Immunotherapy

Chitosan-based materials have been recognized to be potent adjuvants for immuno-
therapy, because they non-specifically stimulate immune responses in the host
organism and therefore have antiviral, antimicrobial, and antitumor properties
(Li et al. 2013b). The adjuvant potency of chitosan is comparable to incomplete
Freund’s adjuvant, and it has stronger immune-stimulatory effect than aluminum
hydroxide, which is frequently used in vaccines though it shows adverse side effects
such as neurotoxicity (Zaharoff et al. 2007). The mechanism of how chitosan
triggers immune responses involves phagocytosis-dependent activation of the
NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome,
which finally induces a robust interleukin-1f response (Bueter et al. 2011, 2014).
Carroll et al. (2016) described another mechanism by which chitosan stimulates the
activation of dendritic cells inducing cellular immunity. They found that chitosan
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promotes the intracellular release of DNA, which involves the cGAS-STING path-
way. As a result, type I interferon is secreted activating the expression of interferon-
controlled genes. Due to the release of the cytokines that stimulate dendritic cells, the
cellular immune system is elicited.

Due to its mucoadhesiveness, chitosan and its derivatives are considered effective
for mucosal administration, which includes oral, nasal, as well as ocular antigen-
delivery routes. However, other routes are also anticipated to be effective in pro-
voking immune response including subcutaneous (Borges et al. 2008; Scherliess
et al. 2013), intraperitoneal (Chang et al. 2010), intravenous (Shi et al. 2011), and
intratumoral injections (Zaharoff et al. 2010). Evidently, innate immune responses
are stimulated by chitin, chitosan, or derivatives (Peluso et al. 1994; Tokura et al.
1999; Lee et al. 2008; Lee 2009). This includes the activation of alveolar macro-
phages with the release of cytokines such as interleukin (IL)-12, tumor necrosis
factor-a, or IL-18, leading to INF-y production predominantly released by natural
killer cells (Shibata et al. 1997a, b). However, also humoral and cellular adaptive
immune responses are triggered by some antigens when co-administered or encap-
sulated in chitosan-containing micro- and nanoparticles (Tokura et al. 1999; van der
Lubben et al. 2001; Arca et al. 2009; Mori et al. 2012). In particular, Wen et al.
(2011) found that the stimulatory effect on the humoral and cellular immune system
by chitosan results in a balanced Th1/Th2 response. However, care has to be taken in
assessing the properties of chitosan-based adjuvants, as many studies do not provide
sufficient data on the chemical and physical characteristics, preparation and formu-
lation procedures, as well as potential impurities (Vasiliev 2015). This is particularly
critical, as immune responses appear to depend on these parameters as uncovered by
Scherliess et al. (2013), who reported that the degree of immune response varied
when chitosans of different qualities were used. The immune-stimulatory effect of
chitosan is affected by the combination of molecular weight, solubility, particle size,
and viscosity as well as deacetylation degree.

Preclinical studies performed predominantly in mice models suggested that
chitosan-containing antigen-delivery systems are promising adjuvant platforms for
mucosal vaccination against human pathogenic viruses such as influenza (Read et al.
2005; Svindland et al. 2012; Sawaengsak et al. 2014; Liu et al. 2015a); hepatitis A,
B, and E (Jiang et al. 2007; Tao et al. 2017a; Tao et al. 2017b; Soares et al. 2018);
human papilloma virus (Ma et al. 2015); and poliovirus (Ghendon et al. 2011).
Combinations of chitosan and heat-inactivated human herpes viruses (HSV) were
further tested as an immunomodulating adjuvant in T cells and antigen-presenting
cells in HSV-infected mice (Choi et al. 2016). Using chitosan nanoparticles targeted
to dendritic cells via antibodies to the DEC-205 surface receptor, Raghuwanshi et al.
(2012) successfully delivered plasmid DNA carrying the cDNA for the N protein to
trigger immunization against the severe acute respiratory syndrome coronavirus
(SARS-CoV). Simultaneous comparison of targeted formulations using intramuscu-
lar and intranasal routes revealed that intramuscular administration induced a more
potent systemic IgG response compared to intranasal administration. Solid evidence
substantiating the advantages of chitosan as an efficient adjuvant for nasal
vaccination originates from clinical examinations on a norovirus vaccine, which
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demonstrated the ability of a chitosan/monophosphoryl lipid-based antigen delivery
system (ChiSys®) to induce immunity against the gastroenteric norovirus infections
after immunization (Smith et al. 2014).

Chitosan-derived adjuvants were also used in combination with antigens derived
from bacterial toxins, such as diphtheria toxoids (McNeela et al. 2000; Schipper
et al. 2017), tetanus toxoids (Ahire et al. 2007; Pirouzmand et al. 2017), and
dermonecrotoxin (Jiang et al. 2004). In addition, the potential of various vaccine
formulations against anthrax were evaluated in female BALB/c mice (Malik et al.
2018). Encapsulating protective antigens (PA) in trimethyl-chitosan nanoparticles
and administering them by subcutaneous, intramuscular, and intraperitoneal injec-
tions resulted in a strong IgG antibody response (Th1-biased) when combined with
immune-stimulatory CpG oligodeoxynucleotides or polyinosinic-polycytidylic
acids. Interestingly, without the immune-stimulatory nucleic acids, the PA-loaded
trimethyl-chitosan nanoparticles led to a Th2-biased immune response.

Many studies have explored the adjuvant properties of chitosan in vaccines
against cancer. In a study published by Wen et al. (2011), the effects of chitosan
nanoparticles on the immune response triggered by an ovalbumin antigen in mice
were analyzed. As the administration of the chitosan nanoparticles did not only
increase cytokine levels of Thl (IL-2 and IFN-y) and Th2 (II-10) cells, but also
stimulated natural killer cells, the authors suggested that chitosan is a promising
adjuvant for cancer immunotherapy by promoting both humoral and cellular
immune responses. This hypothesis was confirmed by Highton et al. (2016), who
demonstrated that immunization with an ovalbumin/chitosan hydrogel had
antitumor effects in an intracaecal mice cancer model. After subcutaneous injection
of the ovalbumin/chitosan vaccine, the authors detected CD8" T memory cells
specific for ovalbumin and observed decreased tumor growth in contrast to
unvaccinated control mice or mice that were vaccinated with dendritic cells and
ovalbumin.

Zaharoff et al. (2009) analyzed antitumor effects in mice using a bioluminescent
orthotopic bladder cancer model, after repeatedly administering chitosan/IL-12 into
the bladder and comparing the antitumor efficacy of this treatment with that of an
established adjuvant therapy applied to treat bladder cancer based on attenuated
mycobacteria (bacillus Calmette-Guerin therapy). Determination of the urinary
cytokine spectrum and immunohistochemical analysis resulted in the identification
of cytotoxic T cells and natural killer cells as effector cells responsible for tumor
regression. In contrast to the Bacillus Calmette-Guerin therapy, chitosan/IL-12
treatment utterly prevented recurrence of the disease.

More recently, Yao et al. (2013b) prepared mannosylated chitosan nanoparticles
and loaded it with a plasmid to produce a vaccine against gastrin-releasing peptide
(GRP), whose receptor is overexpressed in various cancer cells. The nanoparticles
were intranasally administered in a subcutaneous mice prostate carcinoma model to
evaluate the efficacy on inhibition of the growth of tumor cells. Cell binding and
cellular uptake assays revealed that the mannosylated chitosan nanoparticles facili-
tate targeting to antigen-presenting cells, promoting receptor-mediated endocytosis
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via the mannose receptor. Due to antigen representation, enhanced tumor regression
was observed as a result of the production of high titers of anti-GRP antibodies. A
similar strategy was finally used by Lai et al. (2014) to test an immune therapy
against hepatocellular carcinoma in a H22 tumor-bearing mice model. They synthe-
sized folate-conjugated chitosan nanoparticles and loaded them with a plasmid-
encoding mouse interferon-y-inducible protein-10 (IP-10). They found that IP-10
plasmid exhibited efficient antitumor activity, prolonging the survival time in H22
tumor-bearing mice. The antitumor effects were likely due to different effects. Next
to the secretion of IFN-y and IP-10, inhibition of regulatory T cells, suppression of
angiogenesis, inhibition of cancer cell proliferation, and activation of apoptosis
contributed to tumor growth inhibition.

14.6.5 Tissue Engineering

Tissue engineering is an increasingly important interdisciplinary field in regenerative
medicine, which aims to create replacements for damaged tissues based on the
combined knowledge provided by physicians, biologists, and engineers. Most
approaches employ scaffolds made from biocompatible polymers, which are colo-
nized by cells of the respective tissue. Ideally, the scaffold increases adherence,
proliferation, and differentiation of colonizing cells. Chitosan and its derivatives
offer ample benefits to generate cell and tissue supporting matrices, which include
chemical versatility, antimicrobial activity, biocompatibility, biodegradability, and
neglible toxicity (Ahsan et al. 2018). Chitosan can be produced to form sponge-like
scaffolds using rather simple phase separation techniques including freeze-drying
(Aranaz et al. 2014), gas foaming (Kaynak Bayrak et al. 2017), and electrospinning
procedures (Qasim et al. 2018). The presence of a system of interconnected pores
with appropriate diameters facilitates vascularization and tissue integration. More-
over, chitosan-based scaffolds can be synthesized in combinations with ample
natural and synthetic polymers resulting in matrices exhibiting special characteris-
tics. Due to their positive surface charges they open the possibility to fabricate
polyelectrolyte complexes with anionic polymers such as glutamic acid (Fang
et al. 2014), hyaluronic acid (Lalevee et al. 2016), dextrane sulfate (Kulkarni et al.
2016), heparin (Almodovar and Kipper 2011), dermatan sulfate (Rasente et al.
2016), and chondroitin sulfate (Tsai et al. 2011). Particularly the presence of
glycosaminoglycans, which are naturally found in extracellular matrices, is known
to modulate the activity of cytokines and growth factors by binding to the polymers
(Zaman et al. 2016). Otherwise, chitosan-based scaffolds can be loaded with cyto-
kines and growth factors to attract cells and stimulate tissue regeneration (Sun et al.
2012a; Bader et al. 2015; Choi et al. 2015). Finally, they further open the possibility
of controlled degradation and resorption in physiological environments, designing
mechanical properties that match the conditions found in the respective tissue, and
determination of desired sizes and shape by easy fabrication procedures. Therefore,
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chitosan-based scaffolds have numerous applications in tissue engineering, and we
will review recent progress in using these materials for tissue regeneration and
wound healing.

14.6.5.1 Bone, Cartilage, and Tooth Repair

Bone defects can either be congenital or result from trauma, infection, cancer, or
failed orthopedic surgical procedures (Venkatesan and Kim 2010). The grafts used
to bridge bone defects can be autografts (bone material from other body regions of
the same patient) or allografts (bone material from decedents). However, both
materials have disadvantages: autografts require bone harvesting from healthy
tissues and may cause complications of wound healing and pain, and allografts
may result in immunogenic rejection and have the risk of transmitting viral diseases
from the donor to the recipient. Due to these concerns, scientists around the world
are searching for alternative materials as bone graft substitutes. As described before,
chitosan-based materials have valuable properties for orthopedic applications.
Chitosan itself has the capacity to increase bone regeneration rates (Muzzarelli
et al. 1993b); however, it cannot fully substitute natural bone material. Therefore,
different composite scaffolds have been developed to assure porosity for vascular-
ization and nutrition, facilitate the formation of new bone material
(osteoconductivity), guarantee structural integrity during ingrowth at the site of
implantation, and orchestrate biodegradation with bone regeneration (Venkatesan
and Kim 2010). In addition, chitosan-based composites can be loaded with cells and
growth factors that promote osteoconductivity and hence facilitate bone regenera-
tion. One of the most important chitosan grafting that has been used in bone tissue
engineering is hydroxyapatite, which by itself stimulates bone regeneration, pro-
vided that the scaffold has a microporous structure (Woodard et al. 2007). Hydroxy-
apatite grafting of chitosan can be easily achieved by coprecipitation from
homogeneous mixtures of precursor (Deepthi et al. 2016, and references therein).
One of the first researchers who tested combinations of chitosan and hydroxyapatite
was Michio Ito, who examined the use of chitosan-bonded hydroxyapatite paste for
treatment of periodontal defects (Ito 1991). In 2004, Ge et al. (2004) published a
remarkable study, in which they tested different combinations of air- and freeze-
dried chitosan/hydroxyapatite materials that were colonized by osteoblasts and
implanted into rats. The material was found to be nontoxic and biodegradable and
to stimulate mineralization. The explanted material that was colonized by osteoblasts
before implantation showed newly formed bone material containing proliferating
osteoblasts that recruited surrounding tissue to grow in. In another study published
by Oliveira et al. (2006), three-dimensional macroporous hydroxyapatite/chitosan
bilayered scaffolds of inorganic and organic deposits were produced in a stepwise
procedure and examined with regard to their mechanical properties and cytotoxicity
to mouse fibroblast-like cells. Moreover, in vitro cell culture studies using goat
marrow stromal cells revealed that the macroporous hydroxyapatite/chitosan
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composite is a suitable material that promotes attachment, proliferation, and differ-
entiation into osteoblasts and chondrocytes. Additionally, three-layered porous
materials of collagen, hydroxyapatite, and chitosan were produced and characterized
as an artificial bone matrix (Wang et al. 2008b). When testing murine pre-osteoblast
cell line (MC3T3-E1) grown on this matrix, the cells proliferated significantly more
rapidly than cells grown on a pure chitosan matrix (Teng et al. 2008). In addition,
higher levels of alkaline phosphatase (secreted by osteoblasts) were determined,
which is indicative for bone regeneration. Similar results were obtained when
osteoblasts were cultured on hydroxyapatite/chitosan nanocomposites and
osteocalcin as a marker for late osteoblastic differentiation, and mineralized bone
matrix formation was determined (Chesnutt et al. 2009). Further studies character-
ized hydroxyapatite/chitosan hybrids with additional blend materials such as mont-
morillonite (Katti et al. 2008), polylactic acid (Cai et al. 2009), cellulose and
carboxymethyl cellulose (Liuyun et al. 2009; Jiang et al. 2013b), gelatin (Sellgren
and Ma 2012; Maji et al. 2015; Lee et al. 2017), nylon 66 (Huang et al. 2011),
polygalacturonic acid (Khanna et al. 2011), marine sponge collagen (Pallela et al.
2012), collagen (Wang et al. 2009), alginate (Jin et al. 2012; Kim et al. 2015; Liao
et al. 2018), chondroitin sulfate (Venkatesan et al. 2012a; Hu et al. 2017), hyaluronic
acid (Hu et al. 2017), fibroin (Lima et al. 2013; Ran et al. 2016; Ye et al. 2017), poly-
3-hydroxybutyrate-co-3-hydroxyvalerate (Zhang et al. 2015b), fucoidan (Lowe et al.
2016), p-tricalcium phosphate (Shavandi et al. 2015; Oryan et al. 2017), graphene
oxide (Yu et al. 2017), B-cyclodextrin (Shakir et al. 2016), p-1,3-glucan (Przekora
and Ginalska 2017; Przekora et al. 2017), whitlockite (Zhou et al. 2017a), zoledronic
acid (Lu et al. 2018), and zirconium dioxide (Balagangadharan et al. 2018). Also,
three-dimensional hydroxyapatite/chitosan-carbon nanotube scaffolds were shown
to be promising materials for bone regeneration (Im et al. 2012). Naturally, many of
these combinations have been tested also in the absence of hydroxyapatite (Park
et al. 2000a; Li et al. 2005; Jiang et al. 2006; Arpornmaeklong et al. 2008;
Venkatesan et al. 2012b; Deng et al. 2013; Azevedo et al. 2014; Dinescu et al.
2014; Listoni et al. 2015; Georgopoulou et al. 2018; Ko¢ Demir et al. 2018).
Several studies showed that various growth factors such as transforming growth
factors (TGFs), vascular endothelial growth factors (VGEFs), bone morphogenic
proteins (BMPs), insulin-like growth factors (IGFs), and platelet-derived growth
factors (PDGFs) have major impacts on vascularization and osteoblast activities and
thus have been employed to stimulate bone regeneration (Yun et al. 2012). However,
there are limitations in maintaining therapeutic concentrations due to the short half-
life of the growth factors in vivo. This can be effectively prevented by the controlled
release of the growth factors from porous chitosan composite matrices, which have
been demonstrated to stimulate bone formation. For instance, PDGF-BB is an
important osteogenic growth factor in the process of bone regeneration, as it
stimulates mesenchymal cell proliferation and differentiation and mediates chemo-
taxis of osteoblast. Park et al. (2000a, b) produced a porous chitosan or chondroitin-
4-sulfate/chitosan sponges releasing PDGF-BB to stimulate bone regeneration. The
release rate of PDGF-BB increased proportionally with increasing concentrations
loaded onto the sponge, and PDGF-BB retained its chemotactic activity regardless of
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being loaded onto the sponge or added freely to test solution (Park et al. 2000a).
Finally, osteoblast proliferation was found to be stimulated in PDGF-BB-loaded
chondroitin-4-sulfate/chitosan sponge compared with that of the unloaded sponge.
PGFs have also been used in combination with other growth factors. As VEGF is
known to prolong cell survival, osteoblast proliferation, differentiation, and migra-
tion next to its effects on angiogenesis, it has been suggested that the combined
action of VEGF and PDGF can accelerate the bone healing process even more
efficiently. De la Riva et al. (2010) established a system based on brushite-chitosan
capable of controlling release kinetics for these two growth factors. After implanting
the chitosan scaffolds loaded with the growth factors into rabbits with femur defects,
release kinetics and tissue distribution of radiolabeled VEGF and PDGF were
determined. Analyzing bone repair histologically revealed that the combined use
of VEGF and PDGF promoted bone regeneration most effectively.

Also, the controlled release of IGF-1 and BMP-2 by the enzymatic degradation of
the porous chitosan scaffold stimulates bone healing and regeneration in rabbits
considerably (Nandi et al. 2013). When the chitosan particles were loaded only with
one of the two growth factors, the effect was found to be more pronounced for IGF-1
than for BMP-2 infiltrated matrices. In a very recent study, chitosan/biphasic cal-
cium phosphate scaffolds functionalized with BMP-2-encapsulated nanoparticles
and the RGD tripeptide were produced using a desolvation technique (Gan et al.
2018). In vitro cell culture and in vivo implantation tests demonstrated that RGD and
BMP-2 synergistically increased cell adhesion and spreading via integrin binding
triggering differentiation of osteoblasts. Increased bone healing was also observed,
when porous chitosan scaffolds were loaded with resolvin D1, a potent lipid immune
modulator derived from both eicosapentaenoic acid, and implanted into rats with a
femur defect (Vasconcelos et al. 2018). Obviously, resolving D1 administration in
the acute phase of the innate immune response to the bio-implant had beneficial
effects during bone tissue repair.

Impairment of the articular cartilage is frequently due to sport-related injury,
disease, trauma, and tumor. If not treated successfully, it may result in osteoarthritis,
which increasingly affects also younger individuals (Muzzarelli et al. 2012). In
contrast to bone regeneration, cartilage healing is limited by the lack of vasculari-
zation and poor proliferation rates of chondrocytes. Injection of hyaluronan into the
joints of arthritic patients is known to improve their function, as it restores visco-
elasticity and flow of the synovial fluid, helps to normalize hyaluronan production,
and finally reduces pain and inflammation. Chitosan easily forms polyelectrolyte
complexes with hyaluronan and chondroitin sulfate, which are important building
blocks particularly of the hyaline cartilage found on the surface of joints. Therefore,
combinations of chitosan and hyaluronan and/or chondroitin sulfate may be useful in
cartilage healing. In a first attempt to realize this idea, Kuo et al. (2015) synthesized a
highly elastic, macroporous, and chitosan-containing gelatin/chondoitin-6-sulfate/
hyaluronan (GCH) cryogel scaffold, which mimics the extracellular matrix compo-
sition of the cartilage. Furthermore, in vitro cell culture studies suggest that
chondrocytes proliferate and redifferentiate within the porous matrix of the cryogels.
Although chitosan reduces cell proliferation, it stimulates the secretion of sulfated
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glycosaminoglycans and type II collagen. In addition, they performed in vivo studies
culturing chondrocytes on the GCH chitosan cryogel and implanting the material
into rabbits with an articular cartilage defect (Kuo et al. 2015). After 3 months, the
defect in the chondrocytes/cryogel group was completely covered with semitrans-
parent tissue, which had similar characteristics as the native cartilage. A large variety
of other chitosan-based materials lacking glycosaminoglycans have been suggested
as suitable scaffolds for cartilage tissue engineering and some of them have been
tested as mesenchymal stem cell carriers. Such materials include scaffolds
containing N,N-dicarboxymethyl chitosan (Mattioli-Belmonte et al. 1999),
chitosan/gelatin and/or alginate complex (Xia et al. 2004; Li and Zhang 2005;
Bhat et al. 2011), poly(L-lactide)/chitosan microspheres (Lao et al. 2008; Haaparanta
et al. 2014), polyethylene oxide/chitin/chitosan scaffolds (Kuo and Ku 2008),
genipin-cross-linked chitosan/silk fibroin sponges (Silva et al. 2008; Vishwanath
etal. 2016), chitosan/polyester-based scaffolds (Alves da Silva et al. 2010), chitosan/
collagen type I scaffolds (Gong et al. 2010), chitosan/poly(epsilon-caprolactone)
blend scaffolds (Neves et al. 2011; Filova et al. 2016), chitosan/poly(l-glutamic acid)
scaffolds (Zhang et al. 2013a, 2015a), polyvinyl alcohol/chitosan composite
hydrogels (Dashtdar et al. 2015), poly(N-isopropylacrylamide)/chitosan hydrogels
(Mellati et al. 2016), viscoelastic silk/chitosan microcomposite scaffolds
(Chameettachal et al. 2017), and chitosan/graphene oxide polymer nanofibers (Cao
et al. 2017).

As in the case of bone repair, strategies using various chitosan-based scaffolds
loaded with growth factors such as TGFs (Kim et al. 2003; Choi et al. 2015), IGFs
(Zhao et al. 2010), BMPs (Mattioli-Belmonte et al. 1999), and basic fibroblast
growth factor (bFGF) (Tan et al. 2007) have been tested for cartilage repair. In an
interesting pilot study, Qi et al. (2013) produced an injectable chitosan/polyvinyl
alcohol gel and examined its structure and physicochemical properties. The resulting
material exhibited low cytotoxicity and good biocompatibility. Next, the gel was
mixed with rabbit bone marrow stromal cells (BMSCs) that were transfected with an
adenovirus to produce TGF-b1, and rabbits with cartilage defects were injected with
this mixture. After 16 weeks, the defects appeared to be fully repaired. The
regenerated tissue was almost indistinguishable from the native cartilage. In another
study, a demineralized bone matrix was conjugated with mesenchymal stem cell
(MSC) E7 affinity peptide (EPLQLKM) and combined with a chitosan hydrogel for
cartilage engineering. Cell culture and implantation experiments demonstrated that
the developed material has a high chondrogenic capacity facilitating tissue repair of
cartilage defects (Meng et al. 2015). In a more recently published study, the
proliferation and differentiation of multipotent dental pulp stem cells into
chondrocytes were investigated to generate cartilage-like material. In this case, a
porous chitosan-xanthan gum matrix was employed as a scaffold and loaded with
kartogenin to promote chondrogenic differentiation (Westin et al. 2017). The
manufactured scaffold exhibited favorable characteristics for cartilage tissue engi-
neering, such as high porosity, low cytotoxicity, and mechanical properties compat-
ible with those characteristic of cartilage.
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Very recently, Agrawal et al. (2018) reported the in vitro generation of cartilage-like
material by seeding human mesenchymal stem cells on freeze-dried porous silk fibroin/
chitosan scaffolds and culturing them in a spinner flask bioreactor under dynamic
conditions. The team was successful in preparing a cartilage construct of 5 mm
thickness, which roughly corresponds to the thickness of a native articular cartilage.

Due to its unique properties, chitosan has also emerged as a scaffold for potential
applications in dental medicine. Chitosan-based hydrogels and nanocomposites have
been used as anti-erosive and enamel-repairing additives in dentifrices and chewing
gums (Shibasaki et al. 1994; Arnaud et al. 2010; Ganss et al. 2011; Ruan et al. 2014),
for reduction of dental bacterial biofilm formation (Jahanizadeh et al. 2017), for guided
tissue regeneration to treat periodontal diseases such as periodontitis (Ma et al. 2014;
Lotfi et al. 2016), as dentin-bonding agent (Fawzy et al. 2013), as modification of
dental restorative materials and implants (Petri et al. 2007; Ali et al. 2017; Ibrahim
et al. 2017a), and as scaffold for stem cell-based tissue regeneration (Yang et al.
2012b; Asghari Sana et al. 2017; Soares et al. 2017a). Periodontitis is a chronic
inflammation of the gum, which ultimately may lead to the loss of periodontal tissues
and teeth (Pihlstrom et al. 2005). Current therapeutic strategies mainly rely on good
oral hygiene (brushing and flossing), plaque removal, and in more severe cases local
application of antibiotics and surgical intervention including open flap debridement,
osseous surgery, as well as guided tissue and bone regeneration. Chitosan-based
materials turned out to be very useful for periodontal tissue regeneration. Such
materials comprise methylpyrrolidinone chitosan (Muzzarelli et al. 1993a), chitosan
scaffolds coated with a bioactive hydroxyapatite (Ang et al. 2002; Coimbra et al. 201 1;
Fraga et al. 2011; Miranda et al. 2016), injectable thermosensitive
chitosan/B-glycerophosphate/hydroxyapatite hydrogels (Chen et al. 2016), chitosan-
based risedronate/zinc-hydroxyapatite intrapocket dental films (Khajuria et al. 2018),
asymmetric chitosan/tripolyphosphate cross-linked membranes (Ma et al. 2014),
porous chitosan/collagen scaffolds (Yang et al. 2012b), mucoadhesive electrospun
chitosan and thiolated chitosan nanofibers (Samprasit et al. 2015), chitosan-coated
titanium surfaces (Campos et al. 2015), chitosan modified glass ionomer restoratives
(Petri et al. 2007), chitosan-intercalated montmorillonite/poly(vinyl alcohol)
nanofibers (Ghasemi Hamidabadi et al. 2017), and polyhydroxybutyrate/chitosan/
nano-bioglass nanofiber scaffolds (Hashemi-Beni et al. 2018).

In one of the first studies that used growth factors to promote dental pulp stem cell
differentiation, porous chitosan/collagen scaffolds prepared by freeze-drying were
used and loaded with a plasmid vector encoding the human BMP-7 gene (Yang et al.
2012b). The stem cells grown in this scaffold were successfully transfected by the
plasmid vector, which led to the formation of BMP-7 triggering odontoblastic
differentiation as indicated by the activation of specific marker genes encoding
steocalcin, bone sialoprotein, dentin sialophosphoprotein, and dentin matrix protein
1. The chitosan/collagen scaffolds with stem cells were subcutaneously implanted
into the back of BALB/c mice. After 4 weeks, the material was explanted and
evaluated by immunohistochemistry. In the gene-activated scaffold group, there
were still transfected cells detectable showing the upregulated gene expression
when compared to pure scaffold groups.
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14.6.5.2 Cutaneous Wound Healing

Cutaneous wound healing is a complex process in which the skin repairs itself. The
process is divided into different stages, which include blood clotting (hemostasis),
inflammation, cell migration and proliferation, and tissue remodeling (maturation).
The wound healing process may be delayed or completely fail leading to non-healing
chronic wounds, which are frequently found in patients with diabetes, venous or
arterial diseases, infections, and age-related metabolic deficiencies. Bedsore and
burns behave differently, as the healing process is complicated by coagulation,
necrosis, and infections. Small, non-severe wounds may be treated with chitosan-
containing ointments (Kweon et al. 2003), topical gels (Alsarra 2009), and/or wound
dressings (Jayakumar et al. 2011). For instance, Kang et al. (2016) reported the
synthesis of silver chloride nanoparticles stabilized with chitosan oligomer for an
ointment that was tested on burn wound healing in a rat model. Burn wound healing
of rats treated with this ointment was superior to rats treated with pure Vaseline or
chitosan ointments. More severe wounds may require removal of necrotic tissue and
surgical wound closure using suturing techniques. If the defects are too large to be
covered in this way, autologous avascular mesh grafts, microvascular flap grafts,
mikroskin grafts, and/or cultured epithelial grafts are transplanted to the wound site
(Chua et al. 2016). However, surgical intervention is only possible up to a critical
size. To cover large-sized skin defects, artificial grafts produced by tissue engineer-
ing techniques are required. This type of wound dressings must protect from
infections, absorb excess exudates, and facilitate oxygen and nutrient exchange. In
addition, the material must be nontoxic, non-allergenic, non-adherent, and
biocompatible.

Chitosan-based materials are a good choice for wound dressings, as they fullfil
most of the criteria mentioned above, and they are known to promote wound
healing by activating platelets when getting into contact with blood (Periayah
et al. 2013). Moreover, chitosan-based scaffolds can be loaded with growth factors
to facilitate skin repair by promoting cell adhesion and proliferation (Lu et al.
2016). Several in vitro, preclinical and clinical studies actually demonstrated that
chitosan-based hydrogels films, powders, and dressings, as well as artificial skins,
accelerate wound healing and reepithelialization (Patrulea et al. 2015). However,
the precise mechanism of action in promoting wound healing is still under debate.
Next to chitosan-mediated immunomodulation, the type of functionalization
contributes to wound healing.

Chitosan-based scaffolds used to promote wound healing comprise hydrogels,
films, micro- and nanoparticles, nanocomposite materials, and micelles, and many
biocompatible chitosan derivatives have been tested including N-carboxybutyl
chitosan (Dias et al. 2010), hydroxybutyl chitosan (Hu et al. 2018), fluorinated
methacrylamide chitosan (Wijekoon et al. 2013; Patil et al. 2016; Akula et al.
2017), and chitosan/polyvinyl alcohol materials (Charernsriwilaiwat et al. 2014;
Wang et al. 2016b).
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In addition, numerous chitosan hybrid materials have been synthesized for wound
healing, which comprise chitosan or carboxymethyl chitosan/gelatin hydrogels
(Huang et al. 2013; Patel et al. 2018), chitosan/heparin/poly(y-glutamic acid) com-
posite hydrogels (Zhang et al. 2018), chitosan-hyaluronan composite sponge scaf-
folds (Sanad and Abdel-Bar 2017; Tamer et al. 2018), heparin-chitosan complexes
(Kratz et al. 1997; Kweon et al. 2003), chitosan-fibrin nanocomposites (Vedakumari
et al. 2015), polyvinyl alcohol/chitosan/fibroin-blended sponges (Yeo et al. 2000),
polyvinyl alcohol/starch/chitosan hydrogels with nano zinc oxide (Baghaie et al.
2017), poly(caprolactone)/chitosan/poly(vinyl alcohol) nanofibrous sponges
(Gholipour-Kanani et al. 2014), chitosan/poly(ethylene glycol)-tyramine hydrogels
(Lih et al. 2012), chitosan-alginate polyelectrolyte complexes (Wang et al. 2002;
Hong et al. 2008; Caetano et al. 2015; Kong et al. 2016), porous keratin/chitosan
scaffolds without and with zinc oxide (Tan et al. 2015; Zhai et al. 2018), nano-
titanium oxide/chitosan complexes (Peng et al. 2008), chitosan/collagen hydrogels
and sponges (Wang et al. 2008a; Cui et al. 2011; Ti et al. 2015), chitosan green tea
polyphenol complexes (Qin et al. 2010, 2013), dextran hydrogels loaded with
chitosan microparticles (Ribeiro et al. 2013), chitosan/polycaprolactone scaffolds
(Bai et al. 2014; Zhou et al. 2017b), chitosan oleate ionic micelles (Dellera et al.
2014), castor oil polymeric films reinforced with chitosan/zinc oxide nanoparticles
(Diez-Pascual and Diez-Vicente 2015), sponge-like nano-silver/zinc oxide-loaded
chitosan composites (Lu et al. 2017), gellan gum-chitosan hydrogels (Shukla et al.
2016), chitosan-silica hybrid dressing materials (Park et al. 2017), chitosan/bentonite
or tourmaline nanocomposites (Devi and Dutta 2017; Zou et al. 2017), chitosan/
gelatin/chondroitin-4-sulfate films with and without zinc oxide (Cahu et al. 2017),
chitosan/polyvinylpyrrolidone/cellulose nanowhiskers nanocomposites (Hasan et al.
2017), a-tocopherol-loaded chitosan oleate nanoemulsions (Bonferoni et al. 2018),
chitosan-based liposome formulations (Mengoni et al. 2017), and electrospun
chitosan/polyethylene oxide/fibrinogen biocomposites (Yuan et al. 2018).

Topical application of anti-inflammatory and antioxidant curcumin, which is a
component of many curry powders, has been shown to promote wound healing,
significantly preventing oxidative damage in tissues (Gopinath et al. 2004).
Chitosan-alginate sponges have been used to deliver curcumin for dermal wound
healing in rat. Loading curcumin onto the chitosan sponge enhanced the therapeutic
healing effect when compared to other carriers like cotton gauze. Similarly, inject-
able nanocomposite hydrogels composed of curcumin, N,O-carboxymethyl
chitosan, and oxidized alginate possess many characteristics that promote wound
healing including exudate absorption and immobilization and activation of growth
factors. Nano-curcumin, which is released slowly from the hydrogel in a sustained
manner, evidently stimulates fibroblast proliferation, angiogenesis, and collagen
production, supporting the healing process when tested in a mice model (Li et al.
2012b). Wound dressings made of chitosan/poly-y-glutamic acid/pluronic/curcumin
nanoparticles also promoted collagen formation and tissue regeneration (Lin et al.
2017), and collagen-alginate scaffolds impregnated with curcumin-loaded chitosan
nanoparticles proved promising in the treatment of various pathological manifesta-
tions of diabetic wounds (Karri et al. 2016). Most recently, Zhao et al. (2018)
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prepared a thermosensitive chitosan/p-glycerophosphate hydrogel loaded with
B-cyclodextrin-curcumin and demonstrated improved healing of infected cutaneous
wounds in rats, which may be due to the combination of antioxidative, antimicrobial,
and anti-NF-xB signaling effects.

As silver has been demonstrated to have potent antimicrobial activities with no
reports on bacterial resistances, several laboratories prepared chitosan wound dress-
ings impregnated with silver to prevent wound infections and promote wound
healing (Graham 2005). Indeed, a wound dressing composed of nano-silver and
chitosan improved wound healing in rats better than a silver sulfadiazine dressing,
which led to unwanted higher silver levels in the blood than the chitosan-silver
dressing (Lu et al. 2008). In another study, Abdelgawad et al. (2014) combined silver
nanoparticles that were embedded in chitosan with polyvinyl alcohol to produce
antimicrobial nanofibrous material for wound dressing. The material with the highest
chitosan-silver nanoparticle content was tested against E. coli and showed significant
antibacterial activity. A combined antibacterial/tissue regeneration response trig-
gered by functional chitosan-silver nanocomposites was also reported for thermal
burns (Luna-Hernandez et al. 2017). To increase antibacterial activity wound dress-
ings, several groups combined chitosan-silver-based materials with sulfadiazine, a
sulfonamide antibiotic. Topical administration of chitosan-based hydrogels
containing silver sulfadiazine improved burn and wound healing capacities in
different studies (Nascimento et al. 2009; Chakavala et al. 2012; Aguzzi et al.
2014; Lee et al. 2014; El-Feky et al. 2017a). Besides inhibiting Gram-negative
bacteria such as E. coli, chitosan-based dressings carrying silver sulfadiazine also
inhibited the growth of Gram-positive bacteria as well as fungi such as C. albicans
on an infected wound (El-Feky et al. 2017b).

Several studies reported that wound healing is accelerated when chitosan
hydrogels are combined with adipose-derived or mesenchymal stem cells. Altman
et al. (2009) grew human adipose-derived stem cells onto a chitosan/silk fibroin
scaffolds and used it in a cutaneous wound healing model. They found that this
regimen significantly enhanced wound healing, increasing micro-vascularization
and differentiation into epidermal epithelial cells. In another study, an artificial
dermis was fabricated by culturing human adipose-derived stem cells on a poly
(L-glutamic acid)/chitosan scaffold (Shen et al. 2013b). Notably, the seeded stem
cells maintained their capability to proliferate, produce extracellular matrix, and
secrete cytokines including transforming growth factor p1 and vascular endothelial
growth factor. The artificial dermis was used to cover wounds that have been
generated before in streptozotocin-induced diabetic mice. The artificial dermis
significantly accelerated wound closure and healing in diabetic mice. Tong et al.
(2016) used a different stem cell-based strategy to generate a skin substitute pro-
moting wound healing. They manufactured a collagen-chitosan sponge scaffold to
culture bone marrow-derived stem cells, which were pre-treated by hypoxia to
induce the expression of pro-angiogenic cytokines. When the skin substitute was
used to treat wounds generated in diabetic rats with hindlimb ischemia, wound
healing was enhanced in comparison to scaffold-only controls or skin substitutes
that were generated with normoxic stem cells.
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A novel strategy for wound healing involving exosomes was reported recently.
Exosomes are small secretory membrane vesicles that are involved in cell-to-cell
communication. Stem cell-derived exosomes can improve wound healing and pro-
mote skin regeneration by stimulating cell proliferation and migration, angiogenesis,
and reepithelization and modulating immune responses (Phinney and Pittenger
2017). Based on these observations, Shi et al. (2017b) isolated exosomes derived
from gingival mesenchymal stem cells and encapsulated them in chitosan/silk
hydrogel sponge. The combination of the exosomes and hydrogel was effective in
promoting skin wound healing in a diabetic rat model by inducing
reepithelialization, vascularization, and neuronalization paralleled by the remodeling
of the extracellular matrix.

14.6.5.3 Ocular Surface Reconstruction

Corneal damage can be the result of different diseases and injuries and may lead to a
reduction or even loss of vision. Currently, the only therapy to cure vision loss after
irreversible corneal damage is a surgical procedure where the cornea is replaced by
donated corneal tissue. Frequently, the entire cornea is replaced in a surgical
intervention called penetrating keratoplasty. As there is a shortage of corneal donors
and there is a certain risk associated with the surgery and graft rejection, new types of
corneal replacements are examined including materials containing chitosan. Actu-
ally, topical application of chitosan or chitosan/N-acetylcysteine to the eye is known
to enhance corneal epithelial proliferation and migration during the wound healing in
rabbits (Fischak et al. 2017). This process appears to involve the activation of the
extracellular signal-regulated kinases (ERK) pathway (Cui et al. 2017). Another
study evaluated the effects on corneal epithelium regeneration by combination of
exogenous recombinant human serum-derived factor-lae (thSDF-la) with a
thermosensitive chitosan/gelatin hydrogel and analyzed the underlying mechanism
(Tang et al. 2017). Conducting in vitro experiments, the team showed that thSDF-1a
enhanced stem cell proliferation, chemotaxis, and migration, as well as the expres-
sion of related genes in limbal epithelial and mesenchymal stem cells (LESCs and
MSCs). In vivo experiment using an alkali burn-injury rat model further revealed
enhanced corneal epithelium regeneration and increased local expression of growth
factors known to be essential for corneal epithelium repair. The underlying mecha-
nism by which rhSDF-1a released from the chitosan/gelatin hydrogel stimulates
corneal regeneration may involve activation of C-X-C chemokine receptor type
4 (CXCR4) expressing cells (LESCs and MSCs) and chemotactic attraction of
these cells to the sites of lesion via the binding of thSDF-1a to the CXCR4 receptor.

Chen et al. (2005) had considered a tissue-engineering scaffold made of collagen,
chitosan, and hyaluronic acid as a potential replacement for corneal tissue. To study
cytocompatibility in vitro, they cultured rabbit limbal corneal epithelial cells, corneal
endothelial cells, and keratocytes on the polymer complexes and demonstrated that
the corneal cells were able to attach, migrate, and proliferate. To evaluate
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biocompatibility in vivo, they implanted the polymer complex into the corneal
stroma of rabbit eyes and inspected ocular reactions. Overall, the polymer complexes
exhibited transparency and good biocompatibility, as they were degraded and
absorbed within the corneal tissue while maintaining transparency. In another
study, poly(ethylene glycol)-stabilized carbodiimide-cross-linked collagen-chitosan
hydrogels were tested for biocompatibility and host-graft integration. For this
purpose, Rafat et al. (2008) performed in vitro and in vivo studies demonstrating
excellent biocompatibility when analyzing human corneal cells, dorsal root ganglia
from chick embryos, or subcutaneous implants. The hydrogel scaffold was also
studied as corneal substitute by implanting it into the cornea of pig eyes and
monitoring them for 12 months. The substitute was seamlessly integrated into the
cornea with regeneration of host corneal epithelium, stroma, and nerves. Liang et al.
(2011) prepared a blend membrane composed of hydroxyethyl-chitosan, gelatin, and
chondroitin sulfate. The membrane exhibited good transparency, ion and glucose
permeability, and cytocompatibility for corneal endothelial cells, which formed a
monolayer on the membrane in cell culture. In vivo animal experiments revealed that
the membranes were characterized by biodegradability and a good histocompatibil-
ity suggesting that the membranes may be employed as carriers for corneal
endothelial cell transplantation. Similar results were obtained for chitosan/
polycaprolactone,  chitosan/poly(ethylene  glycol), silk fibroin/chitosan,
carboxymethyl chitosan/gelatin/hyaluronic acid, as well as hydroxyethyl-chitosan
blend membranes, which were tested as potential scaffolds and carriers for bovine,
ovine, and rabbit corneal endothelial cells, respectively (Wang et al. 2012b; Guan
et al. 2013; Ozcelik et al. 2013; Liang et al. 2014; Xu et al. 2018).

Using an allogeneic rabbit model of stromal destruction caused by bacterial
keratitis, Chou et al. (2018) tested the hypothesis that intra-stromal injection of
keratocyte spheroids manufactured on chitosan coatings has higher therapeutic
efficacies than eye drop instillations or isolated cell injections. The results of clinical
observations and histological studies performed 2 weeks after the surgical interven-
tion showed that, in comparison to a treatment relying only on antibiotics, intra-
stromal grafting of keratocytes provides additional benefits due to improved preser-
vation of cellular phenotypes, secretion of collagen matrix, and retention of the graft.

In a stem cell therapeutic approach published by Chien et al. (2012), human
corneal fibroblasts (keratocytes) were reprogrammed into human-induced
pluripotent stem cells (iPSC) using a feeder cell-free culturing system. To increase
iPSC delivery and engraftment, the researchers generated an injectable
thermogelling carboxymethyl-hexanoyl chitosan nanogel with seeded iPSCs and
showed that viability and pluripotent properties of the reprogrammed iPSCs were
maintained in the hydrogel system. They further demonstrated that the
reprogrammed iPSCs grown on the hydrogel could be used to enhance corneal
wound healing efficiently. This strategy opens the possibility for a personalized
therapy for human corneal damage when iPSCs are reprogrammed from cells
derived from corneal surgical residues.
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14.6.5.4 Neuronal Regeneration

The plethora of favorable characteristics of chitosan outlined in this chapter
prompted many researchers around the world to employ chitosan-based materials
also in the reconstruction of peripheral nerves to improve healing of nerve damage
caused by accidents or diseases. Although therapeutic interventions to peripheral
nerve repair have yielded some progress during the past years, a full recovery of
nerve function is usually not achieved. Current therapies mostly rely on microsur-
gical techniques, which either try to directly establish a tension-free connection
between the ends of severed nerves (epineural, fascicular, and grouped fascicular
repair) or bridge larger nerve defects by autologous grafts (cable grafts, trunk grafts,
and vascularized nerve grafts) (Matsuyama et al. 2000; Houschyar et al. 2016). The
various neurosurgical techniques used to connect nerve ends are challenging, and the
therapeutic results are frequently not satisfactory. Many studies have provided
evidence that various types of conduits, such as veins, pseudo-sheaths, and
bioabsorbable tubes, are helpful in bridging shorter gaps by promoting nerve
regeneration. After bridging nerve gaps with hollow conduits, the lumen between
the nerve ends becomes filled with fibrin, and macrophages and other cells are
attracted, which create a favorable microenvironment for vascularization and
neuronalization.

Chitosan-based conduits have been extensively analyzed for this purpose. An
early electrophysiological and histological study on nerve regeneration using rat
sciatic nerve defects demonstrated that pure chitosan/collagen conduits were superior
in bridging 1 cm nerve defects to that of control groups (Wei et al. 2003). The
chitosan/collagen film was found to be degraded about 3 months after the surgery. In
a methodologically similar study, Wang et al. (2005) generated an artificial nerve
graft composed of a chitosan conduit and tested them to bridge a 3 cm dog sciatic
nerve defect. In contrast to the previous study, the conduit was filled with longitudi-
nally arranged filaments of polyglcyolic acid. The team found that the sciatic nerve
trunk was successfully reconstructed in dogs treated with the chitosan/polyglycolic
acid graft with reinnervation of the target skeletal muscle. In a case report on a
55-year-old man with a 3 cm median nerve defect in the distal forearm, implantation
of chitosan/polyglycolic acid graft promoted nerve regeneration and functional
reconstruction, so that the patient was able after 36 months to fully use the injured
hand during daily activities (Gu et al. 2012). Other chitosan-based conduits have been
successfully used to guide and promote nerve generation in various in vitro and
in vivo models. These materials include chitosan/gelatin and chitosan/poly(L-lysine)
polyelectrolyte-based scaffolds (Martin-Lopez et al. 2012), -chitosan-gold
nanocomposites (Lin et al. 2008), chitosan/polylactic acid films (Xie et al. 2008),
chitosan/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofibers (Biazar and
Heidari Keshel 2014), porous chitosan-poly(p-dioxanone)/silk fibroin copolymers
(Wu et al. 2015), poly(D,L-lactide-co-glycolide) sleeves with multifilament chitosan
yarn or a microcrystalline chitosan sponge core (Wlaszczuk et al. 2016), chitosan/
hyaluronic  acid  hybrid materials (Li et al. 2018a), porous
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chitosan-y-glycidoxypropyltrimethoxysilane hybrid membranes (Shirosaki et al.
2014), hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides
(Itoh et al. 2003), and hyaluronic acid doped-poly(3,4-ethylenedioxythiophene)
nanoparticles in a chitosan/gelatin matrix (Wang et al. 2017b).

An evident upgrade of chitosan-based conduits is lumenal loading with
neurotrophic factors such as nerve growth factor (NGF), ciliary neurotrophic factor
(CNF), or brain-derived neurotrophic factor (BDNF), which are all secreted by
Schwann cells that support growth of neuronal cells (Houschyar et al. 2016). In
addition, fibroblast growth factor (FGF), glial growth factor (GGF), and vascular
endothelial growth factor (VEGF) were reported to have positive effects on nerve
regeneration.

Yang et al. (2011) immobilized NGF on genipin-cross-linked chitosan and tested
the material for cytotoxicity using primary cultured Schwann cells and for neuronal
differentiation of PC12 cells in response to NGF release. Subsequently, Wang et al.
(2012a) demonstrated that genipin-cross-linked chitosan conduits loaded with NGF
can be successfully used to bridge 1-cm-long sciatic nerve defects in rats as revealed
by electrophysiological assessment, behavioral analysis, and histological examina-
tion 24 weeks after the surgery. Similar results were obtained, when NGF-containing
microspheres were implanted into chitosan conduits to repair a 1 cm defect of the
facial nerve in rabbits (Liu et al. 2013). In another NGF-based approach, Chao et al.
(2016) combined an autologous vein conduit with a chitosan-p-glycerophosphate-
NGF hydrogel. The researchers surgically reconstructed a 5-mm-long defect of a rat
facial nerve with an autologous vein and then injected the
chitosan-p-glycerophosphate-NGF hydrogel into the lumen of the conduit. Facial
nerve regeneration was as efficient as in control groups, which were transplanted
with an autologous nerve, but significantly better than in control groups where the
vein conduit was injected with NGF only.

Shen et al. (2010) used a polylactic/polyglycolic acid chitosan nerve conduit
loaded with CNF to repair larger canine tibial nerve defects in crossbred dogs and
evaluated nerve regeneration by general inspection, electrophysiological, immuno-
logical, and histological analyses 3 months after the surgery. Nerve regeneration was
significantly improved in animals that were treated with CNF-loaded polylactic/
polyglycolic acid chitosan conduits when compared to groups treated with the
polylactic/polyglycolic acid chitosan conduits. The results were similar to controls
groups that were treated with autologous nerve grafts, suggesting that the artificial
nerve conduit is a promising alternative for bridging nerve defects.

Furthermore, Zhao et al. (2014) hypothesized that tacrolismus-loaded chitosan
enhances peripheral nerve regeneration through modulation of the expression pro-
files of neurotrophic factors. To test this hypothesis, they loaded tacrolismus onto
chitosan conduits and examined nerve regeneration of sciatic nerve injury in a rat
model. They found significant regeneration of sciatic nerves with normal morphol-
ogy but higher density of myelinated nerve fibers in rats treated with tacrolismus-
loaded chitosan. The underlying mechanism seems to involve BDNF signaling,
because nerve regeneration was paralleled by an increased expression of BDNF
and its corresponding receptor (TrkB) in the motor neurons in the spinal cord.
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The membrane-bound cell adhesion molecule L1 is known to promote neurite
growth and prevent neuronal apoptosis, a function which can be mimicked by a
recombinant chimeric version of this molecule called L1-Fc (Roonprapunt et al.
2003). Loading L1-Fc to an artificial chitosan/polyglycolic acid conduit, Xu et al.
(2004) studied guided regeneration of rat optic nerves. They found that the
implanted chitosan/polyglycolic acid conduit was degraded and absorbed. When
L1-Fc loaded conduits were implanted to bridge a defect caused by surgical inter-
vention, axonal regeneration and remyelination were significantly improved when
compared to control groups that were treated with conduits lacking L1-Fc.

Nerve regeneration can be additionally promoted using chitosan-based scaffolds
as conduits seeded with stem cells that express neurotrophic factors and can differ-
entiate into nerve cells. Zheng and Cui (2010) tested chitosan conduits of such kind
combined with rat bone marrow mesenchymal stem cells to evaluate their potential
for the reconstruction of 8-mm-long rat sciatic nerve defects. They demonstrated that
the combination of chitosan and mesenchymal stem cells alone was sufficient to
improve nerve regeneration and functional recovery. Moreover, some of the mesen-
chymal stem cells were found to have differentiated into neural stem cells. Similar
results were obtained when injured rat sciatic nerves were treated in this way, and the
nerve repair was monitored electrophysiologically and histomorphologically
(Moattari et al. 2018) or by noninvasive magnetic resonance neurographic imaging
(Liao et al. 2012). In addition, chitosan-coated poly-3-hydroxybutyrate conduits
combined with human bone marrow mesenchymal stem cells were recently shown
to be efficient in promoting nerve regeneration in this rat model of sciatic nerve
injury (Ozer et al. 2018). Improved nerve regeneration was also reported for
chitosan/poly(lactic-co-glycolic acid) scaffolds seeded with autologous bone mar-
row mesenchymal stem cells to treat injuries of dog sciatic nerves and rhesus
monkey median nerves (Xue et al. 2012; Hu et al. 2013). In another approach,
Zhu et al. (2015) used chitosan conduits filled with bone marrow mesenchymal stem
cells and evaluated nerve regeneration and neuronal survival when injured lumbo-
sacral nerves were bridged with this material. They found that this treatment
enhanced sacral nerve regeneration and motor function 6 and 12 weeks after the
surgery. Moreover, the mesenchymal stem cells prevented cell death of motor
neurons in the anterior horn of the spinal cord, thereby improving the motor function
in rats treated with the mesenchymal stem cell-seeded chitosan conduit. Finally, a
clinical study performed with 14 patients suggests that defects in chronic spinal cord
injury can be successfully bridged with peripheral nerve grafts combined with a
chitosan-laminin scaffold and co-transplanted bone marrow-derived mesenchymal
stem cells, which enhanced recovery (Amr et al. 2014).

Using chitosan/silk fibroin scaffolds grafts seeded with adipose-derived stem
cells, Wei et al. (2011) examined regeneration of surgically injured rat sciatic nerves.
Implantation of this conduit significantly improved axonal regeneration and func-
tional recovery in comparison to control groups. The positive effect was partially
attributed to the differentiation of adipose-derived stem cells into Schwann cells,
which additionally secrete neurotrophic factors and prevent apoptosis. Nie et al.
(2014) investigated axonal regeneration and remyelination using a chitosan/gelatin-
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based conduit combined with TGF-f1 and Schwann cells. For this purpose, they
bridged a 10-mm defect of a rat sciatic nerve and examined nerve regeneration based
on functional recovery, electrophysiological measurements, retrograde labeling, and
immunohistochemical analysis. The obtained data indicate satisfactory functional
recovery of the injured sciatic nerve.

Meyer et al. (2016) filled chitosan (5% degree of acetylation) conduits with a gel
containing hyaluronic acid and laminin (NVR-gel) and added genetically modified
neonatal rat Schwann cells as cellular delivery system for neurotrophic factors.
Testing the chitosan conduits in the rat sciatic nerve model revealed that the chitosan
conduit, which only is filled with the NVR-gel, was insufficient to promote nerve
regeneration in contrast to autologous nerve grafts. Notably, delivery of FGF by
seeded Schwann cells genetically modified to overexpress this factor improved nerve
regeneration significantly. Unexpectedly, Schwann cells expressing GDNF did not
show positive effects in this experimental setup. Recently, Zhu et al. (2017) used
skin-derived precursor Schwann cells to seed chitosan/silk scaffolds for bridging a
10-mm-long rat sciatic nerve gap. The artificial graft exhibited significant promoting
effects on peripheral nerve repair and hence constitutes an alternative to other stem
cell-based approach promoting nerve regeneration.

14.7 Concluding Remarks

Numerous studies reported favorable effects of chitosan-based materials for a wide
range of applications. Doubtless, the controlled and targeted delivery of drugs to
specific tissues has a great potential in biomedicine, and first clinical trials with
chitosan-based drug carrier systems revealed promising results for the therapy of a
variety of diseases including diabetes and cancer and also mainly because adverse
side effects are reduced. The antimicrobial activity of chitosan and its derivatives is
particularly important when the polymer is used for textile fabrication, food pack-
aging, wound dressings, and tissue engineering. However, the underlying mecha-
nism of antimicrobial activity is not fully understood. One prominent explanation is
the assumed interaction of chitosan’s positively charged amine groups with the
negatively charged surface of bacteria and fungi, which might impair the movement
of ions across membranes and hence disrupt cellular integrity. Although the pro-
posed mechanisms seem plausible, there is a clear lack of experimental data that
would provide evidence at a molecular level reminding us to continue basic research
on the mode of actions. The studies conducted so far indicate that the antimicrobial
activity of pure chitosan is not sufficient to prevent microbial infections completely
in vivo. However, chitosan and its derivatives can be combined with other antimi-
crobial compounds including essential oils (Krausz et al. 2015), polyphenols
(Madureira et al. 2015), tretinoin (Ridolfi et al. 2012), metal ions (Sanpui et al.
2008; Tran et al. 2010), lysozyme (Wu et al. 2017), or antibodies (Jamil et al. 2016),
to prevent bacterial of fungal infections. Thus, chitosan appears to be an ideal
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adjuvant polymer for design and production of new materials exhibiting intrinsic
antimicrobial properties for a large variety of potential applications in the chemical,
pharmaceutical, food, and textile industry. Similarly, the observed immune-
stimulatory effects of chitosan need further investigation, as there may be a certain
risk to develop allergic or even anaphylactic reactions after oral ingestion (Kato et al.
2005). However, it has to be noted that overall the beneficial characteristics exceed
possible side effects due to some allergic potential. Finally, the antitumor activity of
chitosan also needs to be analyzed in more detail. Recently, Li et al. (2018b)
provided some evidence indicating that chitosan activates dendritic cells, which
subsequently secrete pro-inflammatory cytokines and thereby enhance immune
surveillance by natural killer cells. Accordingly, the antitumor effects of chitosan
can be enhanced by specifically targeting dendritic cells by attaching mannose to the
surface of chitosan nanoparticles (Shi et al. 2017a). Different pattern recognition
receptors that are expressed on the surface of dendritic cells are potential receptors
for chitosan. This includes Toll-like receptors, C-type lectin receptors, and other
molecules, which are known to recognize specific molecular patterns, particularly
those associated with pathogens. However, currently it is not known how dendritic
cells recognize chitosan. In summary, it has to be noted that chitosan is a highly
promising material for a variety of applications in industry and medicine. While
chitosan-based materials have been commercially launched as packaging and coat-
ing material in food industry, as an ingredient in cosmetics, and as ion exchanger in
water treatment and are approved for human dietary use and wound dressing, their
commercial applications in medicine as drug delivery systems or scaffold for tissue
engineering are pending. Nevertheless, there are clinical phase 2/3 trials, and
depending on their outcome, some products may reach first approval by the health
authorities in near future.
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